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The color neutral two-flavor superconducting phase of cold and dense quark matter is studied in the
presence of constant magnetic fields and at moderate baryon densities. In the first part of the paper, a two-
flavor effective Nambu—Jona-Lasinio model consisting of a chiral symmetry breaking (ySB) mass gap o,
a color superconducting (CSC) mass gap Ag and a color chemical potential ug is introduced in the
presence of a rotated U(1) magnetic field B. To study the phenomenon of magnetic catalysis in the
presence of strong magnetic fields, the gap equations corresponding to o and Ag, as well as ug are
solved in the lowest Landau level approximation. In the second part of the paper, a detailed numerical
analysis is performed to explore the effect of any arbitrary magnetic field on the above mass gaps and the
color chemical potential. The structure of the ySB and CSC phases is also presented in the w.-éB plane,
and the effect of ug on the phase structure of the model is explored. As it turns out, whereas the transition
from the ySB to CSC phase is of first order, nonvanishing ug affects essentially the second order phase

transition from CSC to the normal phase.

DOI: 10.1103/PhysRevD.82.045010

L. INTRODUCTION

Dense baryonic matter at low temperature and asymp-
totically large chemical potential is known to be a color
superconductor [1]. This can be shown in the framework of
perturbative quantum chromodynamics (pQCD). To ex-
plore the color superconducting phase at moderate chemi-
cal potential, however, it is necessary to use effective
models, such as the well-known Nambu-Jona-Lasinio
(NJL) model with four-fermion interaction [2]. Using an
appropriate NJL-type model, one can show that at baryon
densities u. = 350 MeV, i.e. only several times larger than
the density of nuclear matter, the two-flavor-color super-
conducting (2SC) phase might be present [3,4] (see [5] for
recent reviews on color superconductivity in dense quark
matter). Different astrophysical processes might therefore
be influenced by the color superconductivity that is sup-
posed to exist inside the compact stars. In [6], the com-
petition between the chiral symmetry breaking and the
color symmetry breaking condensates is investigated in
the framework of a two-flavor color neutral NJL-type
model, including meson and diquark condensates, o, and
Ay. Imposing the color neutrality condition, it is found that
in the 2SC phase at u > . = 342 MeV, the color chemi-
cal potential g acquires rather small values of about
10 MeV."' Here, u, is the critical chemical potential. The
diquark mass gap is numerically computed to be A, =
100 MeV. It is also shown that the appearance of a coex-
istence regime (mixed phase) depends directly on the
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'The underlying physics of color charge neutrality is discussed
in [7].
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relative strength of the meson and diquark coupling con-
stants Gg and Gp. This is also indicated in [8—10], where it
is stated that neglecting the quark masses and choosing
Gp < Gg, no mixed phase appears at u > .. The ySB
and color superconducting (CSC) phases can therefore be
studied separately under these conditions.

In the present paper, we study the mesons and diquarks
in the color neutral 2SC phase of cold and dense quark
matter in the presence of constant magnetic fields. The aim
is to study the effect of the magnetic field on the formation
of chiral as well as diquark condensates, the dependence of
mass gaps on the chemical potential 4 and the external
magnetic field, the phase diagram w vs B, and the effect of
nonvanishing color chemical potential on the type of phase
transitions for different x and B at zero temperature 7.

The study of quark matter in the presence of constant
magnetic field is relevant for the astrophysics of compact
stars: Strong magnetic fields exist on the surface of com-
pact stars. For neutron stars the magnetic fields B <
10'? GauB, whereas for magnetars, they can be as large
as B~ 10'° GauB [12]. In the interiors of compact stars,
the magnetic field can be even several orders of magnitude
larger [13]. On the other hand, it is believed that the
superdense interior of compact stars may be composed of
electric and color neutral quark matter in the color super-
conducting phase. To test the predictions of astrophysical
signatures of color superconductivity, a better understand-
ing of the role of magnetic fields on the CSC phase is
important. The study of superconducting phase in the
presence of external magnetic fields is also relevant for

The effect of finite temperature will be presented elsewhere

[11].
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the physics of heavy ion collisions: According to [14,15],
in off-central collisions, heavy ions possess a very large
angular momentum and very strong magnetic fields can be
created. In [16], it is shown that the magnetic field pres-
ently created at RHIC is at most eB =~ 1.3m2 ~ 4.3 X
10'® GauB, and the estimated value of the magnetic field
strength for the LHC energy amounts to 15m2 ~ 5 X
10" GauB.? Recently, the question of accessibility of the
2SC phase in the future heavy ion collision experiments is
investigated in [17]. Here, the authors do not consider the
effect of the before mentioned magnetic fields. It would be
therefore important to study the effect of external magnetic
fields on the formation of 2SC diquark condensates, as well
as the corresponding phase structure in the presence of
external magnetic fields. As for the results presented in this
paper, they may be relevant only for the physics of the
heavy ion collisions, because in contrary to the electric and
color neutrality requirement of the superdense core of the
compact stars, only the color neutrality condition is con-
sidered in this paper.

The effect of constant magnetic field on the formation of
diquark condensates has been investigated by several au-
thors. In [18,19], it is shown that there is a linear combi-
nation of photon and a gluon that remains massless. The
resulting “‘rotated”” external magnetic field can therefore
penetrate the color superconducting region without being
affected by the Meissner effect. This has consequences for
the structure of compact star cores. In [20,21], the forma-
tion of magnetic color-flavor locked (MCFL) phase, as
well as the transition to the paramagnetic-CFL (PCFL)
phase are studied. In [22,23], it is shown that for small
magnetic fields, the CFL mass gap as well as the corre-
sponding magnetization exhibit small oscillations, the van
Alfven—de Haas (vAdH) oscillations. This effect, which is
well known from condensed matter physics, is predicted by
Landau and observed experimentally by van Alfven and de
Haas (see [24] for an investigation of this effect in cold
dense quark matter in a homogeneous magnetic field). The
transport properties of 2SC phase is investigated recently
in [25].

Recently, in [26], the formation of chiral and diquark
condensates as well as their competition in the 2SC phase
at zero temperature and moderate densities are studied
using the same NJL-type model as in the present paper. It
is shown that for vanishing magnetic field, a mixed broken
phase can be found where both chiral and superconducting
gaps are nonzero. For éB = 0.05 GeV? (corresponding to
B ~8.5X% 10" GauB) and moderate diquark-to-chiral
coupling ratios Gp/Gy, the chiral and superconducting
transitions become weaker. For large G,/ Gy, strong mag-
netic fields disrupt the mixed broken phase region and a
first order phase transition is found between the ySB and
the CSC phase for éB = 0.05 GeV?. In contrast to [26],

*Here, the pion mass, m, = 140 MeV.
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our results include a detailed analytical and numerical
survey on the effect of external magnetic field and color
chemical potential on cold and dense as well as color
neutral quark matter in the presence of external magnetic
fields.

The organization of this paper is as follows: In Sec. II,
starting from an extended Lagrangian density of a gauged
NJL model containing two flavors, and following the
method presented in [18,19], we introduce the rotated
magnetic field éB and determine the Lagrangian density
containing the ySB and CSC mass gaps, oz and Ag,
respectively. In Sec. III, the one-loop effective action and
thermodynamic potential of the model are determined at
zero temperature and finite quark chemical potential. In
Sec. IV, assuming very strong magnetic fields, we solve
analytically the gap equations corresponding to o3 and A,
as well as the color chemical potential ug in an appropriate
lowest Landau level (LLL) approximation. The ySB and
the CSC phases are studied, in IVA and IV B, separately.
This is possible because of our specific choice of free
parameters, the quark mass m and the meson and diquark
couplings Gg and Gp. In the ySB phase, characterized by
op # 0 and Ay = pg = 0, the magnetic field enhances
the bound state formation. This is because of the phenome-
non of magnetic catalysis [27,28] studied intensively in the
past few years.* In the CSC phase, characterized by o =
0, Ay # 0 and ug # 0, we determine analytically the u
and éB dependence of Ag and ug in the regime of LLL
dominance. In Sec. V, a numerical analysis is performed to
study the éB dependence of the ySB and CSC mass gaps at
pm = 250 MeV (in the ySB regime) and u = 460 MeV (in
the CSC regime). For small values of €B, we observe vAdH
oscillations in the mass gaps as well as the corresponding
magnetizations, as expected. These are also observed in
[22,23] for three-flavor CFL phase at u = 500 MeV. At
éB ~ 0.45-0.5 GeV?, the oscillations end up in a “linear
regime.” Comparing eventually our numerical results for
éB = 0.45 GeV? with the analytical results arising in
Sec. IV for strong magnetic fields in the LLL approxima-
tion, we conclude that this approximation is only reliable in
the above linear regime. The w-dependence of the mass
gaps and the color chemical potential is also discussed for
various éB. Our results for vanishing éB coincide with the
results in [6]. We also present the phase structure of ySB
and CSC phases in a wu.-éB plane. In particular, we are
interested in the effect of the color chemical potential g
on the phase structure of the model. As it turns out, for
mg = 0, a first order phase transition exists between the
XxSB and the CSC phase in the regime u,. = 350-450 MeV
and éB € [0, 0.7] GeV?2, whereas the transition from the
CSC to the normal phase is of second order and occurs at

“See [29] for the application of magnetic catalysis in cosmol-
ogy, [30] for its application in condensed matter physics, and
[31-34] for its applications in particle physics.
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Mo = 750-800 MeV. For ug # 0, however, whereas the
phase transition between the ySB and the CSC phase is
still of first order, the second order phase transition be-
tween the CSC and the normal phase goes over into a first
order phase transition between the CSC and the normal
phase at u, =755 MeV and éB ~ (.13 GeV2. Note that
the first order nature of the transition between the ySB and
CSC phases was expected from [26], where the type of
phase transition between these two phases is studied for a
fixed éB = 0.05 GeV? and various Gp/Gg ratios. Our
results confirm the findings in [26] for a wide range of
éB € {0,0.7} GeV? and fixed value of G,/Gs = 0.75.
Section VI is devoted to a summary of our results and
concluding remarks.

II. TWO FLAVOR 2SC MODEL AT T = 0,
AND u, B # 0

Let us start with the fermionic part of the extended
Lagrangian density of a gauged NJL model’

L= d@liy*(0, —ieQA, —igT*GY) —my + ay°ly (x)
+ Gs[( () ¢ (x))* + (¢ (x)iys 7 (x))?]
+GpllihC()eredysy(0))ih(x)erelys € (x))].

@2.1)

Here, ¢ = CyT and ¢ = 7C are charge-conjugate
spinors, and C = iy?" is charge-conjugation matrix, 7 =
(7, 75, T3) are Pauli matrices. Moreover, (€2)* = (e,)%3
and (g);; are antisymmetric matrices in color and flavor
spaces, respectively. For a theory with two quark flavors,
i, j = (1,2) = (u, d), and three color degrees of freedom
a,b=1(1,23) = (r, g b). We assume that both quarks
have the same (bare) mass m, = m, = m.° Further, i
is defined by g = pu + \/§,LL8A8, where u is the quark
chemical potential and is responsible for the nonzero bar-
yonic density of quark matter, and ug is inserted by hand to
impose the color neutrality after the process of dynamical
color symmetry breaking. Here, 7% = % with Ag =
715 diag(1, 1, —2) the 8th Gell-Mann A-matrix. The scalar

and diquark couplings are denoted by G and Gp, respec-
tively.  Furthermore, Q=0Q,®1, with Q;=
diag(2/3, —1/3) is the fermionic charge matrix coupled
to U(1) gauge field A,,. The same setup without the cou-
pling to A, and Gi is also used in [6]. To determine the
effective action of the above model, we introduce first the
bosonized Lagrangian density

The gauge kinetic term will be added to this Lagrangian in the
last step.

SIn Secs. IV and V, the bare mass, mg, will be chosen to be
Zero.
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L= pOlivt(0, — ieQA, — igT*GY) + 4 1y()
— P+ iYF DY)
|
AR W selys ()

o2+ 7 AN
4Gy 4Gp
2.2)

— %A%iz]/(x)sfe;??’s Pe) -

with m = my + o, that includes the auxiliary mesonic
fields

o= —2Gs(y ), 7= 2Gs(giy 7Ty),  (2.3)
and diquarks
A3 = =2Gp(ihCerelysip), 2.4)

A3 = —2GD(l'lzf8f63-')’5 wC)

From now on, we will skip the superscript “3” for A and
A*. Using an appropriate mean field approximation, the
effective potential of this model can be determined as a
function of the condensates (o), {(7),(A) and (A*). For
simplicity we set (7) = 0. It is the purpose of this paper
to study the effect of a constant background U(1) magnetic
field on the formation of these condensates. To do this, we
have, principally, to replace A, by a classical A} and a
dynamical part a, and then integrate out the dynamical
gauge field a, and Gi. However, it turns out that for
nonvanishing (A, A*), both gauge fields A, and G5 are
massive and underlie the Meissner effect.” They are there-
fore inappropriate to be taken as external fields. But, as it is
shown in [18,19], there is indeed a linear combination of
A, and Gi, that leads to a massless rotated U(1) field,
A~M = A, cosb — Gi sinf, and a massive rotated SU(3)
field, Gi = A, sinf + Gi cosf. According to [19], the
angle 6 can be determined from

V3g e

cosd = —————"—, and sinf =-—————.
(2.5)
To rotate the fields, one uses the identity
eQA, +gT8GS, =eQA, +3TGS, (2.6

and insert the combination OOT =1 on the right-hand
side (r.h.s.) of this identity. Here, @ is an appropriate
rotation matrix including sine and cosine of 8. The identity
(2.6) not only determines the new rotated fields as a linear
combination of the original nonrotated ones, it also fixes
the relation between the rotated and nonrotated couplings

7As it turns out o is invariant under Uy (1) and SUy(3) groups.
Thus Q(o) = T¥o) = 0, whereas Q(A) # 0 as well as T3(A) #
0.
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aséQ = eQcosh — gT®sind, as well as § T = eQsinf +
gT8 cosf. In the rotated system, one chooses O so that
O(A) = 0. This leads to

Q=Qf®lc—1f®<\T/—8§)C.

The above relations between the rotated and nonrotated
generators, (Q, T%) and (O, T), lead then to T{A) # 0,
which then yields a nonvanishing mass for G~§L. Hence, as
long as the diquark condensate A is nonvanishing, the
rotated G~§L is massive because of 7(A) # 0. In this case,
the rotated system is the true physical system. Once A = 0
and o # 0, the rotated and nonrotated systems are equiva-
lent, because the identity Q(o) = T{o) = 0 holds auto-
matically. Using (2.7) and the above relation
¢0 = eQcosh — gT®sinf between the rotated & 0 and
the nonrotated eQ, it turns out that € = e cosf, as in the
electroweak standard model.® In the six-dimensional
flavor-color representation, (u,, Ug, Up, d,, dg, dy), the ro-

2.7

tated Q charges of different quarks, in units of &, are
presented in Table 1.

Plugging (2.6) in (2.2), the resulting transformed
Lagrangian density is then given by (2.2) with eQA, +
gT8G?®, replaced by ¢ QA, + 3T G,
(2.6)], and reads

and 7 =0 [see

£y = JWlivi(o, — 204, — g TG} + iy ()
— )0 - %A*(zw(x)sfemwx»
1, .- 2 Al?
3 AT Wesedys ¥ ) = 4o - % 2.8)

with |A]? = AA*. To introduce the external rotated U(1)
magnetic field in the third direction, we replace A =
AZ’“ +ay, with the external rotated electromagnetic field
Aij“ in the Landau gauge A~;’,f“ = (0,0, Bx, 0), and integrate
out the remaining dynamical rotated fields a, and Gi. We

arrive therefore at the full modified bosonized Lagrangian
L = ‘£k + Lf’ Wlth9

2 2 2
I, = —(ﬁ+%+%), (2.9)
and
L= gliy*(d, —ie QAZ) + ay 1y (x)
—mp ()P (x) — S0 hC(D)epelysip(x)
— AP (e edyshC(x)), (2.10)

8In a system including mesons and diquarks, only diquarks
play the role of electroweak Higgs field.

Comparmg to (2.8), in (2.9), we have added the kinetic term
of the rotated U(1) external gauge field — 4(FM,,)2|AW = — 372.
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TABLE I. O charges of quarks in 2SC model in the presence
of rotated magnetic field B in units of é.

quarks u, Ug uy d, d, d,
g +1 +1 1 -1 -1 0

in a constant (rotated) background U(1) magnetic field
B = Be;. In what follows, we will simplify (2.10) using
the method presented in [20] and arrive at an equivalent
Lagrangian, which will then be used in Sec. III to deter-
mine the effective potential of the above model in the
presence of a rotated background U(1) magnetic field B.
To do this, we introduce the rotated-charge projectors (),
that satisfy the eigenvalue equation Q<) i
given by

= G{);. They are

QO = diag(0,0,0,0,0, 1),
Oy, =diag(1,1,0,0,0,0),
Q, = diag(0,0, 1, 0,0, 0),
Q_), = diag(0,0,0,1,1,0),

and satisfy

Q
g€{0.1,=(1/2)}

=1, and Q0. =35, (211

q qq
Using the definition ¢ ;(x) = Q¢ (x), the fermion field in
the six-dimensional color-flavor representation can now be
given by

= > ¢, (2.12)

G€{0,1,=(1/2)}

Introducing, at this stage, the Nambu-Gorkov bispinor

wave function
W
Y. = 4,
q ( Y i

the part of the Lagrangian which is bilinear in ¢, i.e. r 7
from (2.10), can be brought in the following form:

N 1 i}
Ly=5 Y VW8V, ), (2.13)
g€{0,1,=(1/2)}
where S;; for ¢ € {0, 1} is given by
S —<[G @l 0 ) (2.14)
e} = — -1 ) :
! 0 [6g)]
and for ¢ € {—1, +1} by
[GE]T'Y —kQ_;
S cer =@ 1) @as
gEL-(1/2),+(1/2)} ( ~K'Q,; G5! (2.15)
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Here, [Gi')]_1 = [y*(@id, + échM * f16,0) —m], and
Kng zAT”)l“byaB as well as k' =yokly, =

iA*T,A,7°. They can be read from (2.10) and the rela-
tions (2.11) as well as the definition of #; = ();i. Note

that (2.13) can be equivalently expressed as

L= WG] WSw)
g€{0,1,=(1/2)}

+ 'ﬁ (x)[G(q)] l/’ (x) — g( X)
- ‘pq(x)Kq qc(x)},

where, K; is defined by k; = QuykQy;. In (2.16), K5 i
nonvamshmg only for g’ + qg= O w1th G # §. For (j
{—1, +1} we have therefore

N =

Ry (%)
(2.16)

(Rg=—1/2)por = (Q1)26Q_112) 0 = (KQ -1 2) s
+idy’ if (p, o) = (2,4),
=1 —iAy’ if (p,o) =(L5), (2.17)
0 otherwise,
(Rg=+1/2)p0 = Q12621 2) po = (KQ1112) por
+iAy> if (p, o) = (4,2),
— 1 —iAyS if(po)=(51), (2.18)
0 otherwise,

whereas for § € {0, 1}, we have

~ _ _ . . e l
Rij=(Q;kQ;),, =0, fori,j=0,1 or i=j==*5

(2.19)

This is in contrast to the case of three-flavor color-flavor
locked (CFL) phase, studied in [20]. In that case, there
exists a charge §g= —1 and the combination of
(Q 5,k ) leads also to nonzero result.

III. ONE-LOOP EFFECTIVE ACTION AND
THERMODYNAMIC POTENTIAL

In what follows, the one-loop effective action of the
theory, I', will be determined in the mean field approxima-
tion in terms of o =<(o(x)), A =(A(x)), and A" =
(A*(x)). Using the following path integral over the quark
fields

oMo AN — [fDilf'DJ’ exp(i[d“xz)

where, L= Zk + ff, with zk and ff from (2.9) and
(2.13), the effective action up to one-loop quantum correc-
tions is given by

(3.1

2
o, A, A*] = (7 LAl d )V + W, A, A7)

4Gy  4Gp
3.2)
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Here, V is the four-dimensional space-time volume, and

F(ff is the one-loop contribution to the effective potential.
It arises by integrating out the fermion fields and reads
i _
- 5 ZTr{NGc'fsx} ln[Sq 1]}
q

rl) = (3.3)

where §; is defined in (2.14) and (2.15). Here, the trace
“Tr” operation in (3.3) includes apart from a two-
dimensional trace in the Nambu-Gorkov (NG) space, a
trace over the whole phase space. It is therefore defined
by a trace over the color (c), flavor (f), and spinor (s)
degrees of freedom, as well as over a four-dimensional
space-time coordinate (x) [6]. To compute (3.3), we have to
notice that, according to Table I, the blue quarks (u,, dj,)
have § =0, 1, whereas the green and red quarks
(uy, ug, d,, d,)have § = = 1 . Thus relation (3.3) reduces to

1 _ 1)/
I‘eff - Z I‘Ieff K’

k€E{r,g,b}

(3.4)

where the one-loop effective action of the blue () and red/
green (r/g) are given by

i _
r&(elftz/b == 5 Tr{NGcfsx} ln[SO 1]

i -
- E Tr{NGcfsx} ln[S-H 1]’
(3.5)
1)/k
z 1—‘I(eff/

k€{r,g}

i _
- 5 Tr{NGcfsx} ln[8+1/2 1]

i _
- 5 Tr{NGcfsx} 11’1[871/2 1]-

To perform the trace operation in the NG space, we use

A BY _ B 1
det(c D)—det( BC + BDB™'A)

= det(—=CB + CAC™'D). (3.6)
Using further trlnA =
det [S,']= det[{y*(id, + @td4) — m
et X}[ ] {m}[{y ( f840) — m}

X {y*(idq = ft8a0) — m}],

det S*I—dt (9, + A, + 18 ,0) —
et }[ v e[{y (i é 18 40) — m}

IndetA, we arrive at

X {'ya(laa + erz - 1“6010) - m}]’

det [S,,,,”! =dt[A2
{NGfm}[ 1/2 ] {scex} 1Al
. I_- _
+ {—yo‘(zaa * EeAa + ,uéao) - m}

X {y“(iaa + %é&, - ,mao) - m”
3.7)

where we have skipped the superscript “ext” on the exter-
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nal rotated gauge field A#. Here, i = pu —2ug, t = p +
Mg, and m = my + o. The determinants in (3.7) are now to
be calculated in the momentum space. To do this, a gen-
eralization of the method described in [20] for arbitrary
charges is necessary. This method is originally developed
by Ritus in [35] in order to determine the Green’s function
of charged fermions in the presence of background mag-
J

Py =t )+ fr O]+ L0 00 = fo ]y

2 2

Py =31 )+ fy 1= 30, 00 = £ W12

2

that includes the basis functions f,_ (x) defined by

fn+<x)=¢,,(x—ﬁ, n=0,1,2 -,
qB) 3.9)
fn,(x):¢n—l<x_&), n=123---.
gB

Here, ¢, (x) are the standard Landau quantized wave func-
tions [37]

bu(2) = \/;('qf')“ exp(~ 5181 i, yflg B,

(3.10)

with H,(x) the Hermite polynomial of degree n. Using the
projectors P, from (3.8), it is easy to show that

yﬂ(iaf‘ + gA*) P, e~ {(Pot=pyy=p:2)
=P,(poy’ — Sgn(qB)\ﬂIqun'y2 — p.yd)e ipot=py=p2),
3.11)

The r.h.s. of (3.11) is a free Dirac operator with a modified
momentum
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netic field. It is then extended to charged vector fields in
[36]. Recently, it is used in [37] to determine the electric-
current susceptibility of quark matter in the presence of
external constant magnetic field. As it is described in [37],
in the Landau gauge for the external rotated gauge field, a
projection operator P, can be defined

for gB > 0,
(3.8)
for gB <0,

|

the presence of a constant magnetic field can be given by a
combination of the projection operators P, and the ordi-
nary free Dirac spinors u(p, s) and v(p, s) [37].

To compute the determinants in (3.7) in the momentum
space, we will use, for the charges § # 0, an appropriate
momentum basis, similar to (3.12), and for g = 0, the
ordinary four-momentum p*. In other words, we have

q 1
l_’g#o = <p0, O,i\ﬂlf]éBln, p3), forg=1,=* X

|7
(3.13)

Pg=0 = (po. P1, P2, p3), for § =0,

where % replaces sgn(gB) in (3.12). This leads to the well-

known quasiparticle dispersion relations in the presence of
a constant magnetic field aligned in the third direction [23],
_ \/2 ~ ~ 2 2 ford=1 + 1
E; =42[géBln+ p5+m Orq—l,_z,
(3.14)

E():Jp%—i-p%-f-p%-f-mz for g = 0.

Using the momenta (3.13) and transforming (3.4) and (3.5)
into the Fourier space, the one-loop effective action reads

e =3 TW<p) (3.15)
p* = (po, 0, sgn(gB)y2lgBln, ps). (3.12) K€E{rg.b}
This shows also that the solution of the Dirac equation in ~ with
J
Fa"(p) = =i Y Indetl{(E; + 2)* = pRH(E; — )* = pE)),
gefoy (3.16)
S W =—-2 Y 1nd§t[(E§;>2 — PO(ES? = pd)]
ke{r,g} Ge{+1/2,—-1/2}

Here, E; for g € {0,1, £ 4} are defined in (3.14), and
E(qi) = \/(Eq * @)* + |Al%, for ¢ € {+3, — 1}. The factor
2 in the last equation of (3.16) reflects the degeneracy in the
quark charges for u,,, as well as d,/, (see Table I). Note

that a trace over Landau levels, n, is implemented in the
expression on the r.h.s. of (3.16). This is because £ from

(3.14) depends explicitly on n. This trace will be performed
in the next step, where the one-loop effective action will be
explicitly determined in the momentum space. Performing
the remaining determinant in the coordinate space leads,
for a constant background magnetic field, to a space-time
volume V. At this stage, we will introduce the effective
thermodynamic (mean field) potential ()., that is defined
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by the effective action through the relation I'yy =

—V Q. To determine the one-loop Contrlbutlon to the
one-loop effective potential at zero temperature Qetf’ itis
convenient to determine it first at finite temperature, and
then taking the limit 7 — 0, consider only the zero tem-
perature effects [23]. For quarks with § = 0, one replaces
Po by po = iw,,'® where w, are the Matsubara frequency
defined by w, = (2¢ + 1)#rT, and the p, integration by an
infinite sum over the Matsubara frequencies. For an arbi-
trary function f(p, p;), we get therefore

4
[FE TR IREED s e )

PHYSICAL REVIEW D 82, 045010 (2010)

Matsubara frequencies ¢, a summation over the Landau
levels n is also to be considered [see (3.13)]. We get
therefore [33]

d4 515 +oo +oo +oo dp3
(2 )4f(p0’ pqvﬁO) e__oon / o 87T
X f(la)g, n, p3), (3.18)
where «, =2 — §, reflects the fact that Landau levels

with n > 0 are doubly degenerate [20,23]. Following the
above recipe, the one-loop contribution to the thermody-
namic potential is given by

{=—0o0
(3.17) 0= 3 O (3.19)
gelo,1,+1/2
where 8 = T~ ! is the inverse of the temperature 7. For the 7t /2
quarks with g # 0, apart from a summation over the  where for § = 0, we have
|
Q0 = iV ndet BH(E, + 1) + 02H{(Ey — it)? + w}]
-3 : Z [ L LBy + P+ WPH(Eo — B + o)
= [(2 ) {BEy + In(1 + e_B(E0+f1)) + In(1 + e_B(Eo—ﬂ))}’ (3.20)
and for § = 1, we have
QZ;] =iV ' Indet BH{(EL; + p)* + w%}{(EH — )+ a)%}]
ZB +00  +o00 dp3 y , , , )
== X 3 [ GAMBE ¢ 0HE - 7+ o
2 B +oo d
_ <€ f D3 EPIIBE,, +1In(1 + e BEATD) 4 In(1 + ¢ BE—R)), (3.21)

n= 0

Note that £, depends explicitly on n that labels the Landau levels. Finally, for g =

Q% = 4V~ indet BHET, pnt oHE ,
Ge{+1/2,—1/2}
_ 4eB +Z°° +z°° f dps

_700 n=

4eB w o d _
— Z f 25 JBAEY, ol + |E5, o) + 2In(1 + ¢ 77

o 1672

where E+1/2 Efl/z and £~
use of the relation [38]

+1/2 =E_

lm7 In[1 + ¢ ¥/7] =
T—0

+1, we arrive at

24 w%}]

—5 I[BYEY )° + 0HET, ,7 + )]

2y + 21n(1 + e PEan)) (3.22)

1/ are used. Plugging (3.20)—(3.22) in (3.19) and taking the limit 7 — 0 by making

—x60(—x), (3.23)

with 6(x) is the Heaviside #-function, the temperature independent part of the effective potential, including the tree level

and the one-loop corrections reads

'OThe effect of the chemical potential is already considered in Feff as well as Qeff
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1
Qugp = Q<0> + 0l

|A|2 +o00 d3
——+—+ -2 E
4Gg 4G, 2 foo 2 )*[ o~ (E

+o00
. ©dp _
—eBZa,,f 3[E+1+EL/2+E+1/2

2E11/20(_E11/2) -

(/7« + E+1)0(_/1 - E+1)]-

PHYSICAL REVIEW D 82, 045010 (2010)

o — )0(it — Ep) — (@t + Ep)0(— it — Ey)]

(/1 - E+1)0(ﬁ/ - E+1) 2Eil/20( E} 1/2)

(3.24)

The above result (3.24) is comparable with the result in [6], which is derived for a similar 2SC model in the absence of the
magnetic field B. In this case the thermodynamic potential up to one-loop order at finite 7 is given by

1A

Qe =7~ + Y Qg (3.25)
4GS 4GD Elrab}
where for different colors, we have
QWP = =2iV " Indet[(E2 + 02)(E2 + 0})] = — Z (2 )3 I[B*E2 + 0 A(EX + 0]
4 d’p —B(E+}i —B(E—ji
3 W{ﬁEJrln(l + e PETR) +1n(1 + e BE-R)}, (3.26)
)
and
> O = —4i V' Inde{(E42 + 0 D(EL? + 0,2)] = — Z Pon[BHES2 + 0 )(EA? + w,2)]
kE{r,g} {=—o00 (2 )
4 [ dp A A ~BEA - BEA
=5 )G {BE + BEX +2In(1 + ¢ AF) + 21In(1 + e AEY)), (3.27)
o
with E=+p> + m?, E. = E+ j1, and E2 = {(E + 2)? + |A|?. Using (3.23), the temperature independent part of

(3.25) reads

A IAI2
Q _
eff = 4 Gy 4GD

— (o + E)6(—i — E)].

IV. ANALYTICAL SOLUTIONS OF THE xSB AND
CSC GAP EQUATIONS IN THE LLL
APPROXIMATION: A COMPARISON OF B =0
AND B # 0 CASES

In the previous section, the one-loop effective action of
the NJL model including meson (o) and diquark (A)
condensates in the 2SC phase at finite éB, w and ug is
computed in the mean field approximation. This is the
purpose of this paper to have a complete understanding
on the effect of external magnetic field on the formation of
these condensates. To this purpose one has to solve the
following gap equations and color neutrality conditions

_4[(2 )3[EA +EA+E+ (U — E)0(it — E) — 2E20(—E2) — 2EA6(—E3)

(3.28)
Qe (0, A, g u, €B) —0
do opAp ug
dQep(0, A, ug; p, 2B) —0 @.1)
dA o Ap,pg .
Q0 A, pg; p, EB) —0
0 g op.Ap g

The solutions of the first two equations build the “local”
minima of the theory. In Sec. IV, we will solve the above
equations numerically for any value of the rotated mag-
netic field éB. Keeping (o, A) # (0,0) and looking for
global minima for the system described by complete
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Q(o, A, pug; p, €B) from (3.24) in the presence of the
rotated field, it turns out that in the regime 300 = p =
500 MeV, the system exhibits two “‘global” minima. They
are given by (o # 0, Ay = 0, ug = 0) in the regime u <
Merand (o =0, Ap # 0, ug # 0) in the regime © > u..
Here, u. is a certain critical chemical potential, and, shall
be determined numerically in Sec. IV for a wide range of
éB [see Fig. 9]. We will denote the regime characterized by
(0'37&0, ABZO, ,u,8=0)and(0'B=0, AB:#O, Mg *
0), by the ySB and the CSC phases, respectively. In this
section, we will analytically determine the solutions of the
above gap equations in the limit of strong magnetic fields
|géB| > wu?, and in the ySB and the CSC phases sepa-
rately. We will then compare these solutions with the
corresponding solutions of the gap equations in B =0
case. In the above limit, the dynamics of the system is
dominated by LLL. The goal is to determine analytically
the mass gaps of the ySB and CSC phases separately. This
will be done in Secs. IVA and IV B, respectively. In IVA 1
as well as IV B 1, we consider the case of strong magnetic
field, whereas IVA 2 as well as IV B 2 are devotedto B = 0
case.

Q%ﬁ(m Ap=pg=0)=

PHYSICAL REVIEW D 82, 045010 (2010)

A. The chiral symmetry breaking phase
1. Strong magnetic field

According to the descriptions from the previous para-
graph, the ySB phase is characterized by oz # 0 and
Ap = ug = 0. To study this phase in the LLL approxima-
tion, we will, in particular, focus on the first gap equation
from (4.1)

aQ%fIEL(O-: A’ g5 M, éB) — 0, (42)
Jo op,Ap=pg=0
or equivalently on'’
LLL — — 0 >
QXSB(O-r AB = Mg = 09 My eB) — 0’ (43)
80’ Op

where Q}(]S“I]g arises from (3.24) with n = 0 and (o5 # 0,

Ap = ug = 0). To solve (4.3) analytically, let us consider
Qb first in the momentum space

i 2 [P e ot

—3éBf dp3[\/p3+ff + (= [p3 + 00 — yp3 + 0?)]

0

- s dp;3 ) VH dpS
—3eB[j0 o St tot+0(u—o . (

or B2 A p?dp Jrr=a* p*dp
_ + - 2 + 2 + — [ —
16, T2 [ f p P+ o+ 0(u— o) ) (e

p*+ 0‘2)]

—4pit+ 02)]. 4.4)

Here, we have introduced the momentum cutoff A for the first integral arising from the contribution of zero charged
particle. In contrast, the momentum cutoff Az = \/_B 1s chosen for the first integral proportional to éB, that arises from the
contribution of the remaining three charged particles.'> Considering furthermore the effect of the Heav1s1de 0- functlons in
the integrations limits, the corresponding momentum cutoff to the remaining two integrals is given by 4/ u> — o with the
assumption that o < w (see the (. — o) before these two integrals). Performing the integrations over p = |p| and p; in
(4.4), we arrive at

o2 B2
4+
4Gy 2 8w 872

A VA2+0' (2A2+0'2)—

QUL (0, Ay = pg = 0) = 0(p — o)n

— oW = o?2u? —507)
[ln<AB +4A% + 0-2) o) 1n<l““+— ,F)]

a

=l (“m) ()

_ 3¢Bo?
4772

3¢eB
- m[ABVA% + 0%+ 0(pn — o) pyfpu? — ol

Minimizing the above potential according to (4.3), the gap equation reads

4.5)

"n [8], the same procedure is performed to study the ySB and the CSC phases separately.
"2The charges of the particles is defined with respect of the rotated magnetic field. They are presented in Table I, in units of .
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) 20k

Jdo

o=0p

2
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Ap + A3 + o2 A+ A2+ o
e e I e e L e ey

Gs

ot oo + 528 - (V) )

Op Op

(4.6)

Op

To find a nontrivial solution o # 0 to this equation, we expand it in the orders of the dimensionless and small parameter

x =% < 1 up to order O(x*), and get

(o= 1) = 33 - m(“Az)) 1328 m(““) 0~ ool -~ 202 + (o~ 308) (- 2)}

8s UB Op

where the dimensionless coupling g, =
In what follows, we consider two different regimes of u =
op and p > op separately. To find real solution for the
simplified gap equation (4.7), we will then distinguish
various regions for the dimensionless coupling g,.

(1) In the first regime characterized by u = o, the gap

equation (4.7) reads
1 507 42 4 A2
2A2(— - 1) =27 _ 52 ln<—2) + 328 1n(—23).
& 2 O-B O'B
4.8)

Since for 0 < g, < 1, the Lh.s. of (4.8) is positive, a non-
trivial real solution arises only by the assumption

o ln(‘t‘—Azz) < 3¢B ln(%’?‘), which is indeed justified in the
B B

LLL approximation. Neglecting, therefore, the first two

terms on the r.h.s. of (4.8), we arrive at

0% = 4&Be~@N/32BI1/g)~1], (4.9)

Note that the assumption o ln(‘w) < 3¢B ln(—B) does

not set any limitation on the relatlon between two momen—
tum cutoffs A and A . Depending on whether A is larger or
smaller than A, different regimes are to be distinguished
for the coupling g,:

AZ
For A=Az weget 0<g, < <1,
B g 8 A2 3zB In(z})
2
For A > Aj, t <. <—— <1
of B WeEe & S ATy 3Bm2

(4.10)

The dynamical mass o from (4.9) is, apart from numerical
factors, the same as the dynamical mass of the NJL model
in the presence of constant magnetic field from [28]. The
additional factor 1/3, that arises in the exponent of (4. 9)
corresponds to three different quark charges ¢ = 1, = 2
that have, in the regime of LLL dominance (n = 0) equal
contributions to the effective potential in the }SB phase.

. 4.7
B

|
Let us consider again the gap equation (4.8) for the case
gs > 1. In this case a nontrivial solution may exist only for
A in the same order of magnitude as Agz. To find the
solution, we rewrite first the gap equation (4.8) as

1 4A?
o2 )= 2
2A (gy l) = aBln( 572 2)

3A% 8AZ2
csen(in(0) +n(25)) @i

Expanding now the second term on the r.h.s. in the orders
of y = W — 120 up to O(y?), we arrive at

4A? 2A?
2A2(; — 1) ~ —oy ln<—5/20_%) 363(3/\2 - 1)

8A?

Op

4.12)

2
Using the same approximation o3 ln(4{T—A22) < 3éB ln(%),
B B

we can neglect the first term on the r.h.s. of (4.12), and
arrive at

2A2 2

8s

whose solution reads

~ 3éB ln(zA (4.13)

>+3B
O'B

03 = CA2e N3 with € =Se~7.25 (4.14)

(i1) In the regime characterized by op < u, the gap equa-
tion is given by

1 To2 3B u> ox . u?
AZ(—— 1)=—B— ) || e Ly
<. e T VRN

(4.15)

It arises by expanding (4.6) in the orders of x = % up to

order O(x?). As it turns out a real solution may be found by
expanding (4.15) in the orders w = xv —1=0and z=

£ — 1 = 0upto O(w?) as well as O(z?). The mass gap can

D:
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be computed directly from the resulting equation and reads

1 3B 5u’
2 A2 —— 1) =+ 4.16
e (gs ) 2 2 (10
Note that a real solution for oy in this regimes arises only when éB and g, satisfy the following conditions:
2
/‘L2<AB§%’ and m<g‘y<l,
For0<g,<1: s a2 a2
H<Agp and e < 85 < 3praatosat 4.17)
2 2
Forgs>1:{,u,2<AB<5%, and 1<g‘?<m.
|
The above conditions arise without specifying any relation  tential in the momentum space reads
between A and Ag.
Q Ay = pg =
2. Zero magnetic field XSB (20-’ 0 'u82 0)
To clarify the effect of strong magnetic fields on the -7 _5 [ A%( PP+ o+ (n —p? + o?)
mass gap, we will present in what follows the analytical 4Gy (U
results of the gap equation corresponding to the effective [ >
potential (3.28) at zero magnetic field.'® Setting, as in the X 0 p*+ o). (4.18)
previous section, in the ySB phase, Ay = ug = 0 in the
corresponding effective potential (3.28), the resulting po-  After performing the p integration, we arrive at
|
A o2 3m[ (A +VATE o7 TN e
OV L ISR WP (52 |
4Gy 4w o a
3A 2 23 A2 2 M 2 2 2 2
—— QA+ )WVA* + 07 + 5 (50" —2u”)0(u — o)W pu” — o”. (4.19)
4 4
The corresponding gap equation reads then
_ s
do T=0)
2 A+w,A2+0'(2) ,u,+w,,u,2—0'%
= 6Gs AYA? + of + o} 1n<—0_0 ) +60(p — 0'0)[;/4/#2 - 05— 0} ln(—a_0 )] (4.20)

Defining, similar to what we did in the B # 0 case, a dimensionless parameter £ = %* < 1, and expanding the gap
equation (4.20) in the orders of & up to O(%3), we arrive at

2

1 4A 4u?
= 2A2<A— — 1) - 0'3(1 - ln—z) +0(u — 0'0)<—0'(2) +2u% — o} lan),
8s % %

_ GQXSB

. 4.21)

o=0

Ithe chemical potential u. They are characterized by u =
oy and oy < .

(1) In the first regime characterized by u = oy, a real
solution oy < A arises only for 1 < g, < g, with g, =
— ~326. It reads

1—1n2
1 1
0'(2) = 4A2 exp(W,] <2g - 5))

where we have introduced the dimensionless coupling
g, = 8GsA” — 6g,. To find a real solution for the mass

s T g2
gap o, we have to distinguish two different regimes of

In [6] the full gap equations of the 2SC model including the
mesons is solved numerically for B = 0. As it turns out the
system exhibits, as in B # 0 case, a phase transition from the

(4.22)

XSB to the CSC phase. Here, the ySB phase is characterized by
(0'() # 0, A() = 0) and the CSC by (0'() = O, A() # 0)

It corresponds to one of the two real branches of the
Lambert W(x) function, Wy(x) and W_,(x), which is
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known to be the function satisfying (see [39] for more

details on the Lambert W-function).'*
W(x)e" = x, (4.23)

(i1) In the second regime characterized by oy < u, the

gap equation is
1 w?
‘ T N

It arises from (4.20) by an expansion in the orders of X =

(4.24)

99

H>|

up to O(%?). Introducing a small parameter W = Xz

and expanding (4.24) in the orders of # up to O(W?), yields
the mass gap

1
o} = 2A2(§ - 1) +2u’. (4.25)

A

Note that a real solution for o arises only for g, > 1,
satisfying

2A2 A?
— << 4.26
|
A2 R © dp
QLLL A, =+ —-=2 ——1p+ (u
Csc(U'B 0, MS) 4G, 3 0 (277_)3 [p (M

—p)o(ia — p)

PHYSICAL REVIEW D 82, 045010 (2010)

In Sec. V, we will perform a numerical analysis to study the
xSB phase for any arbitrary magnetic field. We will show
that, similar to the B # 0 case, the second regime charac-
terized by oy < u belongs to the color symmetry breaking
phase and is indeed irrelevant for the present ySB phase.
Comparing therefore only the relevant part of the solutions,
i.e. (4.9) for B # 0 with (4.22) for B = 0, we note that, in
contrast to B = 0 case, in the presence of strong magnetic
fields, the formation of chiral symmetry breaking bound
state op is possible even for small dimensionless ySB
coupling 0 < g, < 1. This is in fact one of the consequen-
ces of the phenomenon of magnetic catalysis [28].

B. The color superconducting phase
1. Strong magnetic field

According to our explanation in the paragraph below
(4.1), the CSC phase is characterized by (o3 = 0, A # 0,
mg # 0). The corresponding effective potential arises from
(3.24) by setting n = 0, and oy = 0. In the momentum
space, it is given by

—(+ po(—p — p)l

o d
= aB " s + o= p8GE — o) = (i po)6(—it — o)+ of(ps + @+ A7

+y(ps — p)* + A%].

(4.27)

Performing the p; and p integrations by introducing the momentum cutoffs A and Ay for the p = |p| as well as p;

integrations,'® we arrive at
A B?> 3A*+ (3éB+ g’
QLLL =0, A, =——+— -
cscls “) =46, 12 127

+ (Ap + pyA* + (A + )* + Azln(

In ;[lee CSC phase, we have a set of two coupled equations: the color neutrality condition,

- A+ s - A

(4.28)

VAZ + (Ag + 2)° + (Ap + m)]
VAT+ (Ap — @) — (Ap — )
Qﬁc = 0, and the gap equation

8¢ = 0. The goal is to solve these two equations to determine g and A as a function of the external magnetic field B and

the chemical potential w. Let us first consider the color neutrality condition

LLL
_ 3Q¢se

d g

Ag

where 0 = + ug and o0 = pu — 2ug. Deﬁmng three
dimensionless (small) parameters, x = X’ y= TH as
well as z = &%, and expanding (4.29) in the orders of x, y

' According to the explanations in [39]: If x is real, then for
—1/e = x <0, there are two possible real values of W(x). One
denotes the branch satisfying —1 = W(x) by W,(x), and the
branch satisfying W(x) = —1 by W_,(x).

3See our description below (4.4) for the choice of the momen-
tum cutoffs.

= 43 + 3B + AL + (Mg — )2 — A} + (Ag + 2)2),

(4.29)

|
and z up to O(x*), O(y*), and O(z?), ug can be determined
from the resulting equation and is given by

2u’

m. (4.30)

Mg =

As for the gap equation corresponding to Ay, we have
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LLL
Q 27CsC

oA |4,

2 éBln(’/A% +(A+ @)+ (Ag + i) )

3

@ YA+ (A — @2 — (A — 1)
(4.31)
After expanding (4.31) in the orders of y = AB and 7 = ¢

up to O(y*) and O(z?), and replacing ug from (4.30) in the
resulting equation, we arrive at

2 ut Spo_ 2
A — ZBIn M =0,
gd 9 B Az

(4.32)

where the d1mens10nless diquark coupling in the CSC
phase g, = =25 introduced. The diquark mass gap Ag
can then be determined directly from (4.32) and reads

PHYSICAL REVIEW D 82, 045010 (2010)

A% 1 )
éB 84

This result is comparable with the results by [20] for the
three-flavor CFL model. In particular, in both models the
exponents are proportional to (6Bg,)~'. The dependence
of Az on the magnetic field demonstrates the effect of
magnetic catalysis [28], that states that even for small value
of the dimensionless diquark coupling g, the presence of a

strong magnetic field leads to color symmetry breaking and
the formation of diquark mass A.

A% = 4(A% — u?) exp( (4.33)

2. Zero magnetic field

We consider, as next, the effective potential of the 2SC
model in the absence of magnetic field from (3.28) in the
CSC phase by setting (g =0, Ag # 0, ug # 0). In the
momentum space, the resulting potential is then given by

A2
chc(o'o =0,4, ug) = 74GD -
A2
+ — J—
— (& + p)(—p — p)l= G,

2
[T R TR s - =

it A* 1
o T

1272

— 2% (A + @) WA? + (A — @)* + [3A(A% + 2A%) — @(13A% —2A%) — 23%(A — )]

X A2 + (A + @) — 3A2(A2 — 442)

+ i +/A2+ (A + )2 + AT+ 2
(A aAVA+H(A+ a)PA - o+ VA2 + (A - M)]) (4.34)
In this case, the color neutrality condition reads

_ Qcsc

dpg Ao, g

[A+ @+ A3+ (A + @A — @+ /A3 + (A — @)]
— 23 —3A,L,L1rl( ” 0 MAZ ~ 0 ’ )—[2A5—A2—,1(A+,1)]
0
X yA2 + (A — @)% +[242 — A2 + @(A — @)WAZ + (A + @) (4.35)

After expanding (4.35) in the orders of X =

By= TO and = % up to order O(%*), O(53), as well as O(2?), we arrive at

A2 A2 AZ
g =—2+—"1In( %), 4.
T eve) (436)
where A satisfies the gap equation
0= Qesc
dA Ao, fag
2
= TZ; + (A +3a)0YA2 + (A — @)% + (A = 3@)yA2 + (A + @) — (A2 — 222)
D
[A+ @+ A2 + (A + @A — i + /A2 + (A — 2)?]
X ln( A2 ) 4.37)
0
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Using the same method as above and expanding (4.37) in
the orders of § and 2 up to order O(33), as well as O(2?), we
get

QO
0 = -Zesc
dA Ao, fig
1 AZ
= A2(1 — T) —3u?— ,u,21n<70), (4.38)
8a 4(A* = p?)
where g, = 407?2/\2 = 4g,. Solving (4.38), the diquark mass

for vanishing magnetic fields is then given by

2 2 2 A2 (] :
Af=C(A* — p?)exp| ——5(—— 1)) with
M= \8d

Cy=4e3=02 (4.39)
The qualitative behavior of A as a function of u coincides
with the results from [6,40]. The color chemical potential
fig arises by replacing (4.39) in (4.36). These results are to
be compared with (4.33) [for the diquark mass gap Ag] as
well as (4.30) [for the color chemical potential wg] in the
presence of strong magnetic field.

V. NUMERICAL RESULTS FOR ARBITRARY
MAGNETIC FIELD

In the previous section, we have presented analytical
solutions for the order parameters o and A corresponding
to ySB and CSC phases, as well as for the color chemical
potential g in the presence of strong magnetic fields in the
LLL approximation. We have then compared our results
with the mass gaps arising from the thermodynamic po-
tential of the 2SC model in the absence of magnetic field in
order to emphasize the effect of strong magnetic fields on
the formation of bound states o- and A in the superconduct-
ing 2SC model. In this section, we will study numerically
the effect of any arbitrary magnetic field on quark matter
without restricting ourselves to LLL approximation. In
particular, we are interested on the dependence of the
mass gaps on the external magnetic field éB and the
chemical potential u. To do this, we set, as in the previous
section, my = 0 and choose Gp < Gg. Comparing our
numerical results with the analytical results from Sec. IV,
we will determine numerically the range of the magnetic
field strength for which the LLL approximation is reliable.
At the end of this section, we will study the phase diagram
of the model in a u.-éB plane, and determine the type of
various phase transitions between the ySB and the CSC
phases for a wide range of éB.

Let us start with the one-loop effective potential (3.24)
arising from a mean field approximation in the presence of
an arbitrary magnetic field. To perform the momentum
integrations numerically, we have to fix the free parameters
of the model, the momentum cutoff A and the couplings
G and Gp. Our specific choice of the parameters is [10]

PHYSICAL REVIEW D 82, 045010 (2010)

A =0.6533 GeV, Gg = 5.0163 GeV~?,

and GD = %GS (51)

For vanishing magnetic field éB = 0, they yield the ySB
gap oy = 323.8 MeV at u = 250 MeV, and the 2SC gap
of Ag=126MeV at u =460 MeV.'® Smooth cutoff
functions (form factor)

- 1
1+ exp(—lplAfA)’
Fi = E—
AB o geBln— ’
1+ exp(ipgﬂlz B A)

fa and

(5.2)

are then introduced to perform numerically the momentum
p integrations corresponding to zero charged particles and
charged particles, respectively.'” In (5.3), A is a free pa-
rameter and is chosen to be A = 0.05A. Similar smooth
cutoff function (form factor) is also used in [22]. Here, as in
[22], the free parameter A determines the sharpness of the
cutoff scheme. In what follows, we will first study the
behavior of mass gaps as well as magnetizations in the
xSB and CSC regimes as functions of éB and for fixed
chemical potentials.

In Fig. 1(a), the ySB mass gap o is plotted as a function
of éB and for fixed chemical potential u = 250 MeV.
Small oscillations for small value of éB arise from the
well-known van Alfven—de Haas (vAdH) effect [24]. They
occur when the Landau levels pass the quark Fermi sur-
face. They are also observed in [32] for the ySB mass gaps.
Note that the oscillations are sharper, the smaller the value
of the free parameter A in (5.3) is chosen [see also [41] fora
discussion on the effect of free parameters in smooth cutoff
functions (form factors)].'® As for ¢B = 0.45 GeV2, where
the dependence of o on éB is almost linear, we enter in
the regime of LLL dominance. The qualitative behavior of
o as a function of éB for strong magnetic fields can be
checked by comparing our numerical result from Fig. 1(a)
with the analytical result for o from (4.9).'° The latter is

1% Although our free parameters A, G, and G coincide with
the parameters used in [10], the numerical value of o, is differ-
ent from what is reported in [10]. The reason for this difference
is apparently in the choice of the cutoff function. Whereas we
use smooth cutoff function (5.2), in [10] a sharp momentum
cutoff is used to perform the momentum integrations
numerically.

"In (3.24), the integrals proportional to éB and including a
summation over Landau levels n arises from charged quarks with
charges § = + 41, +1.

"8We have also checked our results for A = 0.001 A (quasisharp
cutoff), where instead of small oscillations, small discontinuities
appear in the regime éB < 0.4 GeV>.

For our specific choice of Gg and A from (5.1), the dimen-
sionless coupling 0 < g; < 1. On the other hand, since no mixed
phase is assumed here, o from (4.9) in the regime u < o is
the only relevant mass gap that can be compared with o arising
from our numerical calculation.
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FIG. 1 (color online).
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b) g in LLL regime, u=250 MeV
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(a) The dependence of o on éB in the ySB phase for u = 250 MeV; (b) The analytical result of o in the

regime of LLL dominance from (4.9) is plotted for B € {0.45, 1} GeV? and u = 250 MeV.

a) u = 460 MeV
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FIG. 2 (color online).

b) Ag in LLL regime, u = 460 MeV
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(a) The dependence of Az on éB in the CSC phase for u = 460 MeV. (b) The analytical result of Ay in the

regime of LLL dominance from (4.33) is plotted for éB € {0.47, 1} GeV?>.

plotted in Fig. 1(b) for the same interval of the magnetic
field, i.e. éB € {0.45, 1} GeV?. Similarly, in Fig. 2(a), the
CSC mass gap Ay is plotted as a function of éB for u =
460 MeV. Same small vAdH oscillations appear for small
éB =< 0.47 GeV?2. They are also observed in [22,23] for the
diquark in the CFL superconducting phase. Small oscilla-
tions in Fig. 2(a), end up in a linear regime, that starts, as in
the previous case, at éB = 0.47 GeV>. The qualitative
behavior of A in this regime can be compared with the
analytical result (4.33), that arises in the LLL approxima-
tion [Fig. 2(b)].

In Fig. 3, the dependence of the color chemical potential
Mg on éB is plotted for u = 460 MeV in the CSC phase.
The vAdH oscillations in Fig. 3 are similar to the oscil-
lations of wg in the regime of small magnetic fields that are
observed in [22] in the superconducting CFL model.

In summary, comparing the above numerical results with
our analytical results from Sec. IVA and IV B for nonzero
magnetic field, it turns out that there exists a threshold
magnetic field (¢B), = 0.45-0.50 GeV?, where the quali-
tative behavior of our numerical results coincides with the
qualitative behavior of the analytical results for ySB and
CSC mass gaps o and A" This regime, for which the
LLL approximation seems to be reliable, will be denoted
from now on by “the linear regime.”?'

*"Note that the similarity in the numerical and analytical results
for éB > (éB), is only qualitative. This is because of various
approximations that are carried out to determine the analytical
results [see Sec. IV for more details].

*'Note that in Figs. 2 and 3, the threshold magnetic field
satisfies the requirement of LLL approximation (¢B), > u>.
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FIG. 3 (color online). The dependence of pg on B in the CSC
phase for u = 460 MeV. The vAdH oscillations are similar to
the oscillations that are observed in [22] in the superconducting
CFL model.

Using the above data, the magnetization of the 2SC
superconducting medium can be studied as a function of
éB and for fixed chemical potential . Figure 4 shows the

dependence of the product of the magnetization M = Me;
(1)

with M = — % and the rotated magnetic field B = Be,

as a function of éB for two different chemical potential
pm =250 MeV in the ySB regime and u = 460 MeV in
the CSC regime [Figs. 4(a) and 4(b)]. Here ng is the one-

loop part of the effective potential (3.24). For simplicity,
200

. . ~ o)
we will use the definition M-B = —eB—z4t.

Equivalently, one can define the magnetization by intro-

a) u = 250 MeV

0055 | ,sp ,
0.050 :
0.045 ;
0.040 :
0.035 Puuunnu.‘“.’.. o \...“....
0.030

M.B (GeV*

00 01 02 03 04 05 06 0.7

éB (GeV?)
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ducing the Gibbs free energy density G in the presence of a
constant magnetic field B
: _B G0, A

G(o,A;B, u) = > + Qoq(o, A;B, ) — HB,  (5.3)
where H is the external magnetic field [23]. Whereas in
vacuum H = B, in a medium with finite magnetization
density, the external magnetic field H is different from
the induced magnetic field B. Minimizing G with respect
to B and evaluating the result at the minimum of the
potential, we get the well-known relation M = B — H,
where M is the magnetization. Note that the minimum of
the potential in the ySB phase is given by (o # 0, Ay =
mg = 0) and in the CSC phase by (g5 = 0, Ay # 0, ug #
0). The magnetization of the superconducting CFL phase is
studied as a function of eB/u? for u = 500 MeV in [23],
where the same vAdH oscillations as appears in Fig. 4 are
observed.

In what follows, we will first study the w-dependence of
op and Ag. We then present the phase diagram w.-éB of
the 2SC quark matter at zero temperature. Let us start with
the case of zero magnetic field. In Fig. 5, the w-dependence
of o in the ySB phase, as well as A; and ug in the CSC
phase are plotted for zero magnetic field. For our specific
choice of free parameters A, Gg and G, oy = 323.8 MeV
for w = w.. Here, the critical chemical potential . =
325 MeV and the value of Ay for w=pu. is Ay =
78.0 MeV. Our results coincides qualitatively with the
numerical results presented in [6] (see also [40] for a recent
investigation of Cooper-pairing in NJL-type models).*?

We can compare the u-dependence of A2 arising from
our numerical calculation with the relation (4.39) arising
from our analytical results for vanishing magnetic field. To
do this we have fitted our numerical data with a function

b) 1 = 460 MeV
0.036| CSC .
%, 0.034 N .f
QJ 00000%0000, ‘. .o .. .
S 0.032 Ll ;
o . . .
= 0.030 S
oo28f
00 01 02 03 04 05 0.6 0.7
éB (GeV?)

FIG. 4 (color online). The dependence of the product M - B on the magnetic field of fixed chemical potential (a) x = 250 MeV in
the ySB phase and (b) u = 460 MeV in the CSC phase. The linear regime in both phases starts at &B = 0.45-0.50 GeV>.

2In [6], the quark mass m( # 0 and therefore a mixed phase appears for u = 340 MeV.

045010-16



COLOR NEUTRAL TWO-FLAVOR SUPERCONDUCTING...

éB = 0 GeV?
350
300
é 250 xSB (09 #0)
< 200 CSC (A0 % 0)
a 150
m . PO I e o
G 100 e
50
0
0 100 200 300 400 500
u (MeV)

FIG. 5 (color online).
p-dependence of fig for éB = 0 (right panel).

Aau)=(a—bu%em{—;%) (5.4)

similar to (4.39). Here, a, b, and c are free parameters. The
numerical values of these parameters arising from our fit
are in good agreement with the expected analytical values

&B = 0 MeV?
20000 cSsc
< 15000
(0]
2
“o 10000
5000 | | | | | |
300 350 400 450 500 550
u (MeV)

FIG. 6 (color online). The dots are the numerical values of Ag.
The solid line is the corresponding fit of A3(u) from (5.4). The
fit parameters a, b, and ¢ are listed in Table II. The regression
parameter R?, as a measure of reliability of the numerical fit, is
in this case R? = 0.999 852.
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éB = 0 GeV?
0 CSC

S -5 -

m .

>3 .

<§? -10 e e et

_15
300 350 400 450 500 550
u (MeV)

The wp-dependence of o in the ySB phase, and A, in the CSC phase for éB = 0 (left panel). The

arising from (4.39) (see Fig. 6 and Table II). This can be
quantified by defining

Analytical value — Numerical value

= (Analytical value + Numerical value)/2 |’ (5-5)
as a measure for the variation of the numerical value with
respect to the average of analytical and numerical values.
In Table I1, n,, m;, and 7. are less than 50%. Note that the
difference between the analytical and numerical values of
a, b and c lies on the approximations that are made to
determine analytically A in (4.39).

Let us now concentrate on the case of nonvanishing
magnetic field. In Table III, we have summarized our
numerical results for critical chemical potential ., the
mass gap o for u = u. and the 2SC gap Ap at p =~ w,.
The critical chemical potential u,. and the ySB mass gaps
op(u = u,.) increase by increasing the external magnetic
field. In the vicinity of the phase transition from }SB to
CSC phase, the CSC mass gap Ag(u =~ u,) also increases
by increasing the magnetic field.

The w-dependence of oz and Ay are presented also in
Fig. 7. There is a first order phase transition from the ySB
to the CSC phase [see also Fig. 9 for more detail on the
phase structure in u.-éB plane]. Because of our specific
choice my =0 and Gp < Gg, no mixed broken phase
appears at w > u. [10], and the ySB mass gap op(u) is
constant for 4 = u.. For small value of éB, the CSC mass
gap Ag(u, éB), is increasing with w. The magnetic field

TABLE II. Numerical fit data for A%(,u) from (5.4). The numerical values of the parameters arising from our fit are in good
agreement with the expected analytical values arising from (4.39) [see 7,, 1, and 1. with 1 defined in (5.5)].

Analytical parameters Numerical fit parameters 7 in %
éB (GeV?) a (MeV?) b ¢ (MeV?) a (MeV?) b ¢ (MeV?) Ny i N
0 8.49 X 10* 0.19 2.29 X 10° 7.84 X 10* 0.13 2.52 X 10° 8 38 10
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FIG. 7 (color online).

TABLE IIL
and the 2SC gap Ay at u =~ u,.

PHYSICAL REVIEW D 82, 045010 (2010)

Numerical results for critical chemical potential ., the mass gap op for u = u,.

B in GeV? L. in MeV op(p = p.) in MeV Ap(p = p,) in MeV
0.002 316.0 312.0 70.0
0.005 287.0 311.0 61.0
0.01 324.2 322.4 78.0
0.04 322.3 326.4 77.6
0.05 321.9 327.8 77.9
0.10 311.3 338.4 76.9
0.20 296.0 366.0 50.8
0.30 315.0 420.7 732
0.40 329.0 464.8 80.4
0.46 329.6 477.0 82.6
0.48 334.0 487.0 85.7
0.50 340.8 499.0 88.8
0.60 392.4 593.0 116.9
0.70 450.7 700.0 147.7
&B = 0.002 GeV? éB = 0.005 GeV? &B =0.01 GeV?
500 500
400 400
S 300 S 300
xSB o xSB s xSB
g 200 2 200
CSC o CSC o CSC
100 100
0
100 200 300 400 500 00 100 200 300 400 500 0 100 200 300 400 500
# (MeV) u(MeV) u (MeV)
&B = 0.04 GeV? 8B =0.10 GeV? B = 0.30 GeV?
500 500
400 _ 400
3 3
S 300 S 300
XSB 2 XSB - xSB
§ 200 S 200
csC csc o csc
100 ] 100
0 0
100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
u (MeV) 1 (MeV) © (MeV)
B = 0.40 GeV? 8B = 0.50 GeV? éB = 0.60 GeV?
500 600
400 500
S S
2 a0 3 400
ASB - ¥SB % 300
g 200 g xSB
csc o csc @ 200 csc
100 — 100
100 200 300 400 500 00 100 200 300 400 500 00 100 200 300 400 500
u(MeV) 1 (MeV) #(MeV)

The w-dependence of oy in the ySB phase (red lines), and Ay in the CSC phase (blue lines) for different

values of ¢B. The ySB mass gap og(u, €B) is constant in u = . and increases for increasing ¢B. The critical chemical potential w,
increases for increasing €B. For our specific choice of parameters (m, = 0, G, < Gg) no mixed phase appears. The CSC mass gap Ag
exists therefore only at u > u.. The slopes of the curves appearing at u > u . are decreasing for increasing éB. The first order nature
of the phase transition between ySB and CSC phases is visible. The dependence of the ySB and CSC gaps for vanishing magnetic field
is also considered here to have a comparison with the p-dependence of the gaps for nonvanishing éB.
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TABLE IV. Numerical fit data for A% as a function of w from (5.6). In the linear regime, i.e.
for B = 0.45 GeV?, the numerical values of the parameters arising from our fit are in good
agreement with the expected analytical values of the parameters from (4.33) [see 1, and 7, with
7 defined in (5.5)].

PHYSICAL REVIEW D 82, 045010 (2010)

Analytical parameters Numerical fit parameters n in %
éB (GeV?) a (MeV?) b a (MeV?) b N4 M
0.04 527 X107 1.32x 10728 —1.06 X 10° —0.077 200 200
0.10 1.62 X 1076 1.62 x 10711 —8.37 X 10? —0.077 200 200
0.30 1.91 X 10? 6.37 X 107* —4.53 X 103 —-0.094 218 201
0.40 2.27 X 103 0.006 +4.17 X 10° —0.018 59 400
0.44 4.53 X 103 0.010 +7.38 X 103 +0.008 48 22
0.46 6.14 X 103 0.013 +8.47 X 103 +0.015 32 14
0.50 1.05 X 10* 0.021 +1.09 X 10* +0.025 4 17
0.60 3.03 X 10* 0.050 +2.26 X 10* +0.058 29 15

enhances the chiral symmetry breaking. This is known as
the phenomenon of magnetic catalysis [28], which is also
observed in [32]. In the linear regime, i.e. for éB =
0.45 GeV?, Ay is decreasing with . To study the linear
regime in detail, we have fitted our numerical data for Ag
as a function of u and fixed éB, with a function similar to
(4.33)

from fitting our numerical data with (5.6) for different éB.
For éB = 0.44 GeV?, , and 7, are less than 50%.

In Fig. 8, the w-dependence of the color chemical po-
tential wg for different éB is demonstrated. As in the
previous cases, we expect that, in the linear regime éB =
0.45 GeV?, the u dependence of wug is given by a function
similar to (4.30), that arises analytically in the LLL ap-
proximation. We, therefore, define a function

A% = (a — bp?), (5.6)
where a and b are free parameters, that depend on éB. In 3
Table I'V, we have compared the expected analytical results g = '“72 (5.7)
for the parameters a and b, with the corresponding results a+bu
a) 6B = 0.04 GeV* b) éB = 0.10 GeV? c) éB = 0.40 GeV?
0 CSC 10 “ CSC 40 CSsC
, ,
\ 5 \ 35
< -5 o <)
® o - e 2
£ -10 \ g S g & //
-10 20 o
\\ "J
-15 -15 15 s
300 350 400 450 500 300 350 400 450 500 300 350 400 450 500
1 (MeV) 1 (MeV) u (MeV)
d) 8B = 0.44 GeV? e) &B = 0.50 GeV? f) 6B = 0.60 GeV?
35
- ~ 30 =
§ 5 3
2 25 2 25 2
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20 < 20 I
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FIG. 8 (color online). The wu-dependence of the color chemical

potential pg as a function. The numerical data for ug are fitted in

Figs 8d-8f by (5.7). In the linear regime, the fitted curves [solid (blue) lines in 8d—-8f] are in good agreement with our numerical data.

For éB = 0.44, 0.5 GeV?, and 0.6 GeVZ, the regression parameter
0.999 924, 0.999 952, respectively.

0450

R2, as a measure of reliability of numerical fits are R%? =0.999991,
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TABLE V. Numerical fit data for ug as a function of u from (5.7). In the linear regime, i.e. for
éB = 0.40 GeV?, the numerical values of the parameters arising from our fit are in good
agreement with the expected analytical values of the parameters from (4.30) [see 1, and 7, with

7 defined in (5.5)].

Analytical parameters Numerical fit parameters n in %
éB (GeV?) a MeV?) b a (MeV?) b Na M
0.04 1.80 X 10° 6 —1.01 X 107 +7.53 207 23
0.10 4.50 X 103 6 —4.93 X 107 +161.14 204 186
0.30 1.35 X 10° 6 +3.04 X 10° +13.04 77 74
0.40 1.80 X 10° 6 +1.93 X 10° +6.27 7 4
0.44 1.98 X 106 6 +2.34 X 10° +4.11 17 37
0.46 2.07 X 10° 6 +2.43 X 10° +3.89 16 43
0.50 2.25 X 10° 6 +2.46 X 10° +4.49 9 29
0.60 2.70 X 106 6 +2.45 X 10° +5.35 10 11

a) Phase diagram for ug=0
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FIG. 9 (color online).

b) Phase diagram for ug+0
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The phase diagram of 2SC model is plotted in a u.-€B plane for (a) ug = 0 and (b) g # 0. The solid thick

(red) lines in (a) and (b) indicate first order phase transitions between the ySB and the CSC phase. The dashed (black) lines in (a) and
(b) are second order critical lines between the CSC and the normal phase. As it is shown in (b), for ug # 0 and at p,. =~ 755 MeV and
éB ~ (.13 GeV?, the second order phase transition goes over into a first order phase transition between the CSC and the normal phase
[solid thin (green) line]. At B =~ 0.4 GeV?, u. suddenly decreases and increases once again by increasing the external magnetic fields

in the CSC regime.

with arbitrary, éB-dependent parameters a and b. In
Table V, we have compared the data that arise numerically
by fitting the numerical values of pg with (5.7) for different
éB. As in the previous case, the difference between the
numerical fit data and the expected analytical values of a
and b arising from (4.30) minimizes in the linear regime for
éB = 0.40 GeV? (7, and 7, in Table V are less than
50%.).

Finally, we will present the phase structure of the model
in a p.-éB plane in Fig. 9. In particular, we are interested
on the effect of the color chemical potential ug on the
phase structure of the model. In Fig. 9(a) [Fig. 9(b)] the
phase structure for ug = 0 (ug # 0) is plotted. Because of
our specific choice of parameters, we expect ySB and CSC
phase without mixing. A normal phase can also exist,

where the mass gaps oz and Ap corresponding to ySB
and CSC phases vanish identically.”® To check this, we
consider the gap equations and the color neutrality condi-
tion (4.1). We have looked for the global minima of the

2 As it is known from [5], in the regime of large chemical
potential, u = 500 MeV, the 2SC phase goes over into the
three-flavor CFL phase. In the present two-flavor model, we
only assume that a normal phase may exist, and, if so a phase
transition will occur from the color superconducting 2SC phase
into this normal phase (see Fig. 9). Hence, the present results
concerning the transition from CSC to the normal phase are only
of theoretical nature. To include the CFL phase, we have to
extend the model to three-flavor superconductivity including up,
down, and strange quarks. This is indeed beyond the scope of the
present paper and is planned for future publications.
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system in two different regimes: u. = 350-450 MeV and
Mo =750-800 MeV. As it turns out, in the first regime
corresponding to u. = 350-450 MeV, the minima of €.
from (3.24) are given by (o3 # 0, Ag =0, ug = 0) for
m<pw.aswellas (o = 0,Ap # 0, ug # 0) for u > p,.
In the second regime corresponding to u.=
750-800 MeV, however, the global minima are (g = 0,
Ap #0, ug # 0)for u < u.,aswellas (o = 0,Az =0,
g = 0) for u > u.. We conclude therefore that a phase
transition from ySB to CSC phase occurs in the first
regime at w.=350-450 MeV, and a phase transition
from CSC to the normal phase occurs in the second regime
Mo =T750-800 MeV. In the following, we denote the
value of (g at the global minima by g5 =
Qeir(op, 0,05, 8B), Qese = Qege(0, Ap, ug; u, €B), and
Onormat = Qetr(0, 0, 0; e, €B) corresponding to the ySB,
CSC and the normal phase, respectively. For different
values of (u, €B), the ySB phase is defined by Qg =
Qcsc and the CSC phase by Qg = () g. Moreover, the
exact value of u, for the first order phase transition from
xSB to the CSC phase [the thick (red) solid line in
Fig. 9(a) and 9(b)] and from the CSC phase to the ySB
phase [thin (green) solid line in Fig. 9(b)] are then defined
by Q,s5 = Qcse and Qege = Qnormal» Tespectively [34].
As for the second order phase transition between the CSC
and the normal phase, an analysis similar to [8] is per-
formed. In Fig. 9(a), the phase diagram of the 2SC model in
a u.-éB plane is plotted for vanishing wg. A first order
phase transition occurs between the ySB and the CSC
phase in the regime u,. = 350450 MeV (solid red line).
This confirms the results by [26], where a first order phase
transition is observed for fixed value of éB = 0.05 GeV?,
and various Gp/Gy. The transition from the CSC into the
normal phase is of second order and occurs in the regime
M. = 750-800 MeV (dashed black line). According to the
phase diagram for nonvanishing ug in Fig. 9(b), however,
whereas the transition from the ySB to CSC phase is still
of first order (solid red line), the second order phase
transition for small values of éB (dashed black line) goes
over into a first order phase transition at u,. = 755 MeV
and éB =~ 0.13 GeV? (solid green line). Moreover, at éB =~
0.4 GeV?, u, suddenly decreases and increases once again
by increasing the external magnetic fields in the CSC
regime. The CSC regime is nevertheless suppressed in
the linear regime éB = 0.45 GeV? by the external mag-
netic field [see Fig. 9(b)].

VI. CONCLUDING REMARKS

In this paper, we have studied the effect of constant
magnetic fields on the formation of bound states in the
chiral as well as the color symmetry breaking phase. In the
first part of the paper, after introducing a two-flavor NJL
type model including meson and diquark condensates, we
have computed the one-loop effective action and the ther-
modynamic potential of the theory at zero temperature and

PHYSICAL REVIEW D 82, 045010 (2010)

finite density. Neglecting the quark mass m and choosing
the diquark-to-chiral coupling ratio G,/Gg <1 [10], we
can consider the ySB and CSC phases separately. The ySB
and CSC mass gaps op and Ay as well as the color
chemical potential wg are determined analytically in the
limit of very strong magnetic fields. In this limit, the
dynamics of the system is dominated by the lowest
Landau level and therefore the effect of all higher
Landau levels is negligible. According to [28], in this limit,
as a result of dimensional reduction from D to D — 2
dimensions, the formation of bound states and conse-
quently a dynamical symmetry breaking will be possible
even for weak interactions between two fermions. This is
the phenomenon of magnetic catalysis, discussed widely in
the literature in the past few years [29-31]. Denoting the
dimensionless coupling constants in the ySB and CSC
phases by g, ~ GgA? and g, ~ G, A2, we have deter-
mined the mass gaps for different regimes of g, and g,.
Here, A is certain momentum cutoff. In [6], the ySB and
CSC mass gaps of a similar 2SC model were determined
numerically for vanishing magnetic field. Introducing a
large momentum cutoff A and performing appropriate
approximations, we have determined analytically the
mass gaps oo and Ay as well as ug corresponding to
XSB and CSC phases for zero magnetic field too.

In the second part of the paper, a detailed numerical
analysis is performed to explore the effect of any arbitrary
magnetic field on the mass gaps o and A and the color
chemical potential wg. First, the dependence of o- and A on
various éB € [0, 1] GeV? is plotted for fixed u =
250 MeV and u = 460 MeV in the ySB and CSC phases,
respectively. For small values of éB, we observe small van
Alfven-de Haas oscillations, that appear, according to
[22,23] also in the CFL phase for u = 500 MeV. The
same oscillations appear also in the magnetization M for
the same fixed value of chemical potentials. At éB =
0.4-0.5 GeV?, the oscillations end up in a linear regime,
where we believe that the dynamics of the system is
described exclusively by the LLL. This can be checked
by comparing qualitatively the numerical dependence of
o and Ay for éB = 0.45 GeV? and fixed w. The
pu-dependence of o and A are then considered for various
éB. Our numerical results for vanishing magnetic field
coincide with the numerical results presented in [6]. The
m-dependence of oz and Ap as well as ug are then
considered for various finite éB. The numerical results in
the linear regime, i.e. for B = 0.45 GeV? are comparable
with our before mentioned analytical results in the limit of
large éB. This is shown using appropriate numerical fits.
The phase structure of the ySB and CSC phasesina pu.-éB
plane is also presented. We are, in particular, interested on
the effect of the color chemical potential wg on the phase
diagram of the model. For both g = 0 as well as ug # 0,
the transition from the ySB phase into the CSC phase is of
first order, and occurs in the regime u. = 350-450 MeV
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and for éB € [0, 0.7] GeV? [see Fig. 9(a)]. This confirms
the result in [26], where a first-order phase transition is
observed between the ySB and CSC phase for fixed éB =
0.05 GeV? and various G, /Gy ratios. Assuming that the
CSC phase goes over into a normal phase at
> 500 MeV,** it turns out that whereas for ug =0,
this transition is of second order, for nonvanishing ug, a
second-order phase transition occurs first for small éB. It
goes then over into a first order phase transition at g, =
755 MeV and éB =~ 0.13 GeV?. At éB ~ 0.4 GeV?, pu,
suddenly decreases and increases once again by increasing
the external magnetic fields. The CSC phase is nevertheless
suppressed in the linear regime éB = 0.45 GeV? by the
external magnetic field [see Fig. 9(b)].

In the end, let us just emphasize that the study of color
superconductivity in the presence of constant magnetic
fields has not only astrophysical consequences in forming
the structure of compact star cores, it may be also relevant

24See footnote 23.
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for future heavy ion collision experiments. Recently in
[17], the accessibility of the color superconducting 2SC
phase in the heavy ion collisions is investigated. It is stated
that for high enough collision energies the 2SC may be
accessible in future collision experiments. On the other
hand, there are various evidences of the creation of very
strong magnetic fields in noncentral heavy ion collisions
[15,16]. It would be interesting to perform similar analysis
as in [17] considering the presence of constant magnetic
fields. To do this, the effect of finite temperature on the
phase diagram of the 2SC superconducting phase in the
presence of constant magnetic fields also has to be consid-
ered. This will be reported in future publications [11].
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