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An alternative version of Hamiltonian formalism for higher-derivative theories is proposed. As

compared with the standard Ostrogradski approach, it has the following advantages: (i) The

Lagrangian, when expressed in terms of new variables, yields proper equations of motion; no additional

Lagrange multipliers are necessary. (ii) The Legendre transformation can be performed in a straightfor-

ward way, provided the Lagrangian is nonsingular in the Ostrogradski sense. The generalizations to

singular Lagrangians as well as field theory are presented.
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I. INTRODUCTION

It is a long-standing problem whether and why it is
sufficient to use in physics the Lagrangians containing
only first-order time derivatives. It is more intriguing that
adding higher derivatives may improve our models in some
respects, like ultraviolet behavior [1,2] (in particular, mak-
ing modified gravity renormalizable [3] or even asymptoti-
cally free [4]); also, higher-derivative Lagrangians appear
to be a useful tool to describe some interesting models, like
relativistic particles with rigidity, curvature, and torsion
[5]. Moreover, almost any effective theory obtained by
integrating out some degrees of freedom (usually, but not
always, those related to high-energy excitations) of the
underlying ‘‘microscopical’’ theory contains higher deriva-
tives. One can argue that the effective theory, being an
approximation to perfectly consistent quantum theory,
need not be considered and quantized separately.
However, we are never sure if our theory is the basic or
the effective one; therefore, it is important to knowwhether
it is at all possible to quantize the effective theory in a way
which would correctly reproduce some aspects of the
microscopic one.

The first step toward the quantum theory is to put its
classical counterpart in Hamiltonian form. The standard
framework for dealing with higher-derivative theories on
the Hamiltonian level is provided by the Ostrogradski
formalism [6–10]. The main disadvantage of this approach
is that the Hamiltonian, being a linear function of some
momenta, is necessarily unbounded from below. In gen-
eral, this cannot be cured by trying to devise an alternative
canonical formalism. In fact, any Hamiltonian is an inte-
gral of motion, while it is by far not obvious that a generic
system described by higher-derivative Lagrangians pos-
sesses globally defined integrals of motion, except the
one related to time translation invariance. Moreover, the
instability of the Ostrogradski Hamiltonian is not related to
finite domains in phase space, which implies that it will

survive the standard quantization procedure (i.e., it cannot
be cured by the uncertainty principle).
The Ostrogradski approach also has some other disad-

vantages. There is no straightforward transition from the
Lagrangian to the Hamiltonian formalism. In fact, the
Ostrogradski approach is based on the idea that the con-
secutive time derivatives of initial coordinate(s) form new

coordinates qi � qði�1Þ. It appears then that the Lagrangian
cannot be viewed as a function on the tangent bundle to
coordinate manifold because it leads to incorrect equations
of motion. Also, the Legendre transformation to the cotan-
gent bundle (phase space) cannot be performed. One deals
with this problem by adding Lagrange multipliers, enforc-
ing the proper relation between new coordinates and time
derivatives of the original ones. This results in further
enlarging the coordinate manifold; moreover, the theory
becomes constrained [in spite of the fact that the initial
theory may be nonsingular in the Ostrogradski sense,
cf. Eq. (2.2) below], and the Hamiltonian formalism is
obtained by applying Dirac constraint theory, i.e., by re-
duction of the cotangent bundle to a submanifold endowed
with symplectic structure defined by Dirac brackets.
In the present paper an alternative approach is proposed.

It leads directly to the Lagrangian which, being a function
on the tangent manifold, gives correct equations of motion;
no new coordinate variables need to be added. Further-
more, for Lagrangians that are nonsingular in the
Ostrogradski sense, the Legendre transformation takes
the standard form. Our approach is also applicable to the
most interesting case of singular Lagrangians [for example,
those defining fðRÞ gravity [11]].
The paper is organized as follows. In Sec. II we consider

nonsingular Lagrangians containing second- and third-
order time derivatives. Constrained theories are discussed
in Sec. III. The general formalism is applied to the minis-
uperspace formulation of fðRÞ gravity [12] in Sec. IV. In
Sec. V, the modifications necessary to cover the field-
theoretic case are given. In the Appendix we describe
(for one degree of freedom) the generalization of our
formalism to Lagrangians containing arbitrarily high
derivatives.*pmaslan@uni.lodz.pl
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II. NONSINGULAR LAGRANGIANS OF SECOND
AND THIRD ORDER

In this section we consider the Lagrangians containing
second and third time derivatives which are nonsingular in
the Ostrogradski sense. The Ostrogradski approach is
based on the idea that the consecutive time derivatives of

the initial coordinate form new coordinates, qi � qði�1Þ.
However, it has been suggested [13–17] that one can use

every second derivative as a new variable, qi � qð2i�2Þ. We
generalize this idea by introducing new coordinates as
some functions of the initial ones and their time deriva-
tives. Our paper is inspired by the results obtained in
Ref. [14].

A. The case of second derivatives

Let us start with Lagrangians containing time derivatives
up to the second order,

L ¼ Lðq; _q; €qÞ; (2.1)

here q ¼ ðq�Þ, � ¼ 1; . . . ; N, denotes the set of general-
ized coordinates. The nonsingularity condition of the
Ostrogradski approach reads

det

�
@2L

@ €q�@ €q�

�
� 0: (2.2)

In order to put our theory in the first-order form, we define
new coordinates q

�
1 , q

�
2 :

q� ¼ q�1 ; _q� ¼ _q�1 ; €q� ¼ ��ðq1; _q1; q2Þ;
(2.3)

where �� are the functions specified below.
We select an arbitrary function

F ¼ Fðq1; _q1; q2Þ; (2.4)

subjected to the single condition

det

�
@2F

@ _q�1 @q
�
2

�
� 0: (2.5)

Now, �� are defined as a unique [at least locally due to
(2.2)] solution to the following set of equations:

@Lðq1; _q1; �Þ
@��

þ @Fðq1; _q1; q2Þ
@ _q�1

¼ 0: (2.6)

The new Lagrangian, which is now a standard Lagrangian
of first order, is given by

L ðq1; _q1; q2; _q2Þ ¼ Lðq1; _q1; �ðq1; _q1; q2ÞÞ

þ @Fðq1; _q1; q2Þ
@q

�
1

_q�1

þ @Fðq1; _q1; q2Þ
@q�2

_q�2

þ @Fðq1; _q1; q2Þ
@ _q�1

��ðq1; _q1; q2Þ:
(2.7)

It differs from the initial one by an expression which
becomes a total time derivative ‘‘on shell.’’
The equation of motion for q�2 yields

@2F

@ _q�1@q
�
2

ð�� � €q�1Þ ¼ 0; (2.8)

which, by virtue of (2.5), implies

€q � ¼ ��ðq1; _q1; q2Þ: (2.9)

For the remaining variables q
�
1 one obtains

@L

@q�1
� d

dt

�
@L

@ _q�1
Þ þ d2

dt2

�
@L

@��

�
¼ 0; (2.10)

and taking into account (2.9), one gets the initial Euler-
Lagrange equations.
It is worth noting that, contrary to the original

Ostrogradski approach, the formalism presented above
leads directly to the standard picture of the Lagrangian as
a function defined on the tangent bundle to coordinate
space (with no need for enlarging the latter by adding the
appropriate Lagrange multipliers).
Our Lagrangian (2.7) is nonsingular in the usual sense,

so one can directly pass to the Hamiltonian picture by
performing Legendre transformation, leading to canonical
dynamics on the cotangent bundle.
To this end, we define the canonical momenta

p1� � @L
@ _q

�
1

¼ @L

@ _q
�
1

þ @2F

@q�1@ _q
�
1

_q�1 þ
@2F

@ _q
�
1 @ _q�1

�� þ @2F

@ _q
�
1 @q

�
2

_q�2

þ @F

@q�1
; (2.11)

p2� � @L
@ _q�2

¼ @Fðq1; _q1; q2Þ
@q�2

: (2.12)

By virtue of (2.5) the second set of equations can be
uniquely solved (at least locally) for _q

�
1 ,

_q �
1 ¼ _q�1 ðq1; q2; p2Þ: (2.13)

As for the first set (2.11), we note that _q
�
2 appears (linearly)

only in the fourth term on the right-hand side (RHS).
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Again, the same condition (2.5) allows us to solve (2.11)
for _q

�
2 ,

_q
�
2 ¼ q

�
2 ðq1; q2; p1; p2Þ: (2.14)

The Hamiltonian H is computed in the standard way,
and the final result reads

H ¼ p1� _q�1 � L� @F

@q
�
1

_q�1 � @F

@ _q
�
1

��; (2.15)

where everything is expressed in terms of q1, q2, p1, and
p2. We have checked, by direct calculation, that the ca-
nonical equations following from H are equivalent to the
initial Lagrangian ones.

There exists a canonical transformation which relates
our Hamiltonian to the Ostrogradski one. It reads

~q
�
1 ¼ q

�
1 ; ~q

�
2 ¼ f�ðq1; q2; p2Þ;

~p1� ¼ p1� � @F

@q�1
ðq1; f; q2Þ;

~p2� ¼ � @F

@f�
ðq1; f; q2Þ;

(2.16)

where tildes refer to Ostrogradski variables and
f�ðq1; q2; p2Þ solve Eq. (2.12), i.e., f� ¼ _q

�
1 ðq1; q2; p2Þ.

The corresponding generating function � has the form

�ðq1; ~p1; q2; ~q2Þ ¼ q
�
1 ~p1� þ Fðq1; ~q2; q2Þ: (2.17)

However, it should be stressed that the Ostrogradski
Hamiltonian is singular in the sense that the inverse
Legendre transformation cannot be performed (contrary
to our case). This means that the structure of the symplectic
manifold (phase space) as a cotangent bundle to the coor-
dinate manifold is not transparent if Ostrogradski variables
are used.

Let us conclude this part with a very simple example.
The Lagrangian

L ¼ ���� _q� €q� þ �

2
ð €q�Þ2; � � 0; �; � ¼ 1; 2

(2.18)

is nonsingular in the Ostrogradski sense, provided � � 0.
We take

F ¼ � _q�1 q
�
2 ; � � 0: (2.19)

Then

�� ¼ �

�
��� _q�1 �

�

�
q
�
2 ; (2.20)

and

L ¼ � �2

2�
ðq�2 Þ2 �

�2

2�
ð _q�1 Þ2 �

��

�
��� _q

�
1 q

�
2 þ � _q

�
1 _q

�
2 :

(2.21)

Finally, the Hamiltonian reads

H ¼ 1

�
p1�p2� þ �2

2�2�
ðp2�Þ2 þ �

�
���p2�q

�
2 þ

�2

2�
ðq�2 Þ2:

(2.22)

It depends on an arbitrary parameter �. One can ask
whether any relevant physical quantity may depend on �.
The answer is no: All physical quantities are � indepen-
dent. Formally this can be shown using Eqs. (2.16) and
(2.17). Indeed, the function generating the canonical trans-
formation to Ostrogradski variables reads

�ðq�1 ; ~p1�; q
�
2 ; ~q

�
2 Þ ¼ q�1 ~p1� þ �~q�2 q

�
2 : (2.23)

The corresponding canonical transformation takes the
form

p1� ¼ ~p1�; q�1 ¼ ~q�1 ;

q
�
2 ¼ � 1

�
~p2�; p2� ¼ �~q

�
2 ;

(2.24)

when inserted into the Hamiltonian (2.22), it yields the
standard Ostrogradski Hamiltonian

H ¼ ~p1�~q
�
2 þ 1

2�
ð~p2�Þ2 � �

�
���~q

�
2 ~p2� þ �2

2�
ð~q�2 Þ2:

(2.25)

It does not depend on �. Therefore, the energy (energy
spectrum in quantum theory) does not depend on �. The
role of our �-dependent modification is to provide the
formalism which yields standard Lagrangian dynamics
and a regular Legendre transformation.
The above explanation is slightly formal. We shall now

look at the problem of � dependence from a slightly differ-
ent point of view. Let us note that the classical state of our
system is uniquely determined once the values of qðtÞ, _qðtÞ,
€qðtÞ, q...ðtÞ at some moment t are given. Moreover, most
physically relevant quantities are constructed via the
Noether procedure (they are either conserved or partially
conserved; i.e., their time derivatives are defined by trans-
formation properties of symmetry breaking terms in the
action). As such, they are expressible in terms of q, _q, €q,

and q
���
. Therefore the latter are the basic variables. We can

find their quantum counterparts, provided we compute the
relevant Poisson brackets.
To this end we write out the canonical equations of

motion following from Eq. (2.22):

_q
�
1 ¼ 1

�
p2�; _q

�
2 ¼ 1

�
p1� þ �2

�2�
p2� þ �

�
���q

�
2 ;

_p1� ¼ 0; _p2� ¼ �

�
���p2� � �2

�
q
�
2 : (2.26)

They lead to the following relations
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q� ¼ q�1 ; _q� ¼ 1

�
p2�;

€q� ¼ �

��
���p2� � �

�
q�2 ;

q
���� ¼ � 2�2

��2
p2� � 2��

�2
���q

�
2 �

1

�
p1�:

(2.27)

One can now find the Poisson brackets among q, _q, €q, and

q
���
. The nonvanishing ones read

fq�; q����g ¼ � 1

�
���; f _q�; €q�g ¼ ���;

f _q�; q����g ¼ � 2�

�2
���; f €q�; €q�g ¼ 2�

�
���;

f _q�; €q�g ¼ 4�2

�3
���; f _q�; €q�g ¼ 8�3

�4
���:

(2.28)

Note that they are � independent. Upon quantizing, we get
four observables obeying �-independent algebra. Any
other observable including energy can be constructed out

of them so its spectrum and other properties do not depend
on �.

B. The case of third derivatives

Let us consider a nonsingular Lagrangian of the form

L ¼ Lðq; _q; €q; q���Þ: (2.29)

It is slightly surprising that this case (and, in general, the
case when the highest time derivatives are of odd order—
see the Appendix) is simpler. We define the new variables

q� ¼ q
�
1 ; _q� ¼ _q

�
1 ; €q� ¼ q

�
2 ; q

���� ¼ _q
�
2 :

(2.30)

Next, the functionFðq1; _q1; q2; q3Þ is selected, which obeys

det

�
@2F

@ _q�1 @q
�
3

�
� 0; (2.31)

here q
�
3 are additional variables. The modified Lagrangian

reads

Lðq1; _q1; q2; _q2; q3; _q3Þ ¼ Lðq1; _q1; q2; _q2Þ þ @Fðq1; _q1; q2; q3Þ
@q�1

_q
�
1 þ @Fðq1; _q1; q2; q3Þ

@q�2
_q
�
2 þ @Fðq1; _q1; q2; q3Þ

@q�3
_q
�
3

þ @Fðq1; _q1; q2; q3Þ
@ _q�1

q
�
2 : (2.32)

It can be easily shown that the Euler-Lagrange equations
for L yield the initial equations for the original variable
q� � q

�
1 . Again, as in the second-order case, the Legendre

transformation can be directly performed due to the con-
dition (2.31). The momenta read

p1� ¼ @L

@ _q
�
1

þ @2F

@q�1@ _q
�
1

_q�1 þ
@2F

@ _q
�
1 @ _q�1

q�2 þ
@2F

@ _q
�
1 @q

�
2

_q�2

þ @2F

@ _q
�
1 @q

�
3

_q�3 þ
@F

@q
�
1

; (2.33)

p2� ¼ @L

@ _q�2
þ @F

@q�2
; (2.34)

p3� ¼ @Fðq1; _q1; q2; q3Þ
@q�3

: (2.35)

By virtue of (2.31) one can solve (2.35) for _q
�
1 ,

_q�
1 ¼ _q�1 ðq1; q2; q3; p3Þ: (2.36)

Inserting this solution into Eq. (2.34), one computes

_q
�
2 ¼ _q

�
2 ðq1; q2; q3; p2; p3Þ; (2.37)

the solution is (at least locally) unique because L is, by
assumption, nonsingular in the Ostrogradski sense.
Similarly, (2.33) can be solved in terms of _q�3 :

_q
�
3 ¼ _q

�
3 ðq1; q2; q3; p1; p2; p3Þ: (2.38)

Finally, the Hamiltonian is of the form

H ¼ p1� _q�1 þ p2� _q�2 � L� @F

@q
�
1

_q�1 � @F

@ _q
�
1

q�2

� @F

@q�2
_q
�
2 ; (2.39)

where everything is expressed in terms of q’s and p’s (the
terms containing _q�3 cancel). As above, we have checked
that the canonical equations of motion yield the initial
equation. The canonical transformation which relates our
formalism to the Ostrogradski one reads

~q�1 ¼ q�1 ; ~q�2 ¼ f�ðq1; q2; q3; p3Þ; ~q�3 ¼ q�2 ;

~p1� ¼ p1� � @F

@q�1
ðq1; fðq1; q2; q3; p3Þ; q2; q3Þ;

~p2� ¼ � @F

@f�
ðq1; fðq1; q2; q3; p3Þ; q2; q3Þ;

~p3� ¼ p2� � @F

@q
�
2

ðq1; fðq1; q2; q3; p3Þ; q2; q3Þ;

(2.40)

where f� is the solution of Eq. (2.35), i.e., f� ¼ _q�1 . The
relevant generating function reads
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�ðq1; ~p1; q2; ~q2; q3; ~p3Þ
¼ q

�
1 ~p1� þ q

�
2 ~p3� þ Fðq1; ~q2; q2; q3Þ: (2.41)

Again, the advantage of our Hamiltonian over the
Ostrogradski one is that the former is nonsingular in the
sense that the inverse Legendre transformation can be
performed directly.

C. The second-order Lagrangian once more

By comparing Secs. II A and II B we see that the modi-
fied Hamiltonian formalism is somewhat simpler in the
case of the third-order Lagrangian (actually, as shown in
the Appendix, this is the case for all Lagrangians of odd
order). Namely, in the latter case no counterpart of the
condition (2.6) is necessary. This will appear to play the
crucial role in the case of singular (in the Ostrogradski
sense) Lagrangians (see Sec. III below). Therefore, as a
preliminary step, we consider here the second-order
Lagrangians as a special, singular case of third-order
ones. The resulting Hamiltonian formalism is then con-
strained. However, with an additional assumption that the
function F does not depend on q�2 , one can perform a

complete reduction of phase space, obtaining the structure
described in Sec. II A.

Let

L ¼ Lðq; _q; €qÞ; (2.42)

and F ¼ Fðq1; _q1; q3Þ obeys (2.31). We define

Lðq1; _q1; q2; q3; _q3Þ

¼ Lðq1; _q1; q2Þ þ @Fðq1; _q1; q3Þ
@q

�
1

_q�1 þ @Fðq1; _q1; q3Þ
@q

�
3

_q�3

þ @Fðq1; _q1; q3Þ
@ _q

�
1

q�2 : (2.43)

The relevant momenta read

p1� ¼ @L

@ _q�1
þ @2F

@q�1@ _q�1
_q�1 þ

@2F

@ _q�1 @ _q�1
q�2 þ

@2F

@ _q�1 @q
�
3

_q�3

þ @F

@q�1
; (2.44)

p2� ¼ 0; (2.45)

p3� ¼ @F

@q�3
: (2.46)

There is one set of primary constraints (2.45). On the other
hand, due to the condition (2.31) _q

�
1 and _q

�
3 can be ex-

pressed in terms of q1, q2, q3, p1, p3. The Dirac
Hamiltonian takes the form

H ¼ p1� _q
�
1 � L� @F

@q�1
_q
�
1 � @F

@ _q�1
q
�
2 þ c�p2�; (2.47)

where c� are Lagrange multipliers enforcing the con-
straints �1� � p2� � 0.

The stability of primary constraints implies

0 � _�1� � �2�

¼ @Lðq1; _q1ðq1; q3; p3Þ; q2Þ
@q�2

þ @Fðq1; _q1ðq1; q3; p3Þ; q3Þ
@ _q�1

: (2.48)

In order to check the stability of secondary constraints
�2�, we note that, as can be verified by direct computation,

f _q�1 ; _q�1g ¼ 0: (2.49)

Using (2.49) together with

0 � _�2� ¼ f�2�;Hg; (2.50)

we arrive at the following condition:

@2L

@q�2 @q
�
2

c� þ @2L

@q�1 @q
�
1

_q�1 þ
@2L

@q�2 @ _q�1
q�2 þ p1� � @L

@ _q�1

� @F

@q
�
1

¼ 0: (2.51)

The initial Lagrangian is nonsingular, and Eq. (2.51) can be
used to determine the Lagrange multipliers c� uniquely.
Therefore, there are no further constraints.
In order to convert our constraints into strong equations,

we define Dirac brackets. To this end, we compute

f	1�;	1�g ¼ 0; (2.52)

f	1�;	2�g ¼ � @2L

@q�2 @q
�
2

� �W��: (2.53)

Moreover,�
@L

@q
�
2

;
@L

@q�2

�
¼ 0;

�
@F

@ _q
�
1

;
@F

@ _q�1

�
¼ 0;

�
@F

@ _q
�
1

;
@L

@q�2

�
¼ @2L

@q�2@ _q
�
1

;

(2.54)

which implies

f	2�;	2�g ¼ @2L

@ _q
�
1 @q

�
2

� @2L

@ _q�1@q
�
2

� V��: (2.55)

By assumption, W is a nonsingular matrix. Consequently,

C ¼ f	1�;	1�g f	1�;	2�g
f	2�;	1�g f	2�;	2�g

� �
¼ 0 �W

W V

� �
(2.56)

is also nonsingular, and

C�1 ¼ W�1VW�1 W�1

�W�1 0

� �
: (2.57)

The Dirac brackets take the following form:
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f�; �gD ¼ f�; �g � f�; 	1�gðW�1VW�1Þ��f	1�; �g
� f�; 	1�gðW�1Þ��f	2�; �g
þ f�; 	2�gðW�1Þ��f	1�; �g: (2.58)

The constraints �1� depend on p2� only. We conclude

from (2.58) that the Dirac brackets for q
�
1 , q

�
3 , p1�, p3�

take the canonical form. Moreover, p2� ¼ 0, while q�2 can

be determined from (2.48). Note that the solution for q
�
2 ,

by virtue of Eq. (2.6), reads

q�2 ¼ ��ðq1; _q1ðq1; q3; p3Þ; q3Þ: (2.59)

So, up to renumbering q2 $ q3, we arrived at the same
scheme as in Sec. II A.

In order to illustrate the above approach, we use the
same example as before:

L ¼ ���� _q� €q� þ �

2
ð €q�Þ2; � � 0; (2.60)

and

F ¼ � _q�1 q
�
3 ; � � 0: (2.61)

Then H takes the form

H ¼ 1

�
p1�p3� � �

�
���p3�q

�
2 �

�

2
ðq�2 Þ2 � �q�2 q

�
3

þ 2�

�
���p2�q

�
2 �

1

�
p1�p2�; (2.62)

while the constraints are

	1� ¼ p2�; 	2� ¼ � �

�
���p3� þ �q

�
2 þ �q

�
3 ;

(2.63)

and serve to eliminate p2� and q
�
2 ,

p2� ¼ 0; q�2 ¼ �

��
���p3� � �

�
q�3 : (2.64)

Inserting this back into the Hamiltonian, we arrive at the
following expression:

H¼ 1

�
p1�p3� þ �2

2�2�
ðp3�Þ2 þ �

�
���p3�q

�
3 þ

�2

2�
ðq�3 Þ2;

(2.65)

which coincides with the one given by Eq. (2.22), provided
the replacement q2 $ q3, p2 $ p3 has been made.

III. SINGULAR LAGRANGIANS OF THE SECOND
ORDER

In this section we consider the second-order
Lagrangians

L ¼ Lðq; _q; €qÞ; (3.1)

which are singular in the Ostrogradski sense, i.e.,

detðW��Þ � det

�
@2L

@ €q�@ €q�

�
¼ 0: (3.2)

For the standard Ostrogradski approach to such singular
Lagrangians see, for example, Refs. [18,19].
The formalism of Sec. II A is not directly applicable

because, due to Eq. (3.2), Eq. (2.6) cannot be solved to
determine the functions ��. Moreover, in this case
Eq. (2.6) puts further restrictions on the form of F.
In order to get rid of these problems we will follow the

method of Sec. II B and consider L as a third-order singular
Lagrangian. From this point of view its singularity comes
both from Eq. (3.2) and from the fact that the third-order
time derivatives are absent. Given a singular Lagrangian L,
we select a function F ¼ Fðq1; _q1; q3Þ obeying (2.31) and
define

Lðq1; _q1; q2; q3; _q3Þ

¼ Lðq1; _q1; q2Þ þ @Fðq1; _q1; q3Þ
@q�1

_q
�
1 þ @Fðq1; _q1; q3Þ

@q�3
_q
�
3

þ @Fðq1; _q1; q3Þ
@ _q�1

q
�
2 : (3.3)

As before, the canonical momenta given by (2.45) provide
the primary constraints, while (2.44) and (2.46) allow us
to compute _q�1 and _q�3 . The Hamiltonian is given by

Eq. (2.47). The secondary constraints read again

0 � �2�

¼ @Lðq1; _q1ðq1; q3; p3Þ; q2Þ
@q

�
2

þ @Fðq1; _q1ðq1; q3; p3Þ; q3Þ
@ _q

�
1

: (3.4)

Now we have to investigate the stability of �2�. To this

end, we assume thatW has rankK, K <N; this implies the
existence of J ¼ N � K linearly independent null eigen-
vectors 
�

a ðq1; _q1; q2Þ, a ¼ 1; 2; . . . ; J,

W��

�
a ¼ 0: (3.5)

Equation (2.51) does not determine uniquely the Lagrange
multipliers c�; on the contrary, we get new constraints of
the form

0 � �3a

¼ 

�
a

�
@2L

@q�1 @q
�
1

_q�1 þ
@2L

@q�2 @ _q�1
q�2 þ p1� � @L

@ _q�1
� @F

@q�1

�
;

(3.6)

here, as previously, _q�1 ¼ _q�1 ðq1; q3; p3Þ, so the above con-
straints contain q1, q2, q3, p1, and p3.
We have started with the third-order formalism; there-

fore, our phase space is 6N dimensional. As in the non-
singular case (Sec. II) we would like to eliminate the q2’s
and p2’s. The latter are equal to zero by the primary
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constraints �1�. As far as the q2’s are considered, the

situation is more involved.
First, by virtue of the assumption (3.2) about W, we can

determine from Eq. (3.4) K variables q�2 in terms of q1, p1,

q3, p3, and the remaining q2’s. By substituting the resulting
expression back into Eq. (3.4), we arrive at J constraints on
q1, p1, q3, and p3. We denote these new constraints by
c aðq1; q3; p1; p3Þ. Let us now concentrate on the con-
straints (3.6). In general, they contain the q�2 variables

and imply the constraints on q1, q3, p1, p3 only provided
the q2’s enter in the combinations which can be determined
from Eq. (3.4). In order to decide if this happens, consider
the variations �q

�
2 which do not change the RHS of (3.4).

From the definition ofW�� we conclude that such �q
�
2 are

linear combinations of 

�
a [see (3.5)]. If the RHS of (3.6) is

stationary under such variations �q
�
2 , Eqs. (3.4) and (3.6)

can be combined to yield the constraints which do not
depend on the q2’s. The relevant condition reads

@�3a

@q
�
2



�
b ¼ 0; b ¼ 1; . . . ; J; (3.7)

where a takes M values, which, without loss of generality,
can be chosen as a ¼ 1; . . . ;M. In this way, we obtain M
new constraints on q1, p1, q3, p3.

One can check that

@�3a

@q�2

�
b ¼ 
�

b 

�
a

�
@2L

@ _q
�
1 @q

�
2

� @2L

@ _q�1@q
�
2

�
: (3.8)

By virtue of (2.55) we find

fc a; c bg � 
�
a 
�

bf	2�;	2�g;
a ¼ 1; . . . ;M; b ¼ 1; . . . ; J:

(3.9)

Let us summarize. For the nonsingular second-order
Lagrangian viewed as a singular third-order one,
ðq1; p1; q3; p3Þ forms the reduced phase space; no further
constraints exist. On the contrary, in the singular case q1,
p1, q3, p3 are still constrained. First, there exist J con-
straints c aðq1; p1; q3; p3Þ; moreover, if some (say, M) c ’s
are in involution (on the constraint surface) with all c ’s,
there exist additional M constraints following from
Eqs. (2.6) and (3.4). This agrees with the conclusions of
Ref. [18].

In general, for a singular Lagrangian it is not possible to
determine uniquely all Lagrange multipliers c�. However,
we are in fact interested only in dynamical equations for
q1, q3, p1, and p3. Therefore, we can use the following
Hamiltonian:

H ¼ p1� _q�1 � L� @F

@q
�
1

_q�1 � @F

@ _q
�
1

q�2 : (3.10)

On the constraint surface it does not depend on the q2’s,

@H

@q�2
¼ � @L

@q�2
� @F

@ _q�1
� 0: (3.11)

The existence of further secondary constraints depends on
the particular form of the Lagrangian.
Finally, let us note that the canonical transformation

(2.40) leads to the form of dynamics presented in
Ref. [18]. However, within our procedure the Legendre
transformation from the tangent bundle of the configura-
tion manifold to the phase manifold is again straightfor-
ward (if one takes into account standard modifications due
to the existence of constraints).
Singular higher-derivative Lagrangians were also

considered in [20]. The authors considered the physically
important case of reparametrization invariant theories
(higher-derivative reparametrization invariant
Lagrangians appear, for example, in the description of
the radiation reaction [21]). In their geometrical approach
the image of the Legendre transformation forms a subma-
nifold of some cotangent bundle. This suggests that in the
case of higher-derivative singular theories, it is advanta-
geous to start with enlarged phase space; this agrees with
our conclusions.
To conclude this section with a simple example, con-

sider the following Lagrangian:

L ¼ ���� _q� €q� þ �

2
ð €q1Þ2; �; � ¼ 1; 2: (3.12)

It is singular and the matrix W [Eq. (2.53)] is of rank 1 for
� � 0 and 0 for � ¼ 0. We take F as

F ¼ � _q�1 q
�
3 : (3.13)

Assume first � � 0. Then

L ¼ ���� _q�1 q
�
2 þ

�

2
ðq12Þ2 þ �q�3 q

�
2 þ � _q�1 _q�3 ; (3.14)

and

p1� ¼ ����q
�
2 þ � _q

�
3 ; p2� ¼ 0; p3� ¼ � _q

�
1 :

(3.15)

The primary constraints are

�1� ¼ p2� � 0; (3.16)

while the Hamiltonian reads

H ¼ 1

�
p1�p3� � �

�
���p3�q

�
2 �

�

2
ðq12Þ2 � �q�2 q

�
3

þ c�p2�: (3.17)

One easily derives the secondary constraints

0 � �21 ¼ �

�
p32 � �q12 � �q13;

0 � �22 ¼ �

�
p31 þ �q23:

(3.18)

The stability for �2� yields

0 � f�21; Hg ¼ 2�q22 � �c1 � p11; (3.19)
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0 � f�22; Hg ¼ p12 þ 2�q12 ¼ �3: (3.20)

Equation (3.19) allows us to compute c1,

c1 ¼ 1

�
ð2�q22 � p11Þ; (3.21)

while (3.20) provides a new constraint. Its stability enfor-
ces c1 ¼ 0, which together with (3.21) yields the further
constraint

0 � �4 ¼ 1

�
ð2�q22 � p11Þ: (3.22)

Finally, differentiating the above equation with respect to
time, we get c2 ¼ 0. The resulting Hamiltonian is

H ¼ 1

�
p1�p3� � �

�
���p3�q

�
2 �

�

2
ðq12Þ2 � �q

�
2 q

�
3 :

(3.23)

Still we have to take into account the constraints �2�, �3,

and �4. The latter two can be rewritten as

�3� ¼ p1� � 2����q
�
2 : (3.24)

�2� and �3� are now used in order to eliminate all

variables except q
�
1 , p1� and q23, p32. The only nonstandard

Dirac bracket reads

fq23; p32gD ¼ 1
2: (3.25)

The Hamiltonian, when expressed in terms of uncon-
strained variables, takes the form

H ¼ 1

�
p12p32 � �

�
p11q

2
3 þ

�

8�2
ðp12Þ2: (3.26)

Let us note that the limit � ! 0 is smooth. Of course, we
could put � ¼ 0 from the very beginning and arrive at the
same conclusion.

IV. AN EXAMPLE: MINISUPERSPACE
FORMULATION OF fðRÞ GRAVITY

As a more elaborate but still toy example, we consider
the minisuperspace Hamiltonian formulation of fðRÞ grav-
ity [12]. We consider the following (Lemaitre-Friedmann-
Robertson-Walker–type) metrics:

ds2 ¼ �N2dt2 þ a2d~x2: (4.1)

Under such reduction the Lagrangian of fðRÞ gravity takes
the form

Lða;NÞ ¼ 1
2Na3fðRÞ; (4.2)

where the curvature is given by

R ¼ 6

�
_a

NA

�
: þ 12

�
_a

Na

�
2
: (4.3)

We see that L depends on second time derivatives. We
proceed along the lines described in Sec. II. The basic

dynamical variables are chosen as follows:

a1 ¼ a; _a1 ¼ _a; N1 ¼ N;

_N1 ¼ _N; a2 ¼ R;
(4.4)

while

€a ¼ �ða1; _a1; N1; _N1; a2Þ (4.5)

is determined by Eq. (2.6) once an appropriate F is se-
lected. We take

F ¼ �3a21f
0ða2Þ _a1; (4.6)

under the assumption f00 � 0, Eqs. (2.6) and (4.6) yield

a2 ¼ R: (4.7)

Solving (4.7) with respect to €a we find

€a ¼ a1N1

6

�
R� 6

N2
1a

2
1

ðð2� N1Þ _a21 � a1 _a1 _N1Þ
�
: (4.8)

The modified Lagrangian reads

L ¼ 1

2
a31N1fða2Þ þ f0ða2Þ

�
�9a1 _a

2
1 þ

6a1 _a
2
1

N1

� 1

2
a31N1a2 � 3a21 _a1

_N1

N1

�
� 3f00ða2Þa21 _a1 _a2: (4.9)

It is straightforward to check that L leads to the correct
equations of motion. In order to simplify our considera-
tions we introduce a new variable,

n1 ¼ N1f
0ða2Þ: (4.10)

In terms of the new variable L reads

L ¼ 1

2
a31n1

fða2Þ
f0ða2Þ � 9a1 _a

2
1f

0ða2Þ þ 6a1 _a
2
1f

02ða2Þ
n1

� 1

2
a31n1a2 �

3a21 _a1 _n1f
0ða2Þ

n1
: (4.11)

Now, we compute the canonical momenta:

p1 � @L
@ _n1

¼ � 3a21
n1

f0ða2Þ _a1; (4.12)

�1 � @L
@ _a1

¼ �18a1 _a1f
0ða2Þ þ 12a1 _a1f

02ða2Þ
n1

� 3
a21
n1

f0ða2Þ _n1;
(4.13)

�2 � @L
@ _a2

¼ 0: (4.14)

One can solve (4.12) and (4.13) in terms of _a1 and _n1. We
form the Hamiltonian
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H ¼ � n1p1�1

3a21f
0ða2Þ

� n1a
3
1fða2Þ

2f0ða2Þ þ n21p
2
1

a31f
0ða2Þ

� 2n1p
2
1

3a31

þ 1

2
a31a2n1 þ��2 � ~H þ��2: (4.15)

Now, we investigate the stability of the �1 � �2 con-
straint,

0 � _�1 ¼ f�1; Hg

¼ f00ða2Þ
f0ða2Þ

�
~H þ 2n1p

2
1

3a31
� a31a2n1

2

�
� �2: (4.16)

The stability condition for �2 determines �; an explicit
expression for � is irrelevant for what follows. In fact,
ð�1;�2Þ are second class constraints,

f�1;�2g � f00ða2Þa31N1

2f0ða2Þ : (4.17)

Thus, the constraints can be solved, provided we use Dirac
brackets. In particular, the Hamiltonian takes a simple
form,

H ¼ ~H ¼ 1

2
a31a2n1 �

2

3

n1p
2
1

a31
; (4.18)

where

a2 ¼ f�1

�
� 2p1�1

3a51
þ 2n1p

2
1

a61

�
: (4.19)

Moreover, Dirac brackets for the variables a1, n1, �1, p1

remain canonical. Therefore, Eqs. (4.18) and (4.19) give
the complete Hamiltonian description. We have checked
explicitly that this leads to the correct equations of motion.
In the case under consideration our formalism, when com-
pared with the Ostrogradski version, seems to be more
complicated. However, it has an advantage that the curva-
ture R is one of basic variables.

V. FIELD THEORY

Our formalism has a straightforward generalization to
the field theory case. For simplicity, we consider only the
Lagrangian densities depending on first and second deriva-
tives. Such a density can be written in the form

L ¼ Lð�; @k�; @k@l�; _�; @k _�; €�Þ: (5.1)

Again, we put � ¼ �1 and select a function F ¼
Fð�1; _�1;�2Þ obeying

@2F

@ _�1@�2

� 0; (5.2)

in the case of a multicomponent field the relevant matrix
should be nonsingular. We define, as previously, the func-
tion

� ¼ �ð�1; @k�1; @k@l�1; _�1; @k _�1;�2Þ (5.3)

as the [locally unique by virtue of (5.2)] solution to the
equation

@Lð�1;@k�1;@k@l�1; _�1;@k _�1;�Þ
@�

þ@Fð�1; _�1;�2Þ
@ _�1

¼ 0:

(5.4)

Finally, the new Lagrangian density reads

~L ¼ Lð�1; @k�1; @k@l�1; _�1; @k _�1; �ð. . .ÞÞ

þ @Fð�1; _�1;�2Þ
@�1

_�1 þ @Fð�1; _�1;�2Þ
@�2

_�2

þ @Fð�1; _�1;�2Þ
@ _�1

�ð. . .Þ: (5.5)

It is now straightforward to check that the Lagrange equa-
tions

@ ~L

@�i

� @k
@ ~L

@ð@k�iÞ þ @k@l
@ ~L

@ð@k@l�iÞ

� d

dt

�
@ ~L

@ _�i

� @k
@ ~L

@ð@k _�iÞ
�
¼ 0 (5.6)

yield the initial equation for the original variable� � �1;

as in Sec. II A €� ¼ �ð. . .Þ. One can now perform the
Legendre transformation. The canonical momenta read

�iðxÞ ¼ � ~L

� _�iðxÞ
; ~L �

Z
d3x ~L: (5.7)

Equations (5.7) can be solve [due to (5.2)] with respect to
_�i:

_� 1 ¼ _�1ð�1;�2;�2Þ; (5.8)

_�2 ¼ _�2ð�1; @k�1; @k@l�1; @k@l@m�1;�2; @k�2;

@k@l�2;�1;�2; @k�2; @k@l�2Þ: (5.9)

H is defined in a standard way,

H ¼
Z

d3xð�1ðxÞ _�1ðxÞ þ�2ðxÞ _�2ðxÞÞ � ~L; (5.10)

and leads to the correct canonical equations of motions.
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APPENDIX: EXTENSION TO THE CASE OF
ARBITRARILY HIGH DERIVATIVES

Here we generalize the approach proposed in Sec. II to
the case of Lagrangians containing time derivatives of
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arbitrary order [17]. We restrict ourselves to the case of one
degree of freedom.We start with the Lagrangian depending
on time derivatives up to some even order,

L ¼ Lðq; _q; €q; . . . ; qð2nÞÞ; (A1)

which is assumed to be nonsingular in the Ostrogradski

sense, @2L

@qð2nÞ2
� 0. Define the new variables

qi � qð2i�2Þ; i ¼ 1; . . . ; nþ 1;

_qi � qð2i�1Þ; i ¼ 1; . . . ; n; (A2)

so that

L ¼ Lðq1; _q1; q2; _q2; . . . ; qn; _qn; qnþ1Þ: (A3)

Further, let F be any function of the following variables:

F ¼ Fðq1; _q1; . . . ; qn; _qn; qnþ1; qnþ2; . . . ; q2nÞ; (A4)

obeying

@L

@qnþ1

þ @F

@ _qn
¼ 0 (A5)

and

det

�
@2F

@qi@ _qj

�
nþ2�i�2n
1�j�n�1

� 0; n � 2 (A6)

[for n ¼ 1 only (A5) remains].
Finally, we define a new Lagrangian,

L � Lþ Xn
k¼1

�
@F

@qk
_qk þ @F

@ _qk
qkþ1

�
þ X2n

j¼nþ1

@F

@qj
_qj:

(A7)

Let us have a look at the Lagrange equations

@L
@qi

� d

dt

�
@L
@ _qi

�
¼ 0; i ¼ 1; . . . ; 2n: (A8)

Using (A3), (A4), (A7), and (A8) one finds

Xn
k¼1

@2F

@qi@ _qk
ðqkþ1 � €qkÞ ¼ 0; i ¼ nþ 1; . . . ; 2n:

(A9)

Consider the matrix ½ @2F
@qi@ _qj

�nþ1�i�2n
1�j�n

entering the left-hand

side of Eq. (A9). By virtue of (A5), @2F
@qi@ _qn

¼ 0 for i ¼ nþ
2; . . . ; 2n, while @2F

@qnþ1@ _qn
¼ � @2L

@q2
nþ1

� 0 due to the

Ostrogradski nonsingularity condition. Therefore, the first
column of our matrix has only one nonvanishing element.

This, together with the condition (A6), implies that it is
invertible. Therefore, Eq. (A9) gives

qkþ1 ¼ €qk; k ¼ 1; . . . ; n: (A10)

Let us now consider (A8) for 1 � i � n. We find

@L

@qi
� d

dt

�
@L

@ _qi

�
þ @F

@ _qi�1

� d2

dt2

�
@F

@ _qi

�
¼ 0;

i ¼ 1; . . . ; n; (A11)

where, by definition, @F
@ _q0

¼ 0. By combining these equa-

tions and using (A5) and (A10), we finally arrive at the
initial Lagrange equation. We conclude that, contrary to
the case of the Ostrogradski Lagrangian, our modified
Lagrangian leads to the proper equation of motion. Let
us now consider the Hamiltonian formalism. Again, the
Legendre transformation can be immediately performed;
neither additional Lagrange multipliers nor constraints
analysis are necessary. In fact, let us define the canonical
momenta in a standard way,

pi ¼ @L
@ _qi

; (A12)

so that

pi ¼ @F

@qi
; i ¼ nþ 1; . . . ; 2n; (A13)

pi ¼ @L

@ _qi
þ Xn

k¼1

�
@2F

@ _qi@qk
_qk þ @2F

@ _qi@ _qk
qkþ1

�

þ X2n
j¼nþ1

@2F

@ _qi@qj
_qj þ @F

@qi
; i ¼ 1; . . . ; n: (A14)

Because of the nonsingularity of ½ @2F
@qi@ _qj

�nþ1�i�2n
1�j�n

Eq. (A13)

can be solved for _q1; _q2; . . . ; _qn,

_q i ¼ fiðq1; . . . ; q2n; pnþ1; . . . ; p2nÞ; i ¼ 1; . . . ; n:

(A15)

Now, Eq. (A14) is linear with respect to _qi, i ¼
nþ 1; . . . ; 2n, and can be easily solved. Finally, the
Hamiltonian is calculated according to the standard
prescription.
In order to compare the present formalism with the

Ostrogradski approach, let us note that they must be related
by a canonical transformation. To see this we define new
(Ostrogradski) variables ~qk, ~pk, 1 � k � 2n:

~q 2i�1 ¼ qi; i ¼ 1; ::; n; (A16)

~q 2i ¼ fiðq1; . . . ; q2n; pnþ1; . . . ; p2nÞ; i ¼ 1; . . . ; n; (A17)
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~p 2i�1 ¼ pi � @F

@qi
ðq1; f1ð. . .Þ; . . . ; qn; fnð. . .Þ; qnþ1; . . . ; q2nÞ; i ¼ 1; . . . ; n; (A18)

~p 2i ¼ � @F

@fi
ðq1; f1ð. . .Þ; . . . ; qn; fnð. . .Þ; qnþ1; . . . ; q2nÞ; i ¼ 1; . . . ; n: (A19)

It is easily seen that the above transformation is a canonical one; i.e., the Poisson brackets are invariant. It is not hard to find
the relevant generating function,

�ðq1; . . . ; q2n; ~p1; ~q2; ~p3; ~q4; . . . ; ~p2n�1; ~q2nÞ ¼
Xn
k¼1

qk ~p2k�1 þ Fðq1; ~q2; q2; ~q4; . . . ; qn; ~q2n; qnþ1; . . . ; q2nÞ: (A20)

Let us now consider the case of the Lagrangian depend-
ing on time derivatives up to some odd order,

L ¼ Lðq; _q; €q; . . . ; qð2nþ1ÞÞ: (A21)

Again, we define

qi � qð2i�2Þ; i ¼ 1; . . . ; nþ 1; (A22)

_q i � qð2i�1Þ; i ¼ 1; . . . ; nþ 1; (A23)

so that

L ¼ Lðq1; _q1; q2; _q2; . . . ; qnþ1; _qnþ1Þ: (A24)

Now, we select a function F,

F ¼ Fðq1; _q1; q2; _q2; . . . ; qn; _qn; qnþ1; . . . ; q2nþ1Þ; (A25)

subject to the single condition

det

�
@2F

@qi@ _qk

�
nþ2�i�2nþ1

1�k�n

� 0; (A26)

and define the Lagrangian

L ¼ Lþ Xn
k¼1

�
@F

@qk
_qk þ @F

@ _qk
qkþ1

�
þ X2nþ1

j¼nþ1

@F

@qj
_qj:

(A27)

Consider the Lagrange equation (A8). First, we have

Xn
k¼1

@2F

@qi@ _qk
ðqkþ1 � €qkÞ ¼ 0; i ¼ nþ 2; . . . ; 2nþ 1;

(A28)

and, by virtue of (A26),

qkþ1 ¼ €qk; k ¼ 1; . . . ; n: (A29)

The remaining equations read

@L

@qi
� d

dt

�
@L

@ _qi

�
þ @F

@ _qi�1

� d2

dt2

�
@F

@ _qi

�
¼ 0;

i ¼ 1; . . . ; nþ 1;

(A30)

with @F
@ _q0

¼ 0, @F
@ _qnþ1

¼ 0. Combining (A29) and (A30) one
gets

X2nþ1

k¼0

ð�1Þk dk

dtk

�
@L

@qðkÞ

�
¼ 0: (A31)

Let us note that no condition of the form (A5) is necessary
here.
Also, in the odd case the present formalism is related to

that of Ostrogradski by a canonical transformation. Indeed,
the canonical momenta read

pi ¼ @F

@qi
; i ¼ nþ 2; . . . ; 2nþ 1; (A32)

pi ¼ @L

@ _qi
þ Xn

k¼1

�
@2F

@ _qi@qk
_qk þ @2F

@ _qi@ _qk
qkþ1

�

þ X2nþ1

j¼nþ1

@2F

@ _qi@qj
_qj; i ¼ 1; . . . ; nþ 1; (A33)

by virtue of (A26), one can solve Eq. (A32) for _q1; . . . ; _qn.
The remaining nþ 1 equations (A33) are used to compute
the velocities _qnþ1; . . . ; _q2nþ1. In fact, using Eqs. (A24)–
(A26) as well as the Ostrogradski nonsingularity condition
@2L
@ _q2nþ1

� 0, one easily finds

det

�
@pi

@ _qi

�
1�i�nþ1

nþ1�j�2nþ1

� 0: (A34)

In particular,

_q i ¼ fiðq1; . . . ; q2nþ1; pnþ2; . . . ; p2nþ1Þ; i ¼ 1; . . . ; n: (A35)

Now, one can define the canonical transformation to Ostrogradski variables,

~q 2i�1 ¼ qi; i ¼ 1; . . . ; nþ 1; (A36)
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~q 2i ¼ fiðq1; . . . ; q2nþ1; pnþ2; . . . ; p2nþ1Þ; i ¼ 1; . . . ; n; (A37)

~p 2i�1 ¼ pi � @F

@qi
ðq1; f1ð. . .Þ; . . . ; qn; fnð. . .Þ; qnþ1; . . . ; q2nþ1Þ; i ¼ 1; . . . ; nþ 1; (A38)

~p 2i ¼ � @F

@fi
ðq1; f1ð. . .Þ; . . . ; qn; fnð. . .Þ; qnþ1; . . . ; q2nþ1Þ; i ¼ 1; . . . ; n: (A39)

The relevant generating function reads

�ðq1; q2; . . . ; q2nþ1; ~p1; ~q2; ~p3; ~q4; . . . ; ~q2n; ~p2nþ1Þ ¼
Xnþ1

k¼1

~p2k�1qk þ Fðq1; ~q2; . . . ; qn; ~q2n; qnþ1; . . . ; q2nþ1Þ: (A40)

Summarizing, we have found modified Lagrangian and Hamiltonian formulations of higher-derivative theories. They are
equivalent to the Ostrogradski formalism in the sense that, on the Hamiltonian level, they are related to the latter by a
canonical transformation. However, the advantage of this approach is that the Legendre transformation can be performed in
a straightforward way.
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