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I. INTRODUCTION

Black holes (BH) are intriguing solutions of classical
general relativity describing important aspects of the phys-
ics of gravitational collapse. Their existence in our nearby
universe is by now supported by a great amount of obser-
vational evidence [1]. When isolated, these systems are
remarkably simple for late and distant observers: once the
initial very dynamical phase of collapse is passed the
system is expected to settle down to a stationary situation
completely described (as implied by the famous results by
Carter, Israel, and Hawking [2]) by the three extensive
parameters (massM, angular momentum J, electric charge
Q) of the Kerr-Newman family [3].

However, the great simplicity of the final stage of an
isolated gravitational collapse for late and distant observers
is in sharp contrast with the very dynamical nature of the
physics seen by in-falling observers which depends on all
the details of the collapsing matter. Moreover, this dynam-
ics cannot be consistently described for late times (as
measured by the in-falling observers) using general rela-
tivity due to the unavoidable development, within the
classical framework, of unphysical pathologies of the
gravitational field. Concretely, the celebrated singularity
theorems of Hawking and Penrose [4] imply the break-
down of predictability of general relativity in the black
hole interior. Dimensional arguments imply that quantum
effects cannot be neglected near the classical singularities.
Understanding of physics in this extreme regime requires a
quantum theory of gravity. BH provide, in this precise
sense, the most tantalizing theoretical evidence for the
need of a more fundamental (quantum) description of the
gravitational field.

Extra motivation for the quantum description of gravi-
tational collapse comes from the physics of black holes
available to observers outside the horizon. As for the

interior physics, the main piece of evidence comes from
the classical theory itself which implies an (at first only)
apparent relationship between the properties of idealized
black hole systems and those of thermodynamical systems.
On the one hand, black hole horizons satisfy the very
general Hawking area theorem (the so-called second law)
stating that the black hole horizon area aH can only in-
crease, namely

�aH � 0: (1)

On the other hand, the uniqueness of the Kerr-Newman
family, as the final (stationary) stage of the gravitational
collapse of an isolated gravitational system, can be used to
prove the first and zeroth laws: under external perturbation
the initially stationary state of a black hole can change but
the final stationary state will be described by another Kerr-
Newman solution whose parameters readjust according to
the first law

�M ¼ �H

8�G
�aH þ�H�Qþ�H�J; (2)

where �H is the surface gravity, �H is the electrostatic
potential at the horizon, and�H the angular velocity of the
horizon. There is also the zeroth law stating the uniformity
of the surface gravity �H on the event horizon of stationary
black holes, and finally the third law precluding the possi-
bility of reaching an extremal black hole (for which �H ¼
0) by means of any physical process.1 The validity of these
classical laws motivated Bekenstein to put forward the idea
that black holes may behave as thermodynamical systems
with an entropy S ¼ �a=‘2p and a temperature kT ¼
@�H=ð8��Þ, where � is a dimensionless constant and the
dimensionality of the quantities involved require the in-
troduction of @ leading in turn to the appearance of the
Planck length ‘p, even though in his first paper [5]

Bekenstein states ‘‘that one should not regard T as the
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temperature of the black hole; such identification can lead
to all sorts of paradoxes, and is thus not useful.’’ The key
point is that the need of @ required by the dimensional
analysis involved in the argument called for the investiga-
tion of black hole systems from a quantum perspective. In
fact, not long after, the semiclassical calculations of
Hawking [6]—that studied particle creation in a quantum
test field (representing quantum matter and quantum gravi-
tational perturbations) on the space-time background of the
gravitational collapse of an isolated system described for
late times by a stationary black hole—showed that once
black holes have settled to their stationary (classically)
final states, they continue to radiate as perfect black bodies
at temperature kT ¼ �H@=ð2�Þ. Thus, on the one hand,
this confirmed that black holes are indeed thermal objects
that radiate at a given temperature and whose entropy is
given by S ¼ a=ð4‘2pÞ, while, on the other hand, this raised
a wide range of new questions whose proper answer re-
quires a quantum treatment of the gravitational degrees of
freedom.

Among the simplest questions is the issue of the statis-
tical origin of black hole entropy. In other words, what is
the nature of the large amount of microstates responsible
for black hole entropy? This simple question cannot be
addressed using semiclassical arguments of the kind lead-
ing to Hawking radiation and requires a more fundamental
description. In this way, the computation of black hole
entropy from basic principles became an important test
for any candidate quantum theory of gravity. In string
theory it has been computed using dualities and no-
normalization theorems valid for extremal black holes
[7]. There are also calculations based on the effective
description of near horizon quantum degrees of freedom
in terms of effective 2-dimensional conformal theories [8].
In loop quantum gravity the first computations (valid for
physical black holes) were based on general considerations
and the fact that the area spectrum in the theory is discrete
[9]. The calculation was later refined by quantizing a sector
of the phase space of general relativity containing a hori-
zon in ‘‘equilibrium’’ with the external matter and gravi-
tational degrees of freedom [10]. In all cases agreement
with the Bekenstein-Hawking formula is obtained with
logarithmic corrections in a=‘2p.

In this work we concentrate and further develop the
theory of isolated horizons in the context of loop quantum
gravity. Recently, we have proposed a new computation of
BH entropy in loop quantum gravity (LQG) that avoids the
internal gauge fixing used in prior works [11] and makes
the underlying structure more transparent. We show, in
particular, that the degrees of freedom of type I isolated
horizons can be encoded (along the lines of the standard
treatment) in an SUð2Þ boundary connection. The results of
this work clarify the relationship between the theory of
isolated horizons and SUð2Þ Chern-Simons (CS) theory
first explored in [12], and makes the relationship with the

usual treatment of degrees of freedom in loop quantum
gravity clear-cut. In the present work, we provide a full
detailed derivation of the result of our recent work and
discuss several important issues that were only briefly
mentioned then.
An important point should be emphasized concerning

the logarithmic corrections mentioned above. The logarith-
mic corrections to the Bekenstein-Hawking area formula
for black hole entropy in the loop quantum gravity litera-
ture were thought to be of the (universal) form �S ¼
�1=2 logðaH=‘2pÞ [13]. In [14] Kaul and Majumdar

pointed out that, due to the necessary SUð2Þ gauge sym-
metry of the isolated horizon system, the counting should
be modified leading to corrections of the form �S ¼
�3=2 logðaH=‘2pÞ. This suggestion is particularly interest-

ing because it would eliminate the apparent tension with
other approaches to entropy calculation. In particular their
result is in complete agreement with the seemingly very
general treatment (which includes the string theory calcu-
lations) proposed by Carlip [15]. Our analysis confirms
Kaul and Majumdar’s proposal and eliminates in this way
the apparent discrepancy between different approaches.
The article is organized as follows. In the following

section we review the formal definition of isolated hori-
zons. In Sec. III we state the main equations implied by the
isolated horizon boundary conditions for fields at a spheri-
cally symmetric isolated horizon. In Sec. IV we prove a
series of propositions that imply the main classical part of
our results: we derive the form of the conserved presym-
plectic structure of spherically symmetric isolated hori-
zons, and we show that degrees of freedom at the horizon
are described by an SUð2Þ Chern-Simons presymplectic
structure. In Sec. V we briefly review the derivation of the
zeroth and first law of isolated horizons. In Sec. VI we
study the gauge symmetries of the type I isolated horizon
and explicitly compute the constraint algebra. In Sec. VII
we review the quantization of the spherically symmetric
isolated horizon phase space and present the basic formu-
las necessary for the counting of states that leads to the
entropy. We close with a discussion of our results in
Sec. VIII. The Appendix contains an analysis of type I
isolated horizons from a concrete (and intuitive) perspec-
tive that makes use of the properties of stationary spheri-
cally symmetric black holes in general relativity.

II. DEFINITION OF ISOLATED HORIZONS

The standard definition of a BH as a space-time region
from which no information can reach idealized observers
at (future null) infinity is a global definition. This notion of
BH requires a complete knowledge of a space-time ge-
ometry and is therefore not suitable for describing local
physics. The physically relevant definition used, for in-
stance, when one claims there is a black hole in the center
of the galaxy, must be local. One such local definition was
introduced in [16–18] with the name of isolated horizons
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(IH). Here we present this definition according to [18–21].
This discussion will also serve to fix our notation. In the
definition of an isolated horizon below, we allow general
matter, subject only to conditions that we explicitly state.

Definition: The internal boundary � of a history
ðM; gabÞ will be called an isolated horizon provided the
following conditions hold:

(i) Manifold conditions: � is topologically S2 � R, fo-
liated by a (preferred) family of 2-spheres S and
equipped with an equivalence class [‘a] of transver-
sal future pointing vector fields whose flow preserves
the foliation, where ‘a is equivalent to ‘0a if ‘a ¼
c‘0a for some positive real number c.

(ii) Dynamical conditions: All field equations hold at�.
(iii) Matter conditions: On � the stress-energy tensor

Tab of matter is such that �Ta
b‘

b is causal and

future directed.
(iv) Conditions on the metric g determined by e, and on

its Levi-Civita derivative operator r: (iv.a) The
expansion of ‘a within � is zero. This, together
with the energy condition (iii) and the
Raychaudhuri equation at �, ensures that ‘a is
additionally shear free. This in turn implies that
the Levi-Civita derivative operator r naturally de-
termines a derivative operator Da intrinsic to � via
XaDaY

b :¼ XaraY
b, Xa, Ya tangent to �. We then

impose (iv.b) ½L‘; D� ¼ 0.
(v) Restriction to ‘‘good cuts.’’ One can show further-

more that Da‘
b ¼ !a‘

b for some !a intrinsic to �.
A 2-sphere cross-section S of � is called a good cut
if the pullback of !a to S is divergence free with
respect to the pullback of gab to S. As shown in [20],
every horizon satisfying (i)–(iv) above possesses at
least one foliation into good cuts; this foliation is
furthermore generically unique. We require that the
fixed foliation coincide with a foliation into good
cuts.

Let us discuss the physical meaning of these conditions.
The first two conditions are rather weak. The third condi-
tion is satisfied by all matter fields normally used in general
relativity. The fifth condition is a partial gauge fixing of
diffeomorphisms in the ‘‘time’’ direction. The main con-
dition is therefore the fourth condition. (iv.a) requires that
‘a be expansion free. This is equivalent to asking that the
area 2-form of the 2-sphere cross sections of � be constant
along generators [‘a]. This combined with the matter
condition (iii) and the Raychaudhuri equation implies
that in fact the entire pullback qab of the metric to the
horizon is Lie dragged by ‘a. Condition (iv.b) further
stipulates that the derivative operator Da be Lie dragged
by ‘a. This implies, among other things, an analog of the
zeroth law of black hole mechanics: conditions (i) and (iii)
imply that ‘a is geodesic—‘brb‘a / ‘a. The proportion-
ality constant is called the surface gravity, and
condition (iv.b) ensures that it is constant on the horizon

for any given ‘a 2 ½‘a�. Furthermore, if we had not fixed
[‘a], but only required that an [‘a] exist such that the
isolated horizon boundary conditions hold, then
condition (iv.b) would ensure that this ‘a is generically
unique [20]. From the above discussion, one sees that the
geometrical structures on � that are time independent are
precisely the pullback qab of the metric to �, and the
derivative operator D. In fact, the main conditions (iv.a)
and (iv.b) are equivalent to requiring L‘qab ¼ 0 and
½L‘; D� ¼ 0. For this reason it is natural to define
ðqab; DÞ as the horizon geometry.
Let us summarize. Isolated horizons are null surfaces,

foliated by a family of marginally trapped 2-spheres such
that certain geometric structures intrinsic to � are time
independent. The presence of trapped surfaces motivates
the term ‘‘horizon’’ while the fact that they are marginally
trapped—i.e., that the expansion of ‘a vanishes—accounts
for the adjective ‘‘isolated.’’ The definition extracts from
the definition of Killing horizon just that the ‘‘minimum’’
of conditions necessary for analogs of the laws of black
hole mechanics to hold. Boundary conditions refer only to
behavior of fields at � and the general spirit is very similar
to the way one formulates boundary conditions at null
infinity.
Remarks:
(1) All the boundary conditions are satisfied by station-

ary black holes in the Einstein-Maxwell-dilaton the-
ory possibly with cosmological constant. Note
however that, in the nonstationary context, there still
exist physically interesting black holes satisfying
our conditions: one can solve for all our conditions
and show that the resulting 4-metric need not be
stationary on � [22].

(2) In the choice of boundary conditions, we have tried
to strike the usual balance: On the one hand the
conditions are strong enough to enable one to prove
interesting results (e.g., a well-defined action prin-
ciple, a Hamiltonian framework, and a realization of
black hole mechanics) and, on the other hand, they
are weak enough to allow a large class of examples.
As we already remarked, the standard black holes in
the Einstein-Maxwell-dilatonic systems satisfy
these conditions. More importantly, starting with
the standard stationary black holes, and using
known existence theorems one can specify proce-
dures to construct new solutions to field equations
which admit isolated horizons as well as radiation at
null infinity [22]. These examples already show that,
while the standard stationary solutions have only a
finite parameter freedom, the space of solutions
admitting isolated horizons is infinite dimensional.
Thus, in the Hamiltonian picture, even the reduced
phase space is infinite dimensional; the conditions
thus admit a very large class of examples.

(3) Nevertheless, space-times admitting isolated hori-
zon are very special among generic members of the
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full phase space of general relativity. The reason is
apparent in the context of the characteristic formu-
lation of general relativity where initial data are
given on a set (pairs) of null surfaces with nontrivial
domain of dependence. Let us take an isolated hori-
zon as one of the surfaces together with a transversal
null surface according to the diagram shown in
Fig. 1. Even when the data on the isolated horizon
may be infinite dimensional (for type II and III
isolated horizons, see below), in all cases no trans-
versing radiation data are allowed by the IH bound-
ary condition. Roughly speaking the isolated
horizon boundary condition reduces to one-half
the number of local degrees of freedom.

(4) Notice that the above definition is completely geo-
metrical and does not make reference to the tetrad
formulation. There is no reference to any internal
gauge symmetry. In what follows we will deal with
general relativity in the first order formulation
which will introduce, by the choice of variables,
an internal gauge group corresponding to local
SLð2;CÞ transformations (in the case of Ashtekar
variables) or SUð2Þ transformations (in the case of
real Ashtekar-Barbero variables). It should be clear
from the purely geometric nature of the above defi-
nition that the IH boundary condition cannot break
by any means these internal symmetries.

Isolated horizon classification according to their
symmetry groups

Next, let us examine symmetry groups of isolated hori-
zons. A symmetry of ð�; q; D; ½‘a�Þ is a diffeomorphism on

�which preserves the horizon geometry ðq;DÞ and at most
rescales elements of [‘a] by a positive constant. It is clear
that diffeomorphisms generated by ‘a are symmetries. So,
the symmetry groupG� is at least one dimensional. In fact,
there are only three possibilities for G�:
(a) Type I: the isolated horizon geometry is spherical; in

this case, G� is four dimensional [SOð3Þ rotations
plus rescaling translations2 along ‘].

(b) Type II: the isolated horizon geometry is axisym-
metric; in this case, G� is two dimensional (rota-
tions around the symmetry axis plus rescaling
translations along ‘).

(c) Type III: the diffeomorphisms generated by ‘a are
the only symmetries; G� is one dimensional.

Note that these symmetries refer only to the horizon
geometry. The full space-time metric need not admit any
isometries even in a neighborhood of the horizon. In this
paper, as in the classic works [10,16], we restrict ourselves
to the type I case. Although a revision would be necessary
in light of the results of our present work, the quantization
and entropy calculation in the context of types II and III
isolated horizons has been considered in [23].

III. SOME EXTRA DETAILS FOR TYPE I
ISOLATED HORIZONS

In this section we first list the main equations satisfied by
fields at an isolated horizon of type I. The equations
presented here can be directly derived from the IH bound-
ary conditions implied by the definition of type I isolated
horizons given above. Most of the equations presented here
can be found in [16]. For completeness we prove these
equations at the end of this section. As we shall see in
Sec. III B, some of the coefficients entering the form of
these equations depend on the representative chosen
among the equivalence class of null generators [‘].
Throughout this paper we shall fix a null generator ‘ 2
½‘� by the requirement that the surface gravity ‘⌟! ¼ �
matches the one corresponding to the stationary black hole
with the same macroscopic parameters as the type I iso-
lated horizon under consideration. This choice makes the
first law of IH take the form of the usual first law of
stationary black holes (see Sec. VI).

A. The main equations

When written in connection variables, the isolated hori-
zon boundary condition implies the following relationship
between the curvature of the Ashtekar connection Aiþ ¼
�i þ iKi at the horizon and the 2-form�i ¼ �ijke

j ^ ek (in

the time gauge)

FIG. 1. The characteristic data for a (vacuum) spherically
symmetric isolated horizon corresponds to Reissner-Nordstrom
data on �, and free radiation data on the transversal null surface
with suitable falloff conditions. For each mass, charge, and
radiation data in the transverse null surface there is a unique
solution of Einstein-Maxwell equations locally in a portion of
the past domain of dependence of the null surfaces. This defines
the phase space of type I isolated horizons in Einstein-Maxwell
theory. The picture shows two Cauchy surfaces M1 and M2

‘‘meeting’’ at spacelike infinity i0. Portions of Iþ and I� are
shown; however, no reference to future timelike infinity iþ is
made as the isolated horizon need not coincide with the black
hole event horizon.

2In a coordinate system where ‘a ¼ ð@=@vÞa the rescaling
translation corresponds to the affine map v ! cvþ b with c,
b 2 R constants.
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F(ab
iðAþÞ ¼ � 2�

aH
�(ab

i; (3)

where aH is the area of the IH, the double arrows denote
the pullback to H ¼ � \M withM a Cauchy surface with

normal �a ¼ ð‘a þ naÞ= ffiffiffi
2

p
at H, and na null and normal-

ized according to n � ‘ ¼ �1. Notice that the imaginary
part of the previous equation implies that

d(�
Ki ¼ 0: (4)

Another important equation is

�ijkK
j

( ^ Kk
( ¼ 2�

aH
�i
( : (5)

The previous equations follow from Eqs. (3.12) and (B.7)
of Ref. [16]. Nevertheless, they also follow from the ab-
stract definition given in the Introduction. From the pre-
vious equations, only Eq. (5) is not explicitly proven from
the definition of IH in the literature. Therefore, we give
here an explicit prove at the end of this section. For con-
creteness, as we think it is helpful for some readers to have
a concrete less abstract treatment, another derivation using
directly the Schwarzschild geometry is given in the
Appendix. The previous equations imply in turn that

F(ab
iðA�Þ ¼ ��ð1� �2Þ

aH
�(ab

i; (6)

where Ai
� ¼ �i þ �Ki is the Ashtekar-Barbero

connection.3

B. Proof of the main equations

In this section we use the definition of isolated horizons
provided in the previous section to prove some of the
equations stated above. We will often work in a special
gauge where the tetrad ðeIÞ is such that e1 is normal to H
and e2 and e3 are tangent toH. This choice is only made for
convenience, as the equations presented in the previous
section are all gauge covariant; their validity in one frame
implies their validity in all frames. The following lemma is
key in the Uð1Þ treatment to prove the reducibility of the
SUð2Þ connection, and the reducibility is viable for non-
expanding horizons as shown in [24].

Lemma 1: In the gauge where the tetrad is chosen so that

‘a ¼ 2�1=2ðea0 þ ea1Þ [which can be completed to a null

tetrad na ¼ 2�1=2ðea0 � ea1Þ, and ma ¼ 2�1=2ðea2 þ iea3Þ],
the shear-free and vanishing expansion [conditions (iv.a)
in the definition of IH] imply

!21
( ¼ !20

( and !31
( ¼ !30

( : (7)

Proof: The expansion � and shear 	 of the null con-
gruence of generators ‘ of the horizon are given by

� ¼ ma �mbra‘b; 	 ¼ mambra‘b: (8)

This implies

0 ¼ � ¼ 1

2
ffiffiffi
2

p maðeb2 � ieb3Þraðe1b � ie0bÞ ¼ (9)

¼ 1

2
ffiffiffi
2

p maðð!21
a �!20

a Þ � {ð!31
a �!30

a ÞÞ; (10)

where we have used the definition of the spin connection
!IJ

a ¼ eIbrae
J
b. Similarly we have

0 ¼ 	 ¼ 1

2
ffiffiffi
2

p maðeb2 þ ieb3Þraðe1b � ie0bÞ ¼ (11)

¼ 1

2
ffiffiffi
2

p maðð!21
a �!20

a Þ þ {ð!31
a �!30

a ÞÞ: (12)

As ea2 and e
a
3 form a nondegenerate frame for H ¼ � \M,

and from the definition of pullback, the previous two
equations imply the statement of our lemma. j
The previous lemma has an immediate consequence on

the form of Eq. (4) for the component i ¼ 1 in the frame of
the previous lemma. More precisely it says that dK1

( ¼ 0.

The good-cut condition (v) in the definition implies then
that

K1
( ¼ 0: (13)

Another important consequence of the previous lemma is
Eq. (3), also derived in [16]. We give here for completeness
and self-consistency a sketch of its derivation. This equa-
tion follows from identity

Fab
iðAþÞ ¼ �1

4Rab
cd�þi

cd ; (14)

where Rabcd is the Riemann tensor and �þi ¼ �ijke
j ^

ek þ i2e0 ^ ei, which can be derived using Cartan’s struc-
ture equations. A simple algebraic calculation using the
null tetrad formalism (see for instance [25], page 43) with
the null tetrad of Lemma 1, and the definitions �2 ¼
Cabcd‘

amb �mcnd and �11 ¼ Rabð‘anb þma �mbÞ=4, where
Rab is the Ricci tensor and Cabcd the Weyl tensor, yields

F(ab
i ¼

�
�2 ��11 � R

24

�
�i
( ; (15)

where �i ¼ Re½�þi� ¼ �ijke
j ^ ek. An important point

here is that the previous expression is valid for any two
sphere S2 embedded in space-time in an adapted null tetrad
where ‘a and na are normal to S2. However, in the special
case where S2 ¼ H (where H ¼ � \M with � a type I
isolated horizon) it follows from spherical symmetry that
ð�2 ��11 � R

24Þ ¼ C with C a constant on the horizon H.

Moreover, in the gauge defined in the statement of
Lemma 1, the only nonvanishing component of the pre-

3In our convention the soð3Þ ! R3 isomorphism is defined by

i ¼ � 1

2 �
i
jk


jk which implies that Fi ¼ dAi þ 1
2 �

i
jkA

j ^ Ak

and dA

i ¼ d
i þ �ijkA

j ^ 
k.
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vious equation is the i ¼ 1 component for which (using
Lemma 1) we get

dA1þ ¼ C�; (16)

with � the area element of H. Integrating the previous
equation on H one can completely determine the constant
C, namely

C ¼
�
�2 ��11 � R

24

�
¼ � 2�

aH
; (17)

from where Eq. (3) immediately follows.
Lemma 2: For type I isolated horizons

Kj
( ^ Kk

( �ijk ¼ c0
2�

aH
�i
( ; (18)

for some constant c0. One can choose a representative from
the equivalence class [‘] of null normals to the isolated
horizon in order to fix c0 ¼ 1 by making use of the trans-
lation symmetry of IH along ‘. By studying the stationary
spherically symmetric back hole solutions one can show
that this corresponds to the choice where the surface grav-
ity of the IH matches the stationary surface gravity (see the
Appendix A).

Proof: In order to simplify the notation all free indices
associated with forms that appear in this proof are pulled
back to H (this allows us to drop the double arrows from
equations). In the frame of Lemma 1, where e1 is normal to

H, the only nontrivial component of the equation we want
to prove is the i ¼ 1 component, namely:

KA ^ KB�AB ¼ c0
2�

aH
�1; (19)

where A, B ¼ 2, 3 and �AB ¼ �1AB. Now, in that gauge, we
have that KA ¼ cABe

B for some matrix of coefficients cAB.
Notice that the left-hand side of the previous equation
equals detðcÞeA ^ eB�AB. We first prove that detðcÞ is
time independent, i.e. that ‘ðdetcÞ ¼ 0. We need to use
the isolated horizon boundary condition

½L‘; Db�va ¼ 0 va 2 Tð�Þ; (20)

where Da is the derivative operator determined on the
horizon by the Levi-Civita derivative operator ra. One
important property of the commutator of two derivative
operators is that it also satisfies the Leibnitz rule (it is itself
a new derivative operator). Therefore, using the fact that
the null vector na is normalized so that ‘ � n ¼ �1 we get

0 ¼ ½L‘; Db�‘ana ¼ na½L‘; Db�‘a þ ‘a½L‘; Db�na
) ‘a½L‘; Db�na ¼ 0; (21)

where we have also used that ‘a 2 Tð�Þ. Evaluating the
equation on the right-hand side explicitly, and using the
fact that L‘n ¼ ‘⌟dnþ dð‘⌟nÞ ¼ 04 we get

0 ¼ ‘a½L‘; Db�na ¼ ‘aL‘ðDbnaÞ ¼ � 1ffiffiffi
2

p ‘aL‘ðDb½e1a þ e0a�Þ

¼ 1ffiffiffi
2

p ‘aL‘ð!1
b�e

�
a þ!0

b�e
�
a Þ ¼ � 1ffiffiffi

2
p ‘aL‘ð!10

b ½e0a þ e1a�Þ þ 1ffiffiffi
2

p ‘aL‘ð!1
bAe

A
a þ!0

bAe
A
a Þ

¼ ‘aL‘ð!10
b Þna;

where in the second line we have used the fact that Dbe
�
a ¼ �!�

b�e
�
a plus the fact that as L‘qab ¼ 0 the Lie derivative

L‘e
A ¼ ��ABeB for some � (moreover, one can even fix � ¼ 0 if one wanted to by means of internal gauge trans-

formations). Then it follows that

L ‘K
1 ¼ 0; (22)

a condition that is also valid for the so-called weakly isolated horizons [17]. A similar argument to the one given in
Eq. (21)—but now replacing ‘a by eaB 2 Tð�Þ for B ¼ 2, 3—leads to

0 ¼ eaB½L‘; Db�na ¼ eaBL‘ðDbnaÞ ¼ � 1ffiffiffi
2

p eaBL‘ðDb½e1a þ e0a�Þ

¼ 1ffiffiffi
2

p eaBL‘ð!1
b�e

�
a þ!0

b�e
�
a Þ ¼ � 1ffiffiffi

2
p eaBL‘ð!10

b ½e0a þ e1a�Þ þ 1ffiffiffi
2

p eaBL‘ð!1
bAe

A
a þ!0

bAe
A
a Þ

¼ ffiffiffi
2

p
eaBL‘ð!0

bAe
A
a Þ ¼

ffiffiffi
2

p ½L‘ð!0B
b Þ þ ��BA!0A

b �;

4Here we used that dn ¼ 0 which comes from the restriction to good cuts in the definition of Sec. II. More precisely, if one
introduces a coordinate v on � such that ‘a@av ¼ 1 and v ¼ 0 on some leaf of the foliation, then it follows—from the fact that ‘ is a
symmetry of the horizon geometry ðq;DÞ, and the fact that the horizon geometry uniquely determines the foliation into good cuts—that
v will be constant on all the leaves of the foliation. As n must be normal to the leaves one has n ¼ �dv, whence dn ¼ 0.
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where, in addition to previously used identities, we have
made use of Lemma 1, Eq. (7). The previous equations
imply that the left-hand side of Eq. (19) is Lie dragged
along the vector field ‘, and since�i is also Lie dragged (in
this gauge), all this implies that

L ‘ðdetðcÞÞ ¼ ‘ðdetðcÞÞ ¼ 0: (23)

Now we must use the rest of the symmetry group of type I
isolated horizons. We denote by ji 2 TðHÞ (i ¼ 1, 2, 3) the
three Killing vectors corresponding to the SOð3Þ symmetry
group of type I isolated horizons. Spherical symmetry of
the horizon geometry ðq;DÞ implies

L jiq ¼ 0 and ½Lji ; Db�va ¼ 0 8 va 2 Tð�Þ;
(24)

which, through similar manipulations as the one used
above, lead to

jiðdetcÞ ¼ 0 (25)

which completes the prove that detc is constant on �. We
can now introduce the dimensionless constant 2�c0 :¼
aH detðcÞ. Finally one can fix c0 ¼ 1 by choosing the
appropriate null generator from the equivalence class [‘].

j

IV. THE CONSERVED PRESYMPLECTIC
STRUCTURE

In this section we show in detail how the IH boundary
condition implies the appearance of an SUð2Þ Chern-
Simons boundary term in the symplectic structure describ-
ing the dynamics of type I isolated horizons. This result is
key for the quantization of the system described in
Sec. VII.

A. The action principle

The conserved presymplectic structure in terms of
Ashtekar variables can be easily obtained in the covariant
phase space formalism. The action principle of general
relativity in self-dual variables containing an inner bound-
ary satisfying the IH boundary condition (for asymptoti-
cally flat space-times) takes the form

S½e; Aþ� ¼ � i

�

Z
M

�þ
i ðeÞ ^ FiðAþÞ

þ i

�

Z
�1

�þ
i ðeÞ ^ Aiþ; (26)

where �þ
i ðeÞ ¼ �ijke

j ^ ek þ i2e0 ^ ei and Aiþ is the self-

dual connection, and a boundary contribution at a suitable
time cylinder �1 at infinity is required for the differenti-
ability of the action. No boundary term is necessary if one
allows variations that fix an isolated horizon geometry up
to diffeomorphisms and Lorentz transformations. This is a
very general property and we shall prove it in the next

section as we need a little bit of notation that is introduced
there.
The first variation of the action yields

�S½e; Aþ� ¼ �i

�

Z
M

��þ
i ðeÞ ^ FiðAþÞ � dAþ�

þ
i ^ �Aiþ

þ dð�þ
i ^ �AiþÞ þ

i

�

Z
�1

�ð�þ
i ðeÞ ^ AiþÞ;

(27)

from which the self-dual version of Einstein’s equations
follow

�ijke
j ^ FiðAþÞ þ ie0 ^ FkðAþÞ ¼ 0

ei ^ FiðAþÞ ¼ 0 dAþ�
þ
i ¼ 0;

(28)

as the boundary terms in the variation of the action cancel.

B. The classical results in a nutshell

In the following sections a series of technical results are
explicitly proven. Here we give an account of these results.
The reader who is not interested in the explicit proofs can
jump directly to Sec. Vafter reading the present section. In
this work we study general relativity on a space-time
manifold with an internal boundary satisfying the isolated
boundary condition corresponding to type I isolated hori-
zons, and asymptotic flatness at infinity. The phase space of
such a system is denoted by � and is defined by an infinite
dimensional manifold where points p 2 � are given by
solutions to Einstein’s equations satisfying the type I IH
boundary condition. Explicitly a point p 2 � can be pa-
rametrized by a pair p ¼ ð�þ; AþÞ satisfying the field
equations (28) and the requirements of definition II. In
particular fields at the boundary satisfy Einstein’s equa-
tions and the constraints given in Sec. III. Let Tpð�Þ denote
the space of variations � ¼ ð��þ; �AþÞ at p [in symbols
� 2 Tpð�Þ]. Avery important point is that the IH boundary

conditions severely restrict the form of field variations at
the horizon. Thus we have that variations � ¼
ð��þ; �AþÞ 2 Tpð�Þ are such that for the pullback of

fields on the horizon they correspond to linear combina-
tions of SLð2;CÞ internal gauge transformations and dif-
feomorphisms preserving the preferred foliation of �. In
equations, for �: � ! slð2; CÞ and v: � ! TðHÞ we have
that

��þ
Q

¼ ���
þ

Q
þ �v�

þ
Q

;

�A
Q
þ ¼ ��A

Q
þ þ �vA

Q
þ;

(29)

where the arrows denote pullback to �, and the infinitesi-
mal SLð2; CÞ transformations are explicitly given by

���
þ ¼ ½�;�þ�; ��Aþ ¼ �dAþ�; (30)

while the diffeomorphisms tangent to H take the following
form:
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�v�
þ
i ¼ Lv�

þ
i

¼ v⌟dAþ�
þ
i|fflfflfflfflffl{zfflfflfflfflffl}

¼0 ðGaussÞ

þ dAþðv⌟�þÞi � ½v⌟Aþ;�þ�i

�vA
iþ ¼ LvA

iþ ¼ v⌟Fiþ þ dAþðv⌟AþÞi; (31)

where ðv⌟!Þb1���bp�1
� va!ab1���bp�1

for any p form

!b1���bp , and the first term in the expression of the Lie

derivative of �þ
i can be dropped due to the Gauss con-

straint dA�
þ
i ¼ 0.

So far we have defined the covariant phase space as an
infinite dimensional manifold. For it to become a phase
space it is necessary to provide it with a presymplectic
structure. As the field equations, the presymplectic struc-
ture can be obtained from the first variation of the action
(27). In particular a symplectic potential density for gravity
can be directly read off from the total differential term in
(27) [26]. The symplectic potential density is therefore

ð�Þ ¼ �i

�
�þ

i ^ �Aiþ; 8� 2 Tp�; (32)

and the symplectic current takes the form

Jð�1; �2Þ ¼ � 2i

�
�½1�þ

i ^ �2�Aiþ 8�1; �2 2 Tp�:

(33)

Einstein’s equations imply dJ ¼ 0. Therefore, applying
Stokes theorem to the four-dimensional (shaded) region
in Fig. 1 bounded by M1 in the past, M2 in the future, a
timelike cylinder at spacial infinity on the right, and the
isolated horizon � on the left we obtain

Z
M1

�½1�þ
i ^ �2�Aiþ �

Z
M2

�½1�þ
i ^ �2�Aiþ

þ
Z
�
�½1�þ

i ^ �2�Aiþ ¼ 0: (34)

Now it turns out that the horizon integral in this expression
is a pure boundary contribution: the symplectic flux across
the horizon can be expressed as a sum of two terms
corresponding to the two-spheres H1 ¼ � \M1 and H2 ¼
� \M2. Explicitly (see Proposition 1 proven below), the
symplectic flux across the horizon � factorizes into two
contributions on @� given by SUð2Þ Chern-Simons pre-
symplectic terms according to

Z
�
2�½1�þ

i ^ �2�Aiþ ¼ aH
2�

�Z
H2

�
Z
H1

�
�½1Aþi ^ �2�Aiþ:

(35)

Thus

Z
M1

2�½1�þ
i ^ �2�Aiþ � aH

2�

Z
H1

�½1Aþi ^ �2�Aiþ

¼
Z
M2

2�½1�þ
i ^ �2�Aiþ � aH

2�

Z
H2

�½1Aþi ^ �2�Aiþ

(36)

which implies that the following presymplectic structure is
conserved:

i��Mð�1; �2Þ ¼
Z
M
2�½1�þ

i ^ �2�Aiþ

� aH
2�

Z
H
�½1Aþi ^ �2�Aiþ; (37)

or in other words is independent ofM. The presence of the
boundary term in the presymplectic structure might seem
at first sight peculiar; however, we will prove in the follow-
ing section that the previous symplectic structure can be
written as

��Mð�1; �2Þ ¼
Z
M
2�½1�i ^ �2�Ki; (38)

where we are using the fact that, in the time gauge where e0

is normal to the space slicing, �þi ¼ Re½�þi� ¼ �i when
pulled back on M. The previous equation is nothing else
but the familiar presymplectic structure of general relativ-
ity in terms of the Palatini �� K variables. In essence the
boundary term arises when connection variables are used
in the parametrization of the gravitational degrees of
freedom.
Finally, as shown in Sec. IVD, the key result for the

quantization of type I IH phase space: the presymplectic
structure in Ashtekar-Barbero variables takes the form

���Mð�1; �2Þ ¼
Z
M
2�½1�i ^ �2�Ai � aH

�ð1� �2Þ
�

Z
H
�1Ai ^ �2A

i: (39)

The above equation is the main result of the classical
analysis of this paper. It shows that the conserved presym-
plectic structure of type I isolated horizons acquires a
boundary term given by an SUð2Þ Chern-Simons presym-
plectic structure when the unconstrained phase space is
parametrized in terms of Ashtekar-Barbero variables. In
the following section we prove this equation.

On the absence of boundary term on the internal
boundary

Before getting involved with the construction of the
conserved presymplectic structure let us come back to
the issue of the differentiability of the action principle. In
the isolated horizon literature it is argued that the IH
boundary condition guarantees the differentiability of the
action principle without the need of the addition of any
boundary term (see [19]). As we show here, this property is
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satisfied by more general kind of boundary conditions. As
mentioned above, the allowed variations are such that the
IH geometry is fixed up to diffeomorphisms of � and
gauge transformations. This is enough for the boundary
term arising in the first variation of the action (26) to
vanish. The boundary term arising on� upon first variation
of the action is

Bð�Þ ¼ � i

�

Z
�
�i ^ �Ai: (40)

First let us show that Bð��Þ ¼ 0 for �� as given in (30). We
get

Bð��Þ ¼ i

�

Z
�
�i ^ dA�

i

¼ � i

�

Z
�
ðdA�iÞ�i �

Z
@�

�i�
i ¼ 0; (41)

where we integrated by parts in the first identity, the first
term in the second identity vanishes due to Eisntein’s
equations while the second term vanishes due to the fact
that fields are held fixed at the initial and final surfaces M1

and M2 and so � ¼ 0 when evaluated at @�. Similarly we
can prove that Bð�vÞ ¼ 0 for �v as given in (31) with (this
is the only difference) v 2 Tð�Þ. We get

Bð�vÞ ¼ � i

�

Z
�
�i ^ ðv⌟FiðAÞ þ dAðv⌟AiÞÞ

¼ � i

�

Z
�
�i ^ ðv⌟FiðAÞÞ þ i

�

Z
�
dA�iðv⌟AiÞ

þ
Z
@�

�iðv⌟AiÞ ¼ 0; (42)

where in the last line the first and second terms vanish due
to Einstein’s equations, and the last term vanishes because
variations are such that the vector field v vanishes at @�.
Notice that we have not made use of the IH boundary
condition.

C. The presymplectic structure in self-dual variables

In this section we prove a series of propositions implying
that the presymplectic structure of type I isolated horizons
is given by Eq. (37). In addition, we will prove that the
symplectic structure is real and takes the simple form (38)
in terms of Palatini variables.

Proposition 1: The symplectic flux across a type I iso-
lated horizon � factorizes into boundary contributions at
H1 ¼ � \M1 and H2 ¼ � \M2 according toZ

�
�½1�þ

i ^ �2�Aiþ ¼ aH
2�

�Z
H2

�
Z
H1

�
�½1Aþi ^ �2�Aiþ:

(43)

Proof: On � all variations are linear combinations of
SLð2; CÞ transformations and tangent diffeos as stated in
(29)–(31).

� ¼ �� þ �v

for �: � ! slð2; CÞ and v: � ! TðHÞ. Let us start with
SLð2;CÞ transformations. Using (30) we get

i���ð��; �Þ ¼
Z
�
½�;��i ^ �Aiþ þ ��i ^ dAð�Þi

¼
Z
�
��i�ðdA�iÞ þ dð��i�

iÞ

¼
Z
@�

��i�i ¼ � aH
2�

Z
@�

�Fiþ�i

¼ � aH
2�

Z
@�

dAð�AiþÞ�i

¼ � aH
2�

Z
@�

�Aiþ ^ dA�i

¼ aH
2�

Z
@�

�Aiþ ^ ��Ai; (44)

where in the first line we used the equations of motion
dA�

i ¼ 0 and in the second line we used the IH boundary
condition (3). We have therefore shown that

i���ð��; �Þ ¼ � aH
2�

Z
@�

��Aþi ^ �Aiþ:

Similarly, for diffeomorphisms we first notice that (31)
implies that

�v ¼ �?
v þ ��ðA;vÞ;

where �ðA; vÞ ¼ v⌟Aþ and the explicit form of �?
v is

defined as

�?
v�i ¼ dAðv⌟�Þi; �?

vA
iþ ¼ v⌟Fiþ:

We have that

i���ð�?
v; �Þ ¼

Z
�
dAðv⌟�Þi ^ �Aiþ � ��i ^ ðv⌟FiþÞ

¼
Z
�
dððv⌟�Þi ^ �AiþÞ

þ ðv⌟�Þi ^ dAð�AiþÞ � ��i ^ ðv⌟FiþÞ
¼

Z
�
dððv⌟�Þi ^ �AiþÞ þ ðv⌟�Þi ^ �Fiþ

� ��i ^ ðv⌟FiþÞ
¼

Z
�
dððv⌟�Þi ^ �AiþÞ þ �ð�i½v⌟FiðAþÞ�Þ

¼
Z
@�
ðv⌟�þÞi ^ �Aiþ

¼ � aH
2�

Z
@�

�?
vA

iþ ^ �Aiþ; (45)

where in the third line we used the vector constraint
�i½v⌟FiðAþÞ� ¼ 0, while in the last line we have used
the equations of motion and Eq. (3). Notice that the calcu-
lation leading to Eq. (44) is also valid for a field dependent
� such as �ðA; vÞ. This plus the linearity of the presym-
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plectic structure leads to

i���ð�v; �Þ ¼ � aH
2�

Z
@�

�vAþi ^ �Aiþ (46)

and concludes the proof of our proposition. j
The previous proposition implies that the presymplectic

structure (37) is indeed conserved by evolution in �. Now
we are ready to state the next important proposition.

Proposition 2: The presymplectic form �Mð�1; �2Þ
given by

i��Mð�1; �2Þ ¼
Z
M
2�½1�þ

i ^ �2�Aiþ

� aH
2�

Z
H
�½1Aþi ^ �2�Aiþ

is independent of M and real. Moreover, the symplectic
structure can be described entirely in terms of variables
K � ImðAþÞ and � taking the familiar form

��Mð�1; �2Þ ¼
Z
M
2�½1�i ^ �2�Ki; (47)

which is manifestly real and has no boundary contribution.
Proof: The independence of the symplectic structure on

M follows directly from Proposition 2 and the argument
presented at the end of the previous section. Now let us
analyze the reality of the presymplectic structure. The
symplectic potential for � written in terms of self-dual
variables is

i��ð�Þ ¼
Z
M
�i ^ �Aiþ � aH

4�

Z
H
Aþi ^ �Aiþ: (48)

Using Aiþ ¼ �i þ iKi we get

��ð�Þ ¼
Z
M
�i ^ �Ki

� i

�Z
M
�i ^ ��i � aH

4�

Z
H
Aþi ^ �Aiþ

�
: (49)

Using a well-known property of the spin connection [27],
and denoting by 0ð�Þ the term in parentheses in the
previous equation, we have

�0ð�Þ �
Z
M
�i ^ ��i � aH

4�

Z
H
Aþi ^ �Aiþ

¼
Z
H
�ei ^ �ei � aH

4�

Z
H
Aþi ^ �Aiþ:

The proposition follows from the fact that �0ð�Þ vanishes
as proven in the following lemma. j

Lemma 3: The phase space one-form �0ð�Þ defined by

�0ð�Þ �
Z
H
�ei ^ �ei � aH

4�

Z
H
Aþi ^ �Aiþ (50)

is closed.
Proof: From the definition of the phase space � given in

Sec. IVB, in particular, from Eqs. (29) we know that

�e
Q
¼ ��e

Q
þ �ve

Q
;

�A
Q
þ ¼ ��A

Q
þ þ �vA

Q
þ:

(51)

Let us denote by

d�0ð�1; �2Þ ¼ �1ð�0ð�2ÞÞ � �2ð�0ð�1ÞÞ
the exterior derivative of �0. For infinitesimal SLð2; CÞ
transformations we have

��e ¼ ½�; e�; ��A ¼ �dA�; (52)

from which it follows

d�0ð�; ��Þ ¼
Z
H
�2�ei ^ ½�; e�i þ aH

2�
�Aþi ^ dA�

i

¼
Z
H
�2�ei ^ ½�; e�i þ aH

2�
�FiðAþÞ�i

¼
Z
H
�ðej ^ ekÞ�i�ijk þ aH

2�
�FiðAþÞ�i

¼
Z
H
�

�
�i þ aH

2�
FiðAþÞ

�
�i ¼ 0; (53)

where in the first line we have integrated by parts, and in
the second line we used the IH boundary condition. The
action of diffeomorphisms tangent to H on the connection
and triad take the following form:

�ve
i ¼ Lve

i ¼ dðv⌟eiÞ þ v⌟dei

�vA
iþ ¼ LvA

iþ ¼ v⌟FiðAþÞ þ dAþðv⌟AiþÞ:
(54)

Now we have

d�0ð�; �vÞ ¼
Z
H
�2�ei ^Lve

i � aH
2�

�Aþi ^LvA
iþ

¼
Z
H
�2�ei ^ dðv⌟eiÞ � 2�ei ^ v⌟dei

� aH
2�

½�Aþi ^ v⌟FiðAþÞ
þ �Aþi ^ dAþðv⌟AiþÞ�

¼
Z
H
�2�ei ^ dðv⌟eiÞ � 2v⌟�ei ^ dei

� aH
2�

½�ðv⌟AþiÞ ^ FiðAþÞ
þ �FiðAþÞ ^ v⌟Aiþ�

¼
Z
H
�2�ðdeiÞ ^ v⌟ei � 2v⌟�ei ^ dei

� aH
2�

�½v⌟Aþi ^ FiðAþÞ�

¼
Z
H
�½v⌟�i ^ �i � v⌟ð�i þ iKiÞ ^ �i� ¼ 0;

(55)

where in addition to integrating by parts and using that
@H ¼ 0, we have used the identity A ^ ðv⌟BÞ � ðv⌟AÞ ^
B ¼ 0 for A a 1-form and B a 2-form in a two-dimensional
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manifold, and Cartan’s structure equation dei þ
�ijk�

jek ¼ 0. In the last line we used Eq. (3), and

Eq. (5)—which implies thatKi�i ¼ 0. j

D. Presymplectic structure in Ashtekar-Barbero
variables

In the previous section (Proposition 2) we have shown
how the presymplectic structure

�Mð�1; �2Þ ¼ 1

�

Z
M
½�1�

i ^ �2Ki � �2�
i ^ �1Ki� (56)

is indeed preserved in the presence of an IH. More pre-
cisely in the shaded space-time region in Fig. 1 one has

�M2
ð�1; �2Þ ¼ �M1

ð�1; �2Þ: (57)

That is, the symplectic flux across the isolated horizon �
vanishes due to the isolated horizon boundary condition
[16]. We will show now, how the very same presymplectic
structure takes the form (39) when written in terms of the
Ashtekar-Barbero connection variables. For this we need to
prove the following lemma:

Lemma 4: The phase space one-form ��
0 ð�Þ defined by

���
0 ð�Þ �

Z
H
�ei ^ �ei � aH

2�ð1� �2Þ
Z
H
Ai ^ �Ai

(58)

is closed.
Proof: from the definition of the phase space (Sec. IVB)

we have

�e
Q
¼ ��e

Q
þ �ve

Q
;

�A
Q
þ ¼ ��A

Q
þ þ �vA

Q
þ:

(59)

Let us first study ��
0 ð��Þ where the infinitesimal SUð2Þ

transformations are explicitly given by

��e ¼ ½�; e�; ��A ¼ �dA�: (60)

We have

�d��
0 ð�; ��Þ ¼

Z
H
�2�ei ^ ½�; e�i þ aH

�ð1� �2Þ�Ai

^ dA�
i

¼
Z
H
�2�ei ^ ½�; e�i

þ aH
�ð1� �2Þ�F

iðAÞ�i

¼
Z
H
�

�
�i þ aH

�ð1� �2ÞF
iðAÞ

�
�i ¼ 0;

(61)

where in the first line we have integrated by parts, and in
the second line we used the IH boundary condition. The
proof that the presymplectic potential vanishes for �v

mimics exactly the corresponding part of the proof of
Lemma3. j
The next step is to write the symplectic structure in terms

of Ashtekar-Barbero connection variables necessary for the
quantization program of LQG. When there is no boundary
the SUð2Þ connection

Ai
a ¼ �i þ �Ki

a (62)

is canonically conjugate to �abc��1�i
bc=4 where � is the

so-called Immirzi parameter. In the presence of a boundary
the situation is more subtle: the symplectic structure ac-
quires a boundary term.
Proposition 3: In terms of Ashtekar-Barbero variables

the presymplectic structure of the spherically symmetric
isolated horizon takes the form

���M ¼
Z
M
2�½1�i ^ �2�Ai

� aH
�ð1� �2Þ

Z
H
�1Ai ^ �2A

i; (63)

where � ¼ 32�G.
Proof: The result follows from the variation of the

presymplectic potential

���ð�Þ ¼
Z
M
�i ^ ð��KiÞ þ ���

0 ð�Þ

¼
Z
M
�i ^ �ð�i þ �KiÞ

� aH
2�ð1� �2Þ

Z
H
Ai ^ �Ai;

which is simply the presymplectic potential leading to the
conserved presymplectic structure in �� K variables [in
Eq. (47)] to which we have added a term proportional to

��
0 ð�Þ; a closed term which does not affect the presym-

plectic structure according to Lemma 4. j
Remark: Notice that one could have introduced a new

connection �Ai ¼ �i þ ��Ki with a new parameter �� inde-
pendent of the Immirzi parameter. The statement of the
previous lemma would have remained true if on the right-
hand side of Eq. (58) one would have replaced � by �� and
Ai by �Ai. Consequently, the presymplectic structure can
also be parametrized in terms of the analog of Eq. (63) with
a boundary term where Ai is replaced by �Ai and � on the
prefactor of the boundary term is replaced by ��. This
implies that the description of the boundary term in terms
of Chern-Simons theory allows for the introduction of a
new independent parameter �� which has the effect of
modifying the Chern-Simons level. This ambiguity in the
description of the boundary degrees of freedom has how-
ever no effect in the value of the entropy.

BLACK HOLE ENTROPY FROM . . .. I ISOLATED HORIZONS PHYSICAL REVIEW D 82, 044050 (2010)

044050-11



E. A side remark on the triad as the boundary degrees
of freedom

Here we show that one can write the presymplectic
structure

�Mð�1; �2Þ ¼ 1

�

Z
M
½�1�

i ^ �2Ki � �2�
i ^ �1Ki� (64)

in a way such that a surface term depends only on the
pullback of the triad field while the bulk term coincides
with the one obtained in the previous section in terms of
real connection variables. In order to do this we rewrite the
symplectic potential as follows:

���ð�Þ ¼
Z
M
�i ^ �ð�KiÞ

¼
Z
M
�i ^ �ð�Ki þ �iÞ �

Z
H
�i ^ ��i

¼
Z
M
�i ^ �Ai þ

Z
H
ei ^ �ei: (65)

As a result the symplectic structure becomes [28] (and
independently [29])

�Mð�1; �2Þ ¼ 1

��

Z
M
½�1�

i ^ �2Ai � �2�
i ^ �1Ai�

þ 2

��

Z
H
�1ei ^ �2e

i: (66)

The previous equation shows that the boundary degrees of
freedom could be described in terms of the pullback of the
triad on the horizon. One could try to quantize the IH
system in this formulation in order to address the question
of black hole entropy calculation. Such a project would be
certainly interesting. However, the treatment is clearly not
immediate as it would require the background independent
quantization of the triad field on the boundary for which
the usual available techniques do not seem to naturally
apply. Nevertheless, the previous equations provide an
interesting insight already at the classical level, as the
boundary symplectic structure, written in this way, has a
remarkable implication for geometric quantities of interest
in the first order formulation. To see this let us take S � H
and �: H ! suð2Þ so that we can introduce the fluxes
�ðS; �Þ according to

�ðS; �Þ ¼
Z
S�H

Tr½���; (67)

where Tr½��� ¼ �ijk�
iej ^ ek. Now (66) implies the

Poisson bracket feiaðxÞ; ejbðyÞg ¼ �ab�
ij�ðx; yÞ from which

the following remarkable equation follows:

f�ðS; �Þ;�ðS0; �Þg ¼ �ðS \ S0; ½�;��Þ: (68)

The Poisson brackets among surface fluxes are nonvanish-
ing and reproduce the suð2Þ Lie algebra. This is an inter-
esting property that we find entirely in terms of classical
considerations using smooth field configurations. How-

ever, compatibility with the bulk fields seems to single
out the treatments of kinematical degrees of freedom in
terms of the so-called holonomy-flux algebra of classical
observables for which flux variables satisfy the exact ana-
log of (68) as described in [30]. This fact strengthens even
further the relevance of the uniqueness theorems [31], as
they assume the use of the holonomy-flux algebra as the
starting point for quantization.

V. GAUGE SYMMETRIES

In this section we rederive the form of the presymplectic
symplectic structure written in Ashtekar-Barbero
variables by means of a gauge symmetry argument. The
idea is to first study the gauge symmetries of the presym-
plectic structure when written in Palatini variables, as in
Eq. (38). We will show that, due to the nature of variations
at the horizon, the boundary term in Eq. (39) is completely
fixed by the requirement that the gauge symmetry content
is unchanged when the presymplectic structure is parame-
trized by Ashtekar-Barbero variables. This argument is
completely equivalent to the content of the previous sec-
tion and was used in [11] as a shortcut construction of the
presymplectic structure for type I isolated horizons in
terms of real connection variables. Another important re-
sult of this section is the computation of the classical
constraint algebra in Sec. VA which is essential for clar-
ifying the quantization strategy implemented in Sec. VIII.
The gauge symmetry content of the phase space � is

implied by the following proposition.
Proposition 4: Phase space tangent vectors ��, �v 2

Tp� of the form

��� ¼ ½�;��; ��K ¼ ½�;K�;
�v� ¼ Lv� ¼ v⌟d�þ dðv⌟�Þ;
�vK ¼ LvK ¼ v⌟dK þ dðv⌟KÞ

(69)

for �: M ! suð2Þ and v 2 VectðMÞ tangent to the hori-
zon, are degenerate directions of �M.
Proof: The proof follows from manipulations very simi-

lar in spirit to the ones used for proving the previous
propositions. We start with the SUð2Þ transformations
��, and we get

��Mð��; �Þ ¼
Z
M
½�;��i ^ �Ki � ��i ^ ½�;K�i

¼
Z
M
�ð�ijk�j�k ^ KiÞÞ ¼ 0; (70)

where we used the Gauss constraint �ijk�
k ^ Ki ¼ 0. In

order to treat the case of the infinitesimal diffeomorphims
tangent to the horizon H it will be convenient to first write
the form of the vector constraint Va in terms of �� K
variables [32]. We have

v⌟V ¼ dKi ^ v⌟�i þ v⌟Kid�i � 0: (71)
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Variations of the previous equation yield

v⌟�V ¼ dð�KÞi ^ v⌟�i þ dKi ^ v⌟��i þ v⌟�Kid�i

þ v⌟Kidð��Þi
¼ v⌟�i ^ dð�KÞi � ��i ^ v⌟dKi þ v⌟d�i ^ �Ki

þ dð��Þiv⌟Ki ¼ 0; (72)

where in the second line we have put all theK’s to the right,
and modified the second and third terms using the identities
A ^ ðv⌟BÞ þ ðv⌟AÞ ^ B ¼ 0 that is valid for any two 2-
forms A and B on a 3-manifold, and A ^ ðv⌟BÞ � ðv⌟AÞ ^
B ¼ 0 for a 1-form A and a 3-form B on a 3-manifold,
respectively. We are now ready to show that �v is a null
direction of �M. Explicitly:

��Mð�v; �Þ ¼
Z
M
ðv⌟d�þ dðv⌟�ÞÞi ^ �Ki � ��i ^ ðv⌟dK þ dðv⌟KÞÞi

¼
Z
M
v⌟d�i ^ �Ki þ dðv⌟�Þi ^ �Ki � ��i ^ v⌟dKi � ��i ^ dðv⌟KÞi

¼
Z
M
v⌟d�i ^ �Ki þ v⌟�i ^ dð�KÞi � ��i ^ v⌟dKi þ dð��Þi ^ v⌟Ki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

v⌟�V¼0

þ
Z
@M

v⌟�i ^ �Ki � ��i ^ v⌟Ki

¼
Z
@M

�ðv⌟�i ^ KiÞ ¼ 0; (73)

where in the last line we have used the identity v⌟A ^ Bþ
A ^ v⌟B ¼ 0 valid for an arbitrary 2-form A and arbitrary
1-form B on a 2-manifold, the fact that v is tangent to H,
and the IH boundary condition Eq. (5) implying�i ^ Ki ¼
0when pulled back onH. j

The previous proposition shows that the IH boundary
condition breaks neither the symmetry under diffeomor-
phisms preserving H nor the SUð2Þ internal gauge sym-
metry introduced by the use of triad variables.

The gauge invariances of the IH system have been made
explicit in the �� K parametrization of the presymplectic
structure. However, due to the results of Propositions 2 and
3, these can also be made explicit in the parametrization of
the presymplectic structure using either self-dual connec-
tion variables or real Ashtekar-Barbero variables. It is in
fact possible to uniquely determine the horizon contribu-
tions to the presymplectic structure in connection variables
entirely in terms of the requirement that the transforma-
tions (69) be gauge invariances of the standard bulk pre-
symplectic contribution plus a suitable boundary term.
More precisely, the requirement of SUð2Þ local invariance
becomes

0 ¼ ���Mð��; �Þ
¼

Z
M
���i ^ �Ai � ��i ^ ��A

i þ ���H

8 � 2 Tpð�Þ; (74)

for an (in principle) unknown horizon contribution to the
presymplectic structure �H. This gives some information
about the nature of the boundary term, namely

� ���H ¼
Z
M
���i ^ �Ai � ��i ^ ��A

i

¼
Z
M
½�;��i ^ �Ai þ ��i ^ dA�

i

¼
Z
M
dð�i��

iÞ � �i�ðdA�iÞ

¼ � aH
�ð1� �2Þ

Z
H
�i�F

iðAÞ

¼ aH
�ð1� �2Þ

Z
H
��Ai ^ �Ai;

where we used the Gauss law �ðdA�Þ ¼ 0, condition (6),
and that boundary terms at infinity vanish. A similar cal-
culation for diffeomorphisms tangent to the horizon gives
an equivalent result. This together with the nature of var-
iations at the horizon [see Eqs. (29)] provides an indepen-
dent way of establishing the results of Proposition 3. This
alternative derivation of the conserved presymplectic
structure was used in [11].

A. On the first-class nature of the IH constraints

The previous equation above can be written as

���ð��; �Þ ¼ �
Z
M
�i�ðdA�iÞ

�
Z
H
�i

�
aH

�ð1� �2Þ�F
i þ ��i

�
; (75)

or equivalently

�ð��; �Þ þ �G½�;A;�� ¼ 0; (76)

where
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G½�;A;�� ¼
Z
M
�iðdA�i=ð��ÞÞ

þ
Z
H
�i

�
aH

���ð1� �2ÞF
i þ 1

��
�i

�
:

(77)

In the canonical framework Eq. (76) implies that local
SUð2Þ transformations �� are Hamiltonian vector fields
generated by the ‘‘Hamiltonian’’ G½�; A;��. It follows
immediately from the definition of Poisson brackets that
the Poisson algebra of G½�; A;�� closes. More precisely,
one has

fG½�;A;��; G½�;A;��g ¼ �ð��; ��Þ ¼ ��Gð�; A;�Þ
(78)

from where we get

fG½�;A;��; G½�; A;��g ¼ Gð½�;��; A;�Þ: (79)

Not surprisingly we get the SUð2Þ Lie algebra a local
SUð2Þ transformation. In the previous section we showed
that these local transformations are indeed gauge trans-
formations. This implies, in the canonical picture, that
canonical variables must satisfy the constraints

Gð�; A;�Þ � 0 8 �: H [M ! suð2Þ: (80)

Now let us look at diffeomorphisms. A calculation based
on the analog of Eq. (74) for an infinitesimal diffeormor-
phism preserving H yields

�ð�v; �Þ þ �V½v; A;�� ¼ 0; (81)

where

V½v; A;�� ¼
Z
M

1

��
½�i ^ v⌟Fi � v⌟AidA�

i�

�
Z
H
v⌟Ai

�
aH

���ð1� �2ÞF
i þ 1

��
�i

�
:

(82)

Finally, a simple calculation as the one leading to (79)
leads to the following first-class constraint algebra

fG½�;A;��; G½�; A;��g ¼ Gð½�;��; A;�Þ;
fG½�; A;��; V½v; A;��g ¼ GðLv�; A;�Þ;
fV½v; A;��; V½w; A;��g ¼ Vð½v;w�; A;�Þ;

(83)

where we have ignored the Poisson brackets involving the
scalar constraint.5 Using � and v with support only on the
horizon H we can now conclude that the IH boundary
condition is first class which justifies the Dirac implemen-
tation that will be carried out in the quantum theory.

VI. THE ZEROTH AND FIRST LAWS OF BH
MECHANICS FOR (SPHERICAL) ISOLATED

HORIZONS

The definition given in Sec. II implies automatically the
zeroth law of BH mechanics as �H is constant on �. In
turn, the first law cannot be tested unless a definition of
energy of the IH is given. Because of the fully dynamical
nature of the gravitation field in the neighborhood of the
horizon this might seem problematic. Of course one can in
addition postulate an energy formula for the IH in order to
satisfy de facto the first law. Fortunately, there is a more
elegant way. This consists of requiring the time evolution
along vector fields ta 2 TðMÞ which are time translations
at infinity and proportional to the null generators ‘ at the
horizon to correspond to a Hamiltonian time evolution
[19]. More precisely, denote by �t: � ! Tð�Þ the phase
space tangent vector field associated with an infinitesimal
time evolution along the vector field ta (which we allow to
depend on the phase space point). Then �t is Hamiltonian
if there exists a functional H such that

�H ¼ �Mð�; �tÞ: (84)

This requirement fixes a family of good energy formula
and translates into the first law of isolated horizons

�EH ¼ �H

�
�aH þ�H�QH þ other work terms; (85)

where we have put the explicit expression of the electro-
magnetic work term where �H is the electromagnetic
potential (constant due to the IH boundary condition) and
QH is the electric charge. The above equation implies that
�H and�H are functions of the IH area aH and charge QH

alone. A unique energy formula is singled out if we require
�H to coincide with the surface gravity of type I stationary
BHs, i.e., those in the Reissner-Nordstrom family:

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 �Q2Þp

2M½Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 �Q2Þp � �Q2
: (86)

Here we can explicitly prove the above statement in
terms of our variables. We shall make here the simplifying
assumption that there are no matter fields, i.e., we work in
the vacuum case. The explicit form of �t is given by

�t� ¼ Lt� ¼ t⌟d�þ dðt⌟�Þ;
�tK ¼ LtK ¼ t⌟dK þ dðt⌟KÞ: (87)

We can now explicitly write the main condition, namely

5Recall that the smearing of the scalar constraints must vanish
on H and hence the full constraint algebra including the scalar
constraint will remain first class.
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16�G�Mð�t; �Þ ¼
Z
M
ðt⌟d�þ dðt⌟�ÞÞi ^ �Ki

� ��i ^ ðt⌟dK þ dðt⌟KÞÞi

¼
Z
M
t⌟d�i ^ �Ki þ dðt⌟�Þi ^ �Ki

� ��i ^ t⌟dKi � ��i ^ dðt⌟KÞi

¼
Z
@M

‘⌟�i ^ �Ki � ��i ^ ‘⌟Ki

¼ �
Z
@M

��i ^ ‘⌟Ki

¼ 2�H�aH þ �EADM; (88)

where we have used the same kind of manipulations used
in Eq. (73) paying special attention to the fact that the
relevant vector field t ¼ ‘ is (at the horizon) no longer
tangent to the horizon cross section, and the fact that the
first term in the third line vanishes due to the IH boundary
condition.6

The condition �Ht ¼ �Mð�t; �Þ is solved by Ht ¼
EADM � EH with

�EH ¼ �H

�
�aH: (89)

Demanding time evolution to be Hamiltonian singles out a
notion of isolated horizon energy which automatically
satisfies, by this requirement, the first law of black hole
mechanics (now extended from the static or locally static
context to the isolated horizon context). The general treat-
ment and derivation of the first law can be found in [19,21].

VII. QUANTIZATION

The form of the symplectic structure motivates one to
handle the quantization of the bulk and horizon degrees of
freedom (d.o.f.) separately. We first discuss the bulk quan-
tization. As in standard LQG [8] one first considers (bulk)
Hilbert spaces H B

� defined on a graph � � M and then

takes the projective limit containing the Hilbert spaces for
arbitrary graphs. Along these lines let us first considerH B

�

for a fixed graph � � M with end points onH, denoted � \
H. The quantum operator associated with � in (6) is

�ab�̂
i
abðxÞ ¼ 16�G�

X
p2�\H

�ðx; xpÞĴiðpÞ; (90)

where ½ĴiðpÞ; ĴjðpÞ� ¼ �ijkĴ
kðpÞ at each p 2 � \H.

Consider a basis of H B
� of eigenstates of both Jp � Jp as

well as J3p for all p 2 � \H with eigenvalues @2jpðjp þ 1Þ
and @mp, respectively. These states are spin network states,

here denoted jfjp; mpgn1; � � �i, where jp and mp are the

spins and magnetic numbers labeling the n edges punctur-
ing the horizon at points xp (other labels are left implicit).

They are also eigenstates of the horizon area operator âH

âHjfjp; mpgn1; � � �i ¼ 8��‘2p
Xn
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
� jfjp; mpgn1; � � �i:

Now substituting the expression (90) into the quantum
version of (6) we get

� aH
�ð1� �2Þ �

abF̂i
ab ¼ 16�G�

X
p2�\H

�ðx; xpÞĴiðpÞ:

(91)

As wewill show now, the previous equation tells us that the
surface Hilbert space H H

�\H that we are looking for is

precisely the one corresponding to (the well-studied) CS
theory in the presence of particles. More precisely, con-
sider the SUð2Þ Chern-Simons action

SCS½A� ¼ �aH
32�2G�ð1� �2Þ

Z
�
Ai ^ dAi þ 1

3
Ai ^ ½A; A�i;

to which we couple a collection of particles by adding the
following source term:

Sint½A;	1 � � �	n�

¼ Xn
p¼1


p

Z
cp

tr½�3ð	�1
p d	p þ	�1

p A	pÞ�;

where cp � � are the particle worldlines, 
p coupling

constants, and 	p 2 SUð2Þ are group valued d.o.f. of the

particles. The particle d.o.f. being added will turn out to
correspond precisely to the d.o.f. associated with the bulk

ĴðpÞi appearing in (90). The horizon and bulk will then be
coupled by identifying these d.o.f. The gauge symmetries
of the full action are

A ! gAg�1 þ gdg�1; 	p ! gðxpÞ	p; (92)

where g 2 C1ð�; SUð2ÞÞ, and
	p ! 	p expð��3Þ; (93)

where � 2 C1ðcp; ½0; 2��Þ.
In order to perform the canonical analysis we assume

that 	pðrÞ ¼ expð�r�p��Þ (� ¼ 1, 2, 3). Under the left

action of the group we have

expð��e�eÞ	pðrÞ ¼ 	pðfðr; �ÞÞ (94)

for a function fðr; �Þ whose explicit form will not play any
role in what follows. The infinitesimal version of the

6This follows from Eqs. (5), (A15), and (A18) implying that

‘⌟�i ^ �Ki ¼ �e�e3 ^ �

�
e2

ffiffiffiffiffiffiffi
2�

aH

s �
þ e�e2 ^ �

�
e3

ffiffiffiffiffiffiffi
2�

aH

s �

¼ e�
� ffiffiffiffiffiffiffi

2�

aH

s
�ðe2 ^ e3Þ þ 2e2 ^ e3�

� ffiffiffiffiffiffiffi
2�

aH

s ��
:

Integrating the previous expression on the horizon gives zero.
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previous action is

� �e	pðrÞ ¼
@	p

@r�
@f�

@�� : (95)

If we define the (spin) momentum Sip as

Sip ¼ ��r
�

@f�

@�i ; (96)

where �r
� are the conjugate momenta of r� then it is easy

to recover the following simple Poisson brackets:

fS�p;	p0 g ¼ ���	p�pp0 fS�p; S�p0 g ¼ ����S
�
p�pp0 ;

(97)

where the last equation follows from the Jacobi identity.
Explicit computation shows that Sip ¼ 
p Tr½�i	p�3	

�1
p �.

Therefore, we have three primary constraints per particle

�iðSp;	pÞ � Sip � 
p Tr½�i	p�3	
�1
p � � 0: (98)

The primary Hamiltonian is simply given by

HðfSpg; f	pgÞ ¼
X
p

�p
i �

iðSp;	pÞ:

The requirement that the constraints be preserved by the
time evolution reads

f�iðSp;	pÞ; Hg � ��ij
k Tr½�i	p�3	

�1
p ��j

p (99)

and the constraint algebra is

f�iðSp;	pÞ;�jðSp0 ;	p0 Þg � �ij
kð�kðSp;	pÞ

� 
p Tr½�i	p�3	
�1
p �Þ�pp0 :

If we write �p ¼ �p
? þ �p

k , where �p
? is the component

normal to 	p�3	
�1
p while �p

k is the parallel one, Eqs. (99)

completely fix the Lagrange multipliers �p
?. This means

that, per particle, two (out of three) constraints are second
class. The fact that �p

k remains unfixed by the equations of

motion implies the presence of first-class contraints which
are in fact given by

Sp � Sp � 
2
p � 0: (100)

This constraint generates rotations 	 ! exp��3	 which
conserve the quantity Tr½�i�3	�1�. Now, the fact that there
are second class constraints implies that in order to quan-
tize the theory one has to either work with Dirac brackets,
solve the constraints classically before quantizing, or pa-
rametrize the phase space in terms of Dirac observables. In
this case the third option turns out to be immediate. The
reason is that the Sp turn out to be Dirac observables of the

particle system as far as the constraints (98) are concerned,
namely

fSip;�jðSp0 ;	p0 Þg ¼ �ijk�kðSp;	pÞ�pp0 � 0: (101)

This implies that the Poisson bracket relations (97) remain

unchanged when one replaces the brackets f; g by Dirac
brackets f; gD. Because of this fact and for notational
simplicity we shall keep using the standard Poisson bracket
notation.
In summary, the phase space of each particle is

T	ðSUð2ÞÞ, where the momenta conjugate to 	p are given

by Sip satisfying the Poisson bracket relations

fSip;	p0 g ¼ ��i	p�pp0 and fSip; Sjp0 g ¼ �ijkS
k
p�pp0 :

(102)

Explicit computation shows that Sip þ

ptr½�i	p�

3	�1
p � ¼ 0 are primary constraints (two of

which are second class). In the Hamiltonian framework
we use� ¼ H � R, and the symmetries (92) and (93) arise
from (and imply) the following set of first-class constraints
on H:

� aH
�ð1� �2Þ �

abFabðxÞ ¼ 16�G�
Xn
p¼1

�ðx; xpÞSp;

(103)

Sp � Sp � 
2
p ¼ 0: (104)

The first constraint tells us that the level of the Chern-
Simons theory is7

k � aH=ð4�‘2p�ð1� �2ÞÞ; (105)

and that the curvature of the Chern-Simons connection
vanishes everywhere on H except at the position of the
defects where we find conical singularities of strength
proportional to the defects’ momenta.
The theory is topological which means in our case that

nontrivial d.o.f. are only present at punctures. Note that due

to (102) and (104) the 
p are quantized according to 
p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spðsp þ 1Þ

q
where sp is a half integer labeling a unitary

irreducible representation of SUð2Þ.
From now on we denote H CSðs1 . . . snÞ the Hilbert

space of the CS theory associated with a fixed choice
of spins sp at each puncture p 2 � \H. This will be a

proper subspace of the ‘‘kinematical’’ Hilbert space
H CS

kinðs1 . . . snÞ :¼ s1 
 � � � 
 sn. In particular there is an

important global constraint that follows from (103) and the
fact that the holonomy around a contractible loop that goes
around all particles is trivial. It implies

H CSðs1 . . . snÞ � Invðs1 
 � � � 
 snÞ: (106)

Moreover, the above containment becomes an equality in
the limit k � aH=ð4�‘2p�ð1� �2ÞÞ ! 1 [33], i.e. in the

large BH limit. In that limit we see that the constraint (103)

7If we use the connection �Ai introduced in the remark below
(63) then the level takes the form k � aH=ð4�‘2p�ð1� ��2ÞÞ.
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has the simple effect of projecting the particle kinematical
states in s1 
 � � � 
 sn into the SUð2Þ singlet.

To make contact with the bulk theory, we first note that
the bulk Hilbert space H B

� can be written

H B
� ¼ M

fjpgp2�\H

H fjpg 
 ð
p2�\HjpÞ (107)

for certain spaces H fjpg, and where, for each p, the gen-

erators ĴðpÞi appearing in (90) act on the representation
space jp. If we now identify ( 
p jp) with the kinematical

Chern-Simons Hilbert space H CS
kinðj1 � � � jnÞ, the JiðpÞ

operators in (91) are identified with the SiðpÞ of (103).
The constraints of the CS theory then restrictH CS

kin toH
CS

yielding

H � ¼ M
fjpgp2\H

H fjpg 
H CSðj1 � � � jnÞ; (108)

as the full kinematical Hilbert space for fixed �.
So far we have dealt with a fixed graph. The Hilbert

space satisfying the quantum version of (6) is obtained as
the projective limit of the spaces H �. The Gauss and

diffeomorphism constraints are imposed in the same way
as in [10,16]. The IH boundary condition implies that lapse
must be zero at the horizon so that the Hamiltonian con-
straint is only imposed in the bulk.

State counting

The entropy of the IH is computed by the formula S ¼
trð�IH log�IHÞ where the density matrix �IH is obtained by
tracing over the bulk d.o.f., while restricting to horizon
states that are compatible with the macroscopic area pa-
rameter aH. Assuming that there exists at least one solution
of the bulk constraints for every state in the CS theory, the
entropy is given by S ¼ logðN Þ, where N is the number
of horizon states compatible with the given macroscopic
horizon area aH. After a moment of reflection one sees that

N ¼ X
n;ðjÞn

1

dim½H CSðj1 � � � jnÞ�; (109)

where the labels j1 � � � jp of the punctures are constrained

by the condition

aH � � � 8��‘2p
Xn
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
� aH þ �: (110)

Similar formulas, with a different k value, were first used in
[14].

Notice that due to (110) we can compute the entropy for
aH � �‘2p (not necessarily infinite). The reason is that the

representation theory of UqðSUð2ÞÞ—describing H CS for

finite k—implies

dim½H CSðj1 � � � jnÞ� ¼ dim½Invð
pjpÞ�; (111)

as long as all the jp as well as the interwining internal spins

are less than k=2 ¼ aH=ð8��ð1� �2Þ‘2pÞ. But for the

Immirzi parameter in the range j�j � ffiffiffi
2

p
this is precisely

granted by (110) according to the lemma below. All this
simplifies the entropy formula considerably. The previous
dimension corresponds to the number of independent states
one has if one models the black hole by a single SUð2Þ
intertwiner!
Lemma 5: The Hilbert spaces H CSðj1 � � � jnÞ of Chern-

Simons theory with level k selected by the restriction

Xn
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
� k

2
(112)

are isomorphic to Inv½ðj1 � � � jnÞ�.
Proof: The Chern-Simons Hilbert space H CSðj1 � � � jnÞ

will be isomorphic to Inv½ðj1 � � � jnÞ� if for instance all
elements of a given basis (of intertwiners) of
Inv½ðj1 � � � jnÞ� if (see for instance [34])

jp � k

2
8 p ¼ 1; . . . ; n (113)

and

�a � k

2
8 a ¼ 1; . . . ; n� 3: (114)

Equation (113) is immediately implied by (112) as the
latter implies

X
p

jp � k

2
: (115)

The condition (114) requires a more precise analysis.
Notice the fact that, being intertwining spins, the �a satisfy
the following set of nested restrictions which imply the
result:

0 � �1 � min½j1 þ j2; j3 þ �2� � j1 þ j2 � k

2
;

0 � �2 � min½j3 þ �1; j4 þ �3� � j1 þ j2 þ j3 � k

2
;

� � �

0 � �n�4 � min½jn�3 þ �n�5; jn�2 þ �n�3� �
Xn�3

p¼1

jp � k

2
;

0 � �n�3 � min½jn�2 þ �n�4; jn þ jn�1� �
Xn�2

p¼1

jp � k

2
;

where in each line we have used (115). j
Remark: An interesting point can be made here as a

further development of the remark below Eq. (63).
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Notice that if we had worked with the connection �Ai ¼ �i

as our boundary field degree of freedom—corresponding to
the choice �� ¼ 0 in the notation of the remark below
(63)—then the boundary Chern-Simons level would be
k ¼ aH=ð4�‘2p�Þ (see footnote 7). This implies that the

condition (113) imposed on representations labeling the
punctures would take the simple form

jp � jmax � aH
8�‘2p�

; (116)

or equivalently

j � jmax such that

að1Þmax ¼ 8�‘2p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmaxðjmax þ 1Þ

q
� 8�‘2p�jmax ¼ aH;

(117)

where að1Þmax is the maximum single-puncture eigenvalue
allowed. Our effective treatment depends on a classical
input: the macroscopic area. One would perhaps hope that
this effective treatment would only allow for states where
the microscopic area is close to aH; unfortunately such a
strong requirement is not satisfied as the allowed eigenval-
ues can be very far away from aH. However, the effective
theory at least forbids quantum states where individual area
quanta are larger than aH. This is a nice interplay between
the classical input and the associated effective quantum
description. Of course this interplay is still qualitatively
valid for the case in which one works with the Ashtekar-
Barbero connection on the boundary (i.e., � ¼ ��).

VIII. CONCLUSION

We have shown that the spherically symmetric isolated
horizon (or type I isolated horizon) can be described as a
dynamical system by a presymplectic form�M that, when
written in the (connection) variables suitable for quantiza-
tion, acquires a horizon contribution corresponding to an
SUð2Þ Chern-Simons theory. There are different ways to
prove this important statement. In [11] we first observed
that SUð2Þ gauge transformations and diffeomorphism
preservingH are not broken by the IH boundary condition.
Moreover, infinitesimal diffeomorphisms tangent to H and
SUð2Þ local transformations continue to be degenerate
directions of �M on shell. This by itself is then sufficient
for deriving the boundary term that arises when writing the
symplectic structure in terms of Ashtekar-Barbero connec-
tion variables. Here we have reviewed this construction in
Sec. V. A result that was not explicitly presented in [11] is
the precise form of the constraint algebra found in
Sec. VA. There we see in a precise way how the canonical
gauge symmetry structure of our system is precisely that of
an SUð2Þ Chern-Simons theory: in particular, at the bound-
ary, infinitesimal diffeomorphisms, preserving H, form a
subalgebra of SUð2Þ gauge algebra, as in the topological
theory.

A different, more direct approach is based on a subtle
fact about the canonical transformation that takes us from
the Palatini ð�i

ab; K
i
aÞ phase space parametrization to the

Ashtekar-Barbero ð�i
ab; A

i
aÞ connection formulation, in the

presence of an internal boundary. In the case of type I
isolated horizons, the term to be added to the symplectic
potential producing the above transformation gives rise to a
boundary contribution that eventually leads to a boundary
Chern-Simons term in the presymplectic structure. This is
the content of Sec. IVD. The boundary Chern-Simons term
appears due to the use of connection variables which in
turn are the ones in terms of which the quantization pro-
gram of loop quantum gravity is applicable.
Finally, at a fundamental level, what actually fixes the

surface term in the symplectic structure is the requirement
that it be conserved in time. The above mentioned proofs
show that the various expressions for the symplectic struc-
ture using different variables are in fact one and the same
symplectic structure. That this symplectic structure is pre-
served in time was proven in Sec. IV.
There is a certain freedom in the choice of boundary

variables leading to different parametrizations of the
boundary degrees of freedom. The most direct description
would appear, at first sight, to be the one defined simply in
terms of the triad field (pulled back on H) along the lines
exhibited in Sec. IVE. Such a parametrization is however
less preferable from the point of view of quantization as
one is confronted to the background independent quantiza-
tion of form fields for which the usual techniques are not
directly applicable. In contrast, the parametrization of the
boundary degrees of freedom in terms of a connection
directly leads to a description in terms of SUð2Þ Chern-
Simons theory which, being a well-studied topological
field theory, drastically simplifies the problem of quantiza-
tion. However, such a description comes with the freedom
of the introduction of an extra dimensionless parameter ��
[as pointed out in the remark below Eq. (63)]. Such an
appearance of extra parameters is very much related to
what happens in the general context of the canonical for-
mulation of gravity in terms of connections (see the
Appendix in [35]). Therefore, this observation is by no
means a new feature proper of IHs. The existence of this
extra parameter has a direct influence on the value of the
Chern-Simons level; however, the value of the entropy is
independent of this extra parameter [36].
Note that no d.o.f. is available at the horizon in the

classical theory as the IH boundary condition completely
fixes the geometry at � [the IH condition allows a single
(characteristic) initial data once aH is fixed (see Fig. 1)].
Nevertheless, nontrivial d.o.f. arise as would be gauge
d.o.f. upon quantization. These are described by SUð2Þ
Chern-Simons theory coupled to (an arbitrary number of)
defects through a dimensionless parameter proportional to

4�ð1� �2Þaj=aH, where aj ¼ 8�‘2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

is the basic

quantum of area carried by the defect. These would be
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gauge excitations are entirely responsible for the entropy in
this approach.8

We obtain a remarkably simple formula for the horizon
entropy: the number of states of the horizon is simply given
in terms of the (well-studied) dimension of the Hilbert
spaces of Chern-Simons theory with punctures labeled by
spins. In the large aH limit the latter is simply equal to the
dimension of the singlet component in the tensor product
of the representations carried by punctures. In this limit the
black hole density matrix �IH is the identity on Invð
pjpÞ
for admissible jp. Similar counting formulas have been

proposed in the literature [14,38]. Our derivation from first
principles clarifies these previous proposals.

Remarkably, the counting of states necessary to compute
the entropy of the above yype I isolated horizons can be
exactly done [39] using the novel counting techniques
introduced in [40]. It turns out to be SBH ¼
�0aH=ð4�‘2pÞ, where �0 ¼ 0:274 067 � � � . However, the
subleading corrections turn out to have the form �S ¼
� 3

2 logaH (instead of the�S ¼ � 1
2 logaH that follows the

classic treatment [10,13]) matching other approaches [14].
This is due to the full SUð2Þ nature of the IH quantum
constraints imposed here. We must mention that the pro-
posal of Kaul and Majumdar [14] is most closely related to
our result. Their intuition was particularly insightful as it
yielded a universal form of logarithmic corrections in
agreement with those found in different quantum gravity
formulations [15]. Our work clarifies the relevance of their
proposal.

In Ref. [16] the classical description of the IH was first
done in terms of the null tetrad formalism. In this case the
null surface defining the horizon provides the natural
structure for a partial gauge fixing from the internal gauge
SLð2;CÞ to Uð1Þ. In this setting one fixes an internal
direction ri 2 suð2Þ and the IH boundary condition (6)
becomes

dV þ 2�

aH
�iri ¼ 0; �ixi ¼ 0; �iyi ¼ 0; (118)

where xi, yi 2 suð2Þ are arbitrary vectors completing an
internal triad. In the quantum theory [10] only the first of
the previous constraints is imposed strongly, while—due to
the noncommutativity of �i in LQG—the other two can
only be imposed weakly, namely, in [10] one has h�ixii ¼
h�iyii ¼ 0. However, this leads to a larger set of admis-
sible states (overcounting). To solve this problem, within
the Uð1Þ model, one would have to solve the two con-

straints �ixi ¼ 0 ¼ �iyi at the classical level first, imple-
menting the reduction also on the pullback of two forms�i

on H. However, this would introduce formidable compli-
cations for the quantization of the bulk degrees of freedom
in terms of LQG techniques. Our SUð2Þ treatment resolves
this problem as now the three components of (6) are first-
class constraints. Dirac implementation leads to a smaller
subset of admissible surface states that are relevant in the
entropy calculation.
We have concentrated in this work on type I isolated

horizons. The natural question that follows from this analy-
sis is whether we can generalize the SUð2Þ invariant treat-
ment in order to include distortion. The classical
formulation and quantization of type II isolated horizons
in the Uð1Þ (gauge fixed) treatment has been studied in
[23]. Work in progress [41] shows that, in the SUð2Þ
invariant formulation, it is possible to include distortion
in a simple way as long as the isolated horizon is non-
rotating (i.e., when Im½�2� ¼ 0). The rotating case is more
subtle but we believe that there are no insurmountable
obstacles to its SUð2Þ invariant treatment (this will be
studied elsewhere).

ACKNOWLEDGMENTS

We thank A. Ashtekar, C. Beetle, E. Bianchi,
K. Krasnov, M. Montesinos, M. Reisenberger, and C.
Rovelli for discussions. This work was supported in part
by the Agence Nationale de la Recherche, Grant No. ANR-
06-BLAN-0050. J. E. was supported by NSF Grant
No. OISE 0601844 and the Alexander von Humboldt
Foundation of Germany, and thanks Florida Atlantic
University for hospitality during his visit there. A. P. was
supported by the l’Institut Universitaire de France. D. P.
was supported by the Marie Curie EU-NCG network.

APPENDIX A: TYPE I ISOLATED HORIZONS:
HORIZON GEOMETRY FROM THE REISSNER-

NORDSTROM FAMILY

The spherically symmetric isolated horizons or type I
isolated horizons are easy to visualize in terms of the
characteristic formulation of general relativity with initial
data given on null surfaces [42]. This observation is very
useful if one is looking for a concrete visualization of the
horizon geometry and properties of the matter fields at the
horizon. In this Appendix we chose to derive the main
properties of type I isolated horizons by studying their
geometry in the context of Einstein-Maxwell theory
(which is general enough for the most relevant applications
of the formalism). An additional motivation for the explicit
approach presented here is its complementarity with more
abstract discussions available in the literature [16–18]. In
the context of Einstein-Maxwell theory, space-times with a
type I IH are solutions to Einstein-Maxwell equations
where Reissner-Nordstrom horizon data are given on a

8More insight on the nature of these degrees of freedom could
be gained by studying simpler models. In [37] a theory with no
local degrees of freedom has been introduced. The attractive
feature of this model is that it admits an (unconstrained) phase
parametrization in terms of the same field content as gravity.
Moreover, one can argue that it contains the minimal structure to
serve as a toy model to study some generic features of the type I
isolated horizon quantization.
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null surface � ¼ S2 � R and suitable free radiation is
given at the transversal null surface for both geometric as
well as electromagnetic degrees of freedom. This allows
one to derive the main equations of IH directly from the
Reissner-Nordstrom geometry as far as we are careful
enough only to use the information that is intrinsic to the
IH geometry.

1. The Reissner-Nordstrom solution in Kruskal-like
coordinates

The Reissner-Nordstrom metric can be written in
Kruskal-like coordinates [25] as

ds2 ¼ �2ðx; tÞð�dt2 þ dx2Þ þ r2ðd2 þ sinðÞd�2Þ;
(A1)

where

�ðx; tÞ ¼ ðr� r�Þ1þb=2e�ar

ar
; (A2)

with a ¼ ðrþ � r�Þ=ð2r2þÞ, b ¼ r2�=r2þ, and the function
rðx; tÞ is determined by the following implicit equation:

FðrÞ ¼ x2 � t2; with FðrÞ ¼ ðr� rþÞe2ar
ðr� r�Þb

: (A3)

The previous Kruskal-like coordinates are valid for the
external region r � rþ. The metric is smooth at the hori-
zon r ¼ rþ which in the new coordinates corresponds to
the null surface x ¼ t. An important identity is

drj� ¼ 2x

F0 ðdx� dtÞ; (A4)

where j� denotes that the equality holds at the horizon �
for which x ¼ t. Here we are interested in the first order
formalism. Thus we are interested in an associated tetrad
eI� with I ¼ 0, 1, 2, 3. It is immediate to verify that a

possible such tetrad is given by

e0 ¼ �ðx; tÞdt; e1 ¼ �ðx; tÞdx;
e2 ¼ rd; e3 ¼ r sinðÞd�:

(A5)

We now want to compute the components of the spin
connection !IJ

a at the horizon. Therefore, we will use
Cartan’s first structure equations deþ! ^ e ¼ 0 at �.
The solution is (all details are given in Sec. A 3)

!01j� ¼ 2x�0

F0�
ðdt� dxÞ; !02j� ¼ � 2x

F0�
d;

!03j� ¼ � 2x

F0�
sinðÞd�; !12j� ¼ � 2x

F0�
d;

!13j� ¼ � 2x

F0�
sinðÞd�; !23j� ¼ � cosðÞd�:

(A6)

At this stage we consider a Lorentz transformation of the
form

	I
J ¼

c s 0 0
s c 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775; (A7)

where c ¼ coshð�ðxÞÞ and s ¼ sinhð�ðxÞÞ. It is immediate
to see that under such transformation the connection above
transforms to

~!01

Q
¼ ��0ðxÞdx; ~!12

Q
¼ �
ðxÞd;

~!02

Q
¼ �
ðxÞd; ~!13

Q
¼ �
ðxÞ sinðÞd�;

~!03

Q
¼ �
ðxÞ sinðÞd�; ~!23

Q
¼ � cosðÞd�; (A8)

where the arrows below the components denote the pull-
back of the one-forms to �, and 
ðxÞ ¼ 2x

F0� expð�ðxÞÞ. We

can obviously chose this Lorentz transformation in order
for 
ðxÞ ¼ 
0 with 
0 an arbitrary constant. We have


0 ¼ 2x

F0�
expð�0ðxÞÞ: (A9)

This can be made compatible with the time gauge by
changing the space-time foliation just at the intersection
with the horizon � so that ~e0 ¼ ð	 � eÞ0 is the new nor-
mal.9 Now we are ready to write the quantities we were
looking for:

K1
( ¼ 0; �3

( ¼ 
0d;

K2
( ¼ �
0d; �2

( ¼ �
0 sinðÞd�;

K3
( ¼ �
0 sinðÞd�; �1

( ¼ cosðÞd�; (A10)

where �i ¼ � 1
2 �

ijk!jk and Ki ¼ !0i. The self-dual con-

nection Aiþ � �i þ iKi and the Ashtekar-Barbero connec-
tion become

A3
(þ ¼ 
0ð�i sinðÞd�þ dÞ; A3

(� ¼ 
0ð�� sinðÞd�þ dÞ;
A2
(þ ¼ 
0ð� sinðÞd�� idÞ; A2

(� ¼ 
0ð� sinðÞd�� �dÞ;
A1
(þ ¼ cosðÞd�; A1

(� ¼ cosðÞd�:

(A11)

9Recently, a similar analysis as the one presented here—and also in [43]—has been done [44]. In that reference the authors derive a
result which is compatible with the above equations in the singular vanishing extrinsic curvature slicing 
0 ¼ 0. Such (null) slicing is
however inconsistent with the canonical formulation that is necessary for the LQG quantization of the bulk degrees of freedom.
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The curvature of the self-dual and Ashtekar-Barbero connections is (when pulled back to the cross sections H)

F3
(þ ¼ 0; F3

(� ¼ 0;

F2
(þ ¼ 0; F2

(� ¼ 0;

F1
(þ ¼ � sinðÞd ^ d�; F1

(� ¼ �ð1� 
2
0½1þ �2�Þ sinðÞd ^ d�:

(A12)

Using that aH ¼ 4�r2 we can write the previous equations
as

Fi
(þ ¼ � 2�

aH
�i
( (A13)

and

Fi
(� ¼ ð1� 
2

0ð1þ �2ÞÞFi
(þ ¼ � 2�ð1� 
2

0ð1þ �2ÞÞ
aH

�i
( :

(A14)

In the following section we will show that 
0 ¼ �1=
ffiffiffi
2

p
defines the frame where the IH surface gravity matches the
stationary black hole one. With this value of 
0, the pre-
vious two equations and Eq. (A10) imply Eqs. (3), (5), and
(6), respectively. For completeness we write the compo-
nents of �IJ

�01

Q
¼ 0;

�02

Q
¼ r�expð�Þdx ^ d;

�03

Q
¼ r�expð�Þ sinðÞdx ^ d�;

�12

Q
¼ r�expð�Þdx ^ d;

�13

Q
¼ r�expð�Þ sinðÞdx ^ d�;

�23

Q
¼ r2 sinðÞd ^ d�;

�3

Q
þ ¼ r�expð�Þdx ^ dþ ir�expð�Þ sinðÞdx ^ d�;

�2

Q
þ ¼ � expð�Þ�r sinðÞdx ^ d�þ ir�expð�Þdx ^ d;

�1

Q
þ ¼ r2 sinðÞd ^ d�; (A15)

where on the right we have written the corresponding self-
dual components.

2. Surface gravity and the value of �0

For stationary black holes, the surface gravity �H is
defined by the equation

‘ara‘
b ¼ �H‘

b; (A16)

where ‘a is the Killing vector field tangent to the horizon.
For isolated horizons there is no unique notion of ‘a. We
shall define ‘a in terms of the tetrad in the usual way with

‘a � ðe1a � e0aÞ=
ffiffiffi
2

p
.10 However, this definition still allows

the freedom associated with the Lorentz transformations
(A7) which send ‘a ! expð��ðxÞÞ‘a. We can fix this
freedom by demanding the surface gravity to match that
of a Reissner-Nordstrom black hole with mass M and
charge Q for which

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 �Q2Þp

2M½Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 �Q2Þp � �Q2
: (A17)

Indeed this choice is the one that makes the zero, and first
law of IH look just as the corresponding laws of stationary
black hole mechanics.
This choice is then physically motivated. In turn this will

fix the value of 
0 in (A14). If we define na � �ðe0a þ
e1aÞ=

ffiffiffi
2

p
then we have that (A16) implies

‘anbra‘
b ¼ ��H;

�1
2‘

aðe0b þ e1bÞraðe1b � e0bÞ ¼ ��H;

‘a!01
a ¼ �H:

(A18)

Notice that after the Lorentz transformation (A7) we have

�H ¼ ‘a!01
a ¼ ��0‘adxa ¼ ��0gab‘adxb

¼ � expð��Þ �ffiffiffi
2

p �0gaxðdta � dxaÞ

¼ expð��Þ �ffiffiffi
2

p �0gxx ¼ �ðexpð��ÞÞ0 �ffiffiffi
2

p gxx

¼ �ðexpð��ÞÞ0 1ffiffiffi
2

p
�

: (A19)

Now we can fix �ðxÞ ¼ �0ðxÞ so that �H takes the
Reissner-Nordstrom value. Recalling Eq. (A9) and using
the above equations, a simple calculation shows that this
happens for


0 ¼ � 1ffiffiffi
2

p ; (A20)

which implies the desired result

Fi
� ¼ 1

2ð1� �2ÞFiþ: (A21)

Notice that

ra‘b ¼ !01
a ‘b; (A22)

and that [according to (A8)] we also have

d!01 ¼ 0: (A23)

10The future pointing null generators of the horizon ‘a are such
that ‘a / ð@=@xÞa þ ð@=@tÞa. This implies that ‘a / dxa � dta
from which we get ‘a ¼ ðe1a � e0aÞ=

ffiffiffi
2

p
and na ¼ �ðe1a þ

e0aÞ=
ffiffiffi
2

p
so that n � ‘ ¼ �1.
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All this implies that L‘!
01 ¼ dð‘⌟!01Þ þ ‘⌟d!01 ¼

d�H ¼ 0 as expected from ½L‘; D� ¼ 0 (general proof in
Lemma 2). In other words, the ‘we have chosen by means
of fixing the boost freedom ‘ ! expð��ðxÞÞ‘ is a member
of the equivalence class [‘] in Definition II.

3. Solving Cartan’s equation

For this we first compute de, namely:

de0 ¼ �0ðx; tÞdr ^ dtj� ¼ 2�0 x
F0 dx ^ dt;

de1j� ¼ 2�0 x
F0 dx ^ dt;

de2j� ¼ 2x

F0 ðdx ^ d� dt ^ dÞ;
de3j� ¼ �r cosðÞd ^ d�

þ 2x

F0 sinðÞðdx ^ d�� dt ^ d�Þ:

(A24)

Now we are ready to explicitly write Cartan’s first structure
equations. They are

0j� ¼ 2�0 x
F0 dx ^ dtþ�!01 ^ dxþ r!02 ^ d

þ r sinðÞ!03 ^ d�;

0j� ¼ 2�0 x
F0 dx ^ dtþ�!01 ^ dtþ r!12 ^ d

þ r sinðÞ!13 ^ d�;

0j� ¼ 2x

F0 ðdx ^ d� dt ^ dÞ þ�!02 ^ dt

þ�!21 ^ dxþ r sinðÞ!23 ^ d�;

0j� ¼ �r cosðÞd ^ d�

þ 2x

F0 sinðÞðdx ^ d�� dt ^ d�Þ
þ�!03 ^ dtþ�!31 ^ dxþ r!32 ^ d:

(A25)

Let us now study the previous equation individually. The
six components of the first, Eq. (A25), become

0j� ¼ dx ^ dt

�
2�0 x

F0 �!01
t �

�
;

0j� ¼ dx ^ dð��!01
 þ!02

x rÞ;
0j� ¼ dx ^ d�ð��!01

� þ!03
x r sinðÞÞ;

0j� ¼ dt ^ dðr!02
t Þ;

0j� ¼ dt ^ d�ð!03
t r sinðÞÞ;

0j� ¼ d ^ d�ð�r!02
� þ!03

 r sinðÞÞ:

(A26)

The six components of the second, Eq. (A25), become

0j� ¼ dx ^ dt

�
2�0 x

F0 þ!01
x �

�
;

0j� ¼ dx ^ dð!12
x rÞ;

0j� ¼ dx ^ d�ð!13
x r sinðÞÞ;

0j� ¼ dt ^ dð��!01
 þ r!12

t Þ;
0j� ¼ dt ^ d�ð��!01

� þ r sinðÞ!13
t Þ;

0j� ¼ d ^ d�ð�r!12
� þ!13

 r sinðÞÞ:

(A27)

The six components of the third, Eq. (A25), become

0j� ¼ dx ^ dtð!02
x �þ!21

t �Þ;

0j� ¼ dx ^ d

�
2
x

F0 �!21
 �

�
;

0j� ¼ dx ^ d�ð�!21
��þ!23

x r sinðÞÞ;

0j� ¼ dt ^ d

�
�2

x

F0 ��!02


�
;

0j� ¼ dt ^ d�ð��!02
� þ r sinðÞ!23

t Þ;
0j� ¼ d ^ d�ð!23

 r sinðÞÞ:

(A28)

Finally, the six components of the fourth, Eq. (A25),
become

0j� ¼ dx ^ dtð!03
x ��!31

t �Þ;
0j� ¼ dx ^ dð�!31

 �þ!32
x rÞ;

0j� ¼ dx ^ d�

�
2
x

F0 sinðÞ �!31
��

�
;

0j� ¼ dt ^ dð�!03
 �þ r!32

t Þ;

0j� ¼ dt ^ d�

�
�2

x

F0 sinðÞ ��!03
�

�
;

0j� ¼ d ^ d�ð�r cosðÞ �!32
� rÞ:

(A29)

At this point we make the following ansatz !
01 ¼ 0,

!�
01 ¼ 0, !x

23 ¼ 0, and !t
23 ¼ 0, from which we get the

solution (A6).
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