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Inhomogeneous loop quantum cosmology: Hybrid quantization of the Gowdy model

L.J. Garay,"** M. Martin-Benito,”" and G. A. Mena Marugan®*

1Departamemo de Fisica Teorica II, Universidad Complutense de Madrid, 28040 Madrid, Spain
2Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
(Received 31 May 2010; published 30 August 2010)

The Gowdy cosmologies provide a suitable arena to further develop loop quantum cosmology, allowing
the presence of inhomogeneities. For the particular case of Gowdy spacetimes with the spatial topology of
a three-torus and a content of linearly polarized gravitational waves, we detail a hybrid quantum theory in
which we combine a loop quantization of the degrees of freedom that parametrize the subfamily of
homogeneous solutions, which represent Bianchi I spacetimes, and a Fock quantization of the inhomo-
geneities. Two different theories are constructed and compared, corresponding to two different schemes
for the quantization of the Bianchi I model within the improved dynamics formalism of loop quantum
cosmology. One of these schemes has been recently put forward by Ashtekar and Wilson-Ewing. We
address several issues, including the quantum resolution of the cosmological singularity, the structure of
the superselection sectors in the quantum system, or the construction of the Hilbert space of physical

states.
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L. INTRODUCTION

In the absence of a full theory of canonical quantum
gravity, it is most instructive to study symmetry-reduced
systems in order to test and develop mathematical tech-
niques that can help in achieving the quantization of gen-
eral relativity, as well as to progress in the understanding of
the physical phenomena emerging in quantum gravity. The
symmetry reduction makes these systems more manage-
able for a complete quantization and facilitates the extrac-
tion of physical predictions. In particular, mimicking the
techniques applied in loop quantum gravity (LQG) [1], a
quantization program for homogeneous models, known as
loop quantum cosmology (LQC) [2], has been developed in
recent years (see, e.g., [3—13]). The so-called polymeric
quantization applied to these systems has interesting physi-
cal consequences. Remarkably, the analog of the classical
cosmological singularity is not present in the quantum
theory and is therefore resolved.

In view of the success of LQC, it is compelling to extend
the application of its techniques to the quantization of
inhomogeneous cosmological systems. Several reasons
motivate this extension. On the one hand, this kind of
models preserves one of the most characteristic features
of the full theory, namely, the fieldlike nature of the de-
grees of freedom. Thus, one would expect that their quan-
tization gives trustable insights about some of the open
questions in LQG which are related to the presence of an
infinite number of degrees of freedom. On the other hand, it
is essential to investigate the role played by inhomogene-
ities in the quantum theory in order to understand the
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physical laws that explain the origin and evolution of the
Universe, and reach in this way realistic predictions that
can be confronted with cosmological observations.
Furthermore, the analysis of the inhomogeneities would
allow us to check the robustness of the results obtained in
homogeneous LQC, in particular, those concerning the
quantum resolution of classical cosmological singularities.

With this aim, we have carried out a complete quantiza-
tion of the linearly polarized Gowdy 7° model [14]. We
have chosen this model because it is the simplest cosmo-
logical system in vacuo which contains inhomogeneities.
Indeed, not only its classical solutions are well known
[15,16], but also their quantization (by more conventional
methods) has deserved much attention since the 70s [17].
Actually, a complete Fock quantization of the deparame-
trized system has been achieved [18], which has been
shown to be essentially unique [19]. Unlike these previous
analyses, which involve standard nonpolymeric tech-
niques, we will discuss here a hybrid quantization that
combines the polymeric procedures of LQC—applied to
the homogeneous sector of the system, namely, the set of
degrees of freedom that describe the subfamily of homo-
geneous solutions of the Gowdy model—with the Fock
quantization of the inhomogeneities. Since the full poly-
meric quantization of the model is an extremely compli-
cated task, we have chosen a more conservative approach,
which explores the effects of the quantum discrete geome-
try underlying LQC only on the homogeneous gravita-
tional sector. A natural treatment for the inhomogeneities
is then a Fock quantization. This approach assumes that
there exists a regime in which the most relevant phe-
nomena emerging from quantum geometry are those af-
fecting the homogeneous subsystem, whereas such effects
are small and can be ignored for the inhomogeneities, even
if the latter may still present a standard (Fock) quantum
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behavior. Although our quantization approach is not com-
pletely derived from LQG, it retains interesting features
associated with the discrete and polymeric nature of the
geometry, declaring a certain type of perturbative hierarchy
on their relevance for different subsectors of the cosmo-
logical system.

As we have commented, the homogeneous sector of the
Gowdy model coincides with the phase space of the
Bianchi I model. It turns out that there exist two different
quantizations of this spacetime in the literature of LQC,
developed in Refs. [11,12], which correspond to two differ-
ent schemes of the so-called improved dynamics prescrip-
tion and that, for brevity, we will denote as schemes A and
B, respectively. In Refs. [20,21], we presented our hybrid
quantization making use of scheme A in the representation
of the homogeneous sector, i.e., applying the quantization
of Ref. [11] (see also Ref. [9]). The main aim of this paper
is to revisit and develop our hybrid quantization by incor-
porating the alternative scheme B, put forward by Ashtekar
and Wilson-Ewing, in the construction of the Bianchi I
representation for the homogeneous sector. We will review
the quantization of Ref. [12], improve and complete some
aspects of the quantization procedure, extend our hybrid
framework to adapt it to the alternative scheme and, finally,
compare the results obtained with the two hybrid
approaches.

With this objective, the constraints present in the model
will be represented by well-defined operators on a (hybrid)
kinematical Hilbert space. These constraints are a global
diffeomorphism constraint, which generates translations in
the circle, and a global Hamiltonian constraint which
couples the homogeneous and inhomogeneous sectors in
a complicated form. As it is typical in the context of LQC,
in both schemes the Hamiltonian constraint operator super-
selects the kinematical Hilbert space—which as a whole is
nonseparable—in separable sectors. In particular, we will
be able to determine the structure of these superselection
sectors for scheme B, which are highly nontrivial and had
not been identified previously (see Ref. [12]). Furthermore,
our Hamiltonian constraint leads in fact to a difference
equation in an internal, strictly positive parameter with
support on semilattices of points with constant separation.
In scheme A, this parameter is the classical global time
used in the Fock quantization to deparametrize the system
[18]. In Refs. [20,21], we showed that the solutions to the
Hamiltonian constraint are determined by the data on the
initial section, namely, the section where that parameter
takes its lowest allowed value. We will see that, in
scheme B, the analogous discrete variable is (up to a
constant factor) the volume of the Bianchi I spacetime
associated with the Gowdy universe, and we will analyze
the resulting structure of the solutions.

Actually, one of the motivations of our work is the
expectation that the quantum field theory should remain
valid on the loop quantized Bianchi I background after
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imposing the quantum constraints, therefore validating the
standard Fock description for the inhomogeneities in the
approximation adopted here. In the hybrid approach for
scheme A, we demonstrated in Refs. [20,21] that the
physical Hilbert space has the expected tensor product
structure: the physical Hilbert space of the Bianchi I model
times a Fock space for the inhomogeneous sector, which is
equivalent to that obtained in Ref. [18]. Hence, we indeed
recover the standard quantum field theory for the inhomo-
geneities. We will discuss whether this continues to be the
case in the new hybrid approach, obtained with the alter-
native quantization scheme for Bianchi I.

Another important motivation, as we have commented,
is the study of the fate of the cosmological singularities in
the quantum theory. We will see that the polymeric quan-
tization of the homogeneous sector, irrespective of the
adopted improved dynamics scheme, is enough to cure
the singularity. This fact endorses the previous results of
singularity resolution obtained in homogeneous LQC.

The rest of the paper is organized as follows: In Sec. II,
we summarize the basic features of the classical Gowdy T
model. In Sec. III, we construct the kinematical Hilbert
space, and represent the elementary operators in both
schemes A and B. In addition, we represent the diffeo-
morphism constraint in the quantum theory. We construct
the Hamiltonian constraint operator in Sec. IV for the two
studied schemes. In Sec. V, we review the structure of the
physical Hilbert space for scheme A. The physical sector
for case B is investigated in Sec. VI. In Sec. VII, we discuss
the main results of this work, and conclude with some
additional remarks. Finally, we include four appendices,
which contain some supplementary technical details.

II. THE REDUCED MODEL

Gowdy models describe globally hyperbolic spacetimes
in vacuo which possess two spacelike commuting Killing
vector fields and whose spatial sections are compact [14].
The simplest case is the Gowdy T° model (i.e., the spatial
topology is that of a three-torus). We will focus our dis-
cussion on the subsystem with linearly polarized gravita-
tional waves. This model satisfies the additional restriction
that the Killing fields be hypersurface orthogonal. Hence,
they can be chosen mutually orthogonal everywhere. Let
d, and d5 be these two axial Killing fields. We may then
describe the spacetime (globally) with coordinates adapted
to these symmetries: {t, 6, o, 8}, with 6, o, § € S'. The
metric components depend only on ¢ and 6. Since they are
periodic in 6, they can be expanded in a Fourier series.

We use the symmetries of the system to fix completely
the gauge freedom associated with the diffeomorphism
constraints in ¢ and 0, the directions defined by the
Killing fields, as explained in Ref. [22]. We further fix all
the gauge freedom associated with the inhomogeneous
(nonzero) modes of the #-momentum constraint and of
the Hamiltonian constraint. The details of this gauge fixing

044048-2



INHOMOGENEOUS LOOP QUANTUM COSMOLOGY: HYBRID ...

can be found in Ref. [21]. At the end of the day, two global
constraints remain in the model: a generator of translations
in the circle, Cy, and a Hamiltonian constraint, C. Except
for these constraints, all the gauge freedom is fixed. The
reduced phase space contains three pairs of ‘‘point-
particle” degrees of freedom, which parameterize the sec-
tor of (spatially) homogenous spacetimes and is therefore
called the homogeneous sector, and all the nonzero modes
of a field and its conjugate momentum, which form the so-
called inhomogeneous sector.

In order to quantize the homogeneous sector with poly-
meric techniques according to LQC, we need to describe it
in terms of Ashtekar variables. The subfamily of homoge-
neous solutions of the Gowdy model, encoded in this sector
as we have mentioned, corresponds to empty Bianchi I
spacetimes with three-torus topology. In a diagonal gauge,
the nontrivial components of the SU(2) gravitational con-
nection and of the densitized triad are c¢;/(27) and
pi/(4m?), respectively, with {c;, p;} = 87Gy8;;and i, j =
0, o, o (see, e.g., [10-12]). Here G is the Newton constant
and vy the Immirzi parameter. For the inhomogeneous
sector we will carry out the Fock quantization presented
in Ref. [18]. With this aim we adopt as basic variables the
creation and annihilation variables which would be natu-
rally associated with a free massless scalar field, (a,,, a},),
where m can be any nonzero integer. In Appendix A, we
provide the form of the metric in terms of the chosen
variables. The constraints are given by [21]

Co= > mlaya, —a*,a_,) =0, 2.1
m=1
C
Co=—0= =0, (2.2)
|Popopsl
2
Co = —=lcopocops + copocsps + coPuCsPs)
y
+ 2
+ G[(C"""’Z—C‘“”ﬁ)Hf;t + 327 p(,ng:I, 2.3)
Y pol
1
HE, = n§0—2l l[za:;am +a,a_, +aat,] (2.4)
HS = Z |mlaj,a,,. (2.5)

m#0

The first line of Cg is just the standard form of the
densitized Hamiltonian constraint of the Bianchi I model
in Ashtekar variables (see, e.g., [10]). The inhomogeneities
are present in the term H, ¢ which is the Hamiltonian
corresponding to a free massless scalar field, and in the
term Hiit, which represents an interaction term quadratic in
the field. Note that the inhomogeneities are coupled with
the homogeneous sector in a complicated way, what makes
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the hybrid quantization of this from

straightforward.

system far

III. THE KINEMATICAL HILBERT SPACE

The kinematical Hilbert space of this reduced Gowdy
model is the tensor product of the kinematical Hilbert
spaces of the two sectors.

A. The homogeneous sector

In order to construct the kinematical Hilbert space of the
homogeneous sector, we consider the two different poly-
meric quantizations of the Bianchi I model developed in
Refs. [11,12]. The main distinction between them lies in
the way in which the quantization prescription known as
improved dynamics (introduced in Ref. [4] with successful
results in isotropic cosmologies) is adapted to the aniso-
tropic case. Although the quantization of Ref. [11] is well
defined in the considered model with compact spatial
slices, it suffers from some drawbacks in noncompact
situations [10]. This fact motivated the consideration of
an alternative prescription, whose corresponding quantiza-
tion has been recently developed by Ashtekar and Wilson-
Ewing in Ref. [12]. In the following, we will call scheme A
the prescription adopted in Ref. [11], and scheme B that of
Ref. [12].

Let us summarize the main characteristics of both quan-
tizations. The elementary configuration variables are hol-
onomies of connections computed along edges of oriented
coordinate length 277, in the direction i, where u; is any
real number. On the other hand, the elementary momentum
variables are triad fluxes through rectangles orthogonal to
those directions. The configuration algebra is the algebra of
almost periodic functions generated by the matrix elements
of the holonomies, namely, .’Nﬂ/_(cj) = exp(ip c;/2) (no
Einstein summation convention is adopted). We call
Cyls = ®,Cylg; the corresponding vector space, and em-
ploy the ket notation |u;) to denote the states N, (c;) in
the triad representation. The kinematical Hilbert space,
Hyin = ®,H Kini» 18 then the completion of the space
Cylg with respect to the discrete inner product (u,|u}) =
8,.,u for each direction. Hence, the states |u;), which are
eigenstates of the operator p; associated with fluxes, pro-
vide an orthonormal basis of JH Kin ;- In turn, the operators
N ! associated with holonomies produce a shift equal to
w!in the label w; of this basis of states (see Refs. [3,9,11]).
We assume that the action of any operator defined on Cylg
is the identity when acting on the kinematical Hilbert space
of the inhomogeneous sector, which will be introduced
below.

1. Improved dynamics: Schemes A and B

The so-called improved dynamics prescription is based
on the assertion that, because of the existence of a mini-
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mum gap A in the spectrum of the physical area operator in
LQG [4,23], fiducial surfaces cannot be as small as one
wants, but there is a minimum fiducial surface, S,,;,, whose
corresponding physical area is equal to A. As a conse-
quence, the coordinate length of the holonomy along each
edge turns out to exhibit a minimum nonzero value 27 fi;.
Prescription A is derived assuming that S,;,, lying, e.g., in
the j — k plane, is a fiducial square with a minimum
fiducial side determined by 27 i;, whereas according to
prescription B it must be instead a rectangle with minimum
fiducial sides given by 2771 ; and 277 1. Here, and in what
follows, whenever the three indices i, j, and k appear
together, we assume €;;; # 0.

As aresult one gets two different expressions for i;, one
for each prescription, given by [9,10,12]

PPk
Pi

A —= , LT =
ai VA & A
Although these arguments can be considered heuristic
inasmuch as the true relation between full LQG and LQC is
still to be understood, there is a feature of prescription B
(deduced in Ref. [12] following a procedure of this type)
which distinguishes it and has not been realized until now
in the literature. Provided that the fi;’s depend only on
fluxes [i.e., @&; = @;(p;)], because so does the physical
area, prescription B is uniquely determined by the require-
ment that, for all directions i, the exponents jf;c; of the
holonomy elements N, (c;) have a fixed constant Poisson
bracket with the variable

1 : 1 1
Ipil B. G.0)

[Popops|
2777[12,1\/3—’

up to a sign depending on the orientations of the triad
components. Here, Ip = VG is the Planck length. Note
that v is proportional to the volume of the associated
Bianchi I universe. Then, at least at the level of the
Poisson bracket algebra, the introduced requirement can
be understood as the condition that the holonomies pro-
duce a constant shift in the volume.

For any of the prescriptions, and owing to the depen-
dence of f1; on the coefficients of the densitized triad, the

v i=sgn(pyp,ps) (3.2)

elementary operator N 4, generates in fact a state-
dependent nonlinear transformation on the basis of states
| o, o sy = ®;| ;). It is possible to relabel this basis
with affine parameters instead of the labels u;, so that the
transformation generated by N 4, 1s simply a shift in the
labels. Each prescription requires a different affine
reparametrization.

2. Quantum representation in case A

In scheme A, since f; only depends on p;, the three
fiducial directions are not mixed, and we can calculate a
new parameter v;(u;) for each fiducial direction to rename

PHYSICAL REVIEW D 82, 044048 (2010)

the states in our basis, so that the operator N j, generates a
constant shift in the new label v;, as was done in
Refs. [4,9]. The action of the basic operators on the rela-
beled states |vy, v, vs) is given by [9,11]

N oplv)=lv, = 1), (3.3)

p ilvi> = (677’}’112:1\/K)2/35gn(vi)|Ui|2/3|Ui>- (3.4)

3. Quantum representation in case B

Similarly, one can introduce new parameters A; for the
three fiducial directions such that the action of the operator
N i, has only a nontrivial effect on the label A;, whereas it
does not change the other two labels of the state, Aj and Ay
[12]. Remarkably, this effect is not a constant shift any-
more but depends on the values of those two labels.
Nonetheless, as we have commented, there exists a vari-
able v, given in terms of the A;’s by v = 2A4A, A, such
that all the operators N 4, broduce a constant shift on it
(for fixed orientation of the triad components). Therefore,
it is convenient to work, e.g., with the relabeled states
|v, Ay, As). The two A’s are variables which measure the
degree of anisotropy. The representation of the basic op-
erators is determined by [12]

N g v A As) = v = sgn(A,45), A, Ag), (3.5)
2 2/3 v
p(,»lv, Ao /\8> = (47T'ylPl\/K) Sgn(/\u_/\a>4)\(2r)l%
X |‘U, Ao’: )\5>, (36)
. Ay
,’]\ftpmlv, )la., A(s) = |v=* Sgn()\a'v): /\a' * 7 ’ /\5 4
(3.7)

P olv, A, A5) = @my VA Psgn(A,) A2 v, Ay, As).
(3.8)

The actions of N +5, and ps can be obtained from
Egs. (3.7) and (3.8) by interchanging A, and Ag [24].
When we construct the Hamiltonian constraint in Sec. IV,
we will see that states with v = 0—and a fortiori with
vanishing A, or As—are removed from our kinematical
Hilbert space, and therefore the above representation is
well defined. Unlike in case A, note that all directions are
mixed now, and the operators N 4, and N g, G #F)) do
not commute.

B. The inhomogeneous sector

For this sector we employ a Fock quantization, promot-
ing the variables a,, and a}, to annihilation and creation
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operators @, and 4, respectively, such that [4,,, &jh] =
O ,.i- As before, we assume that these operators are the
identity acting on the homogeneous sector. We call S the
vector space whose elements are finite linear combinations
of n-particle states,

(3.9)

|11> = | oo, N_p,N_1, N1, Ny, .. .>,

with ¥, n,, <o, n,, € N being the occupation number
(or number of particles) of the m-th mode. Then, the
symmetric Fock space F is the completion of the space
S with respect to the Fock inner product (1'[11) = &,,,.
Therefore, the n-particle states provide an orthonormal
basis of the Fock space F.

In the totally deparametrized system, this is the unique
Fock quantization in which the field dynamics is unitarily
implemented and that also provides a natural unitary im-
plementation of the gauge group of S' translations [19].

C. Quantum representation of the S! symmetry

Since the generator of translations in the circle, given in
Eq. (2.1), only affects the inhomogeneities, it is the same
for the Gowdy model in both schemes A and B. Employing
the above Fock representation and taking normal ordering,
we obtain its quantum counterpart

(3.10)

The n-particle states annihilated by this operator are those
which satisfy the condition

Z mX,, = 0, Xy =Ny — N_ye

m=>0

(3.11)

They form a dense set of a proper subspace of the Fock
space F that we denote by F,. It is (unitarily equivalent
to) the physical Hilbert space of Ref. [18].

IV. THE HAMILTONIAN CONSTRAINT
OPERATOR

Physical states must also be annihilated by the operator
that represents the (nondensitized) Hamiltonian constraint
[25]. We will carry out a process of densitization that will
allow us to give an equivalent (and more convenient)
description in which physical states will be annihilated
by the densitized version of the Hamiltonian constraint.
Actually, this procedure is also adopted in the quantiza-
tions of Refs. [5,11].

A. Densitization of the Hamiltonian constraint

We define the subspace of zero homogeneous volume
states as the kernel of the homogeneous volume operator

V = ®;4/Ip;| which represents the physical volume of the
(coordinate cell in the) Bianchi I spacetime associated with
the Gowdy cosmology. Let then Cg = Cg; + C; be the
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operator that represents the (nondensitized) Hamiltonian
constraint for the Gowdy model, where C‘BI denotes the
Hamiltonian constraint for the Bianchi I model and C ¢ 18
the term that involves the inhomogeneities. One first con-
structs the operator C‘BI following LQG procedures. When
symmetrizing it, one can always adopt a suitable factor
ordering such that Cp; annihilates the subspace of states
with zero homogeneous volume and leaves its orthogonal
complement invariant. On the other hand, one can con-
struct the other operator C‘§ so that it inherits the same
properties. Therefore, the subspace of states with vanishing
homogeneous volume decouples under the action of the
full Hamiltonian constraint é‘G, and one can then remove it
from the kinematical Hilbert space and restrict the study to
its complement. This complement will be denoted by

Hin ® F, where H g;, is the completion of

C'\lyls = span{|vy, v,, vs); vyv,Us # O}

= span{|v, Ay, Ag); vA,As # O} 4.1)

In the last formula, we have made explicit that only non-
zero values of A, and Ags are allowed, even if this is
implicit in the nonvanishing of v = 2A4A,A5.

In general, nontrivial physical states, which are annihi-
lated by ég, are not normalizable in H ;, ® F. In prin-
ciple, they should belong to a larger space, typically the
algebraic dual of a suitable dense subspace of this kine-

matical Hilbert space, e.g., the tensor product of C’\yis and a
suitable dense subspace of F. We will denote these states
by (]. Actually, they can be transformed into other states
(¢| by the map

—~1/2

- ~ Il
= wi=aly] (42)
which is a bijection in the considered kind of algebraic dual

spaces. Here, the operator [1/V] represents the inverse of

the homogeneous volume and is well defined in C’\yis ®F.
In Appendix B, we provide its explicit form for each of the
schemes A and B. In both cases, the resulting operator is
diagonal in our basis of states, annihilates the zero homo-
geneous volume states and is bounded. Therefore it can be
extended uniquely to the kinematical Hilbert space.

. 1. .
Moreover, its inverse [1/V]  is also well defined via the
spectral theorem once we have restricted the discussion to

the kinematical Hilbert space H g;, ® F, because the dis-

crete spectrum of [1/V] in this space does not contain the
Zero anymore.

The transformed physical states (| are then annihilated
by the (adjoint of the) symmetric operator

—-1/2 -1/2

N 1 ~T1 A A
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It is worth noting that the relation between the Hamiltonian
constraint of the Gowdy model and its densitized version
does not involve the volume of the Gowdy spacetime, but
the volume of the associated Bianchi I spacetime. Hence,
the above operator @G is in fact the quantum counterpart of
the constraint Cg given in Eq. (2.3).

B. Quantum representation of the densitized
Hamiltonian constraint

For both schemes, we start with the (nondensitized)
Hamiltonian constraint of the Bianchi I model C’BI. We
take advantage of the freedom in the factor ordering to get
a representation as convenient as possible. More specifi-
cally, as mentioned above, we adopt a symmetric factor
ordering which has the two following features: i) the same

powers of | p;| appear on the left and right of every term, in
a way such that Cp; decouples the zero homogeneous

volume states; ii) the factors of the type sin(i;c;) sgn(p;)
[where sin(i;c;) = i(j\f_zﬂj — .’f\fzﬂj)/Z], are symme-
trized in the form

L[ sin(fi;c,)sgn(p;) + sen(py) sin(e)]  (44)

As a consequence, our operator Cpy also decouples states
with different orientations of the densitized triad compo-
nents. Both properties have relevant consequences, as was
discussed in detail in Ref. [5], where the flat Friedmann-
Robertson-Walker model coupled to a scalar field was
quantized adopting the same procedure. As we will see
later on, the procedure leads to simple superselection
sectors with neat physical properties. In particular, this
fact allowed us to solve explicitly the Hamiltonian con-
straint and determine the physical Hilbert space of the
hybrid Gowdy model for scheme A in Refs. [20,21].
Therefore, it seems most reasonable to apply the same
kind of symmetrization in case B as well.

By densitizing Cp; we obtain then the densitized
Bianchi I term @BI. The contribution of the inhomogene-
ities is contained in the term C & which is constructed by
promoting the second line of Eq. (2.3) to a symmetric
operator. In particular, the comparison between @BI and
its classical counterpart [first line of Eq. (2.3)] gives us a
natural quantum prescription to represent the term
(cypos + csps)?. In addition, we also know how to repre-
sent the term 1/|pyl, as explained in Appendix B. These
terms, acting on the homogeneous sector, have a different
representation in schemes A and B, and we will analyze
them for each case separately. But let us deal first with the
terms that have a nontrivial action in the inhomogeneous
sector, which are the same for both cases.

PHYSICAL REVIEW D 82, 044048 (2010)

1. Inhomogeneities

Choosing normal ordering, the quantum counterparts of
the free Hamiltonian and the interaction term are

(4.6)

The inhomogeneous sector of the kinematical Hilbert
space, i.e., the Fock space F, can be written as a direct sum
of dynamically invariant Fock subspaces. Indeed, the op-
erator Y,,, which is the only operator in the Hamiltonian
that does not act diagonally on the basis of states |11) of F,
annihilates and creates pairs of particles in modes with
the same wave number (i.e., the modes with wave vectors
m and —m). Therefore the quantities X,,, defined in
Eq. (3.11), are conserved under the action of the
Hamiltonian constraint @G. Hence, it is convenient to rela-
bel the basis of n-particle states with the quantum numbers
X,,, for all positive integers m, together, e.g., with the
eigenvalues N,, = n,, + n_,, of the operators N,,, defined
in Eq. (4.5). That is, we rewrite the states in our basis as

|X1,X2,,N1,N2,>: |%,m> (47)

Here, the numbers X, can take any integer value, whereas
N,, € {IX,,| + 2k k € N}.
On these states, the action of the relevant operators is

X 1% 90 = X, 1%, 90), (4.8)

R 190 = N, |, 90, 4.9)

JNZ = X2

R
J__——T_:_T
VW 2 X N b2,

2
(4.10)

and thus the sequence X = {X|, X,, ...} is not affected, as
we pointed out above. The first contribution in Eq. (4.10)
vanishes if NV,, < 2.

In addition, we will denote by Sy the subspace of S
spanned by the n-particle states with fixed sequence X, and
by Fx the respective completion. Then

F =oxTx.

In practice, as far as the action of the Hamiltonian con-
straint operator is concerned, we can restrict the study of
the inhomogeneous sector to any specific subspace Fx. In
what follows, to simplify the notation, we will denote the

@11

044048-6



INHOMOGENEOUS LOOP QUANTUM COSMOLOGY: HYBRID ...

n-particle states by |J¢) and obviate their dependence in the
fixed sequence X.

Obviously the operator I:Ig with domain Sy is well
defined in Fy, because it acts diagonally on the
n-particle states and maps Sy into itself. On the other
hand, the interaction term H1§nt creates infinite pairs of
particles, and thus it does not leave invariant the domain
Sx, which only contains states with a finite number of
them. From Egs. (4.6), (4.9), and (4.10), we have

XN \2 & N2 — X2 +2N
MIMW=(-¢)+ n = Xin + 2N
i mZOlml mZO 2m?
+ 4.12)
mZOm

Since in the n-particle states only a finite set of occupation
numbers differ from zero, among the above three sums
only the last one involves an infinite number of nonvanish-
ing terms. Actually this sum converges, and hence the
norm of H - /90) is finite. In conclusion, HmtIER) € Fx
for all |9t) E Sy, and therefore HS, with domain Sy is
also well defined.

nt

2. Hamiltonian constraint in scheme A

Following the procedure sketched in the beginning of
this subsection, for the densitized Hamiltonian constraint
and in scheme A we get an operator of the form (see
Ref. [21] for the details of the construction):

nt

I] HE + 32772|p0|I:Ig},
(4.13)
where H§ and At

nt

respectively, | pol is constructed from Eq. (3.4), and

[1/4/Ipgl] is defined in Eq. (B2). The symmetric operator
0, represents the classical quantity c;p;, and its action on
the basis of states |v;) of the homogeneous sector, as

determined by the quantization procedure explained above,
has the form [11]

are given in Egs. (4.5) and (4.6),

A

0 lv) = _i77”yl]%1[f+(vi)|vi +2) = f-(w)lv; = 2)]

(4.14)

Here, f-(v;) are two positive functions which satisfy that
f-(v;) = f+(v; — 2) and, remarkably, that f,(v;) van-
ishes in the whole interval v; € [—2,0). Their explicit
expressions are provided in Appendix C.

It is worth noticing that, in scheme A, the homogeneous
sector is completely factorized in three independent direc-
tional subsectors.
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3. Hamiltonian constraint in scheme B

Motivated by our previous analysis, carried out for the
Bianchi I model [11] as well as for the hybrid Gowdy
model in scheme A [20,21], we follow in case B the very
same densitization and symmetrization procedure.

Let us focus first on the Bianchi I term. Taking into
account Eq. (3. 1) for prescription B, one can see that the
densitized term CBI corresponds to the symmetrization of

oy Vel sin(i ) sgn(py) sin(iey). (4.15)

]<k

This is precisely the gravitational part of the constraint
represented in Ref. [12], up to a constant multiplicative
factor [26]. Nonetheless our symmetrization is different.
Adopting a symmetrization similar to that introduced in
previous subsections, we get

CB =C" + 09+ 9, (4.16)

o0 =——— WIEVE + EVEV,  @17)
4')/ A

F‘i = sin(,Ll/ic\[) Sg@i) +sgﬁ67,~) Sin(ﬁ;i)- (4.18)

The action of the operators F; is displayed in Ap-

pendix D 1, while the action of V = ®;
from Eqgs. (3.6) and (3.8).

The final result for the densitized Hamiltonian constraint
in scheme B is

|p;| is obtained

~ N N ~ 1 ~ 1 N
B _ A(60) (o) (8) 2 3
-0 e veo gl Tl TG

v 32#@?]5}, (4.19)

where H; 7¢ and HE

o are again given in Eqs (4.5) and (4.6),
[1/lpg |1/4] can be found in Eq. (B3), ngl is constructed
from Eq. (3.6), and we choose the symmetric operator
N 1 — N R N A — N
G = m\/V[F,,VF,, + FsVEsNV — C9  (4.20)
Y
to be the quantum counterpart of [(c,p, + csps)/ V]

In contrast with scheme A, the homogeneous sector is
not factorized anymore in three independent directional
subsectors, since the operators F ; and F ; (i # j) do not
commute.

C. Superselection in the homogeneous sector
1. Superselection in scheme A

As discussed in Refs. [20,21], @é leaves invariant the
Hilbert subspaces JH (fi, defined as the Cauchy completion
(with respect to the discrete inner product) of the subspaces
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Cylg, = spanflv;);v; € L}, @.21)

where £§i denotes the semilattice of step 2 defined by

={*(e; +2k;kEN}, & €(0,2] (422

Therefore, for each ¢;, the kinematical Hilbert space
HieF with HI=eH;, (4.23)

provides a superselection sector, and the Hamiltonian con-
straint operator is well defined in any of its subspaces
H} ® Fy, with dense domain ®,Cylg, ® Sy. Here, we
are assuming that physical observables can distinguish
between different modes and thus they do not superselect
Fx.

In conclusion, in case A we can restrict the study to a
kinematical Hilbert space that is separable, and in which
the quantum numbers representing the homogeneous de-
grees of freedom are strictly positive, with minimum val-
ues ¢&;, and distributed on cubic lattices of step 2.

2. Superselection in scheme B

Let us analyze the action of the Hamiltonian constraint
operator &(B; on the homogeneous sector component of any
state |v*, A}y, A5) ® [91). The explicit expression of this
operator is given in Appendix D 2. First, concerning just
the homogeneous sector, it is straightforward to see that the
action of the constraint leaves invariant the subspace of
positive densitized triad coefficients, given by

Cyl{ = span{lv, A,, As); v, A,, Ag > O} (4.24)
We restrict our discussion to this subspace from now on.

It is worth commenting that, whereas Ref. [12] adopts
the same symmetrization for the powers of V that we have
proposed (see, e.g., Refs. [20,21]), so that the states with
vanishing (homogeneous) volume are indeed decoupled,
the symmetrization chosen for the signs of the triad com-
ponents differs from ours, and therefore states with differ-
ent orientations of those densitized triad components are
not decoupled. Moreover, although the discussion in
Ref. [12] is also restricted to the space Cylg, that restric-
tion is incorporated there on the basis of the symmetry
under parity, but the (gravitational part of the) Hamiltonian
constraint operator does not leave invariant this domain,
since it mixes states with different orientations. In other
words, it is only on the subspace of parity symmetric (or
antisymmetric) states that the restriction of the Hamil-
tonian constraint to the sector of positive orientations can
be defined, because the symmetry under parity allows one
to identify states with negative orientations with a counter-
part in this sector.

The Hamiltonian constraint produces shifts on the vari-
able v* which are equal to 4 or —4. Nonetheless, in the
considered sector, a shift by —4 is possible only if v* > 4,
Then, if we define

PHYSICAL REVIEW D 82, 044048 (2010)

L,={e+d4:keN), &€(04] (4.25)

the action of @CB; never mixes states with values of v in
different semilattices of this kind. Furthermore, acting on a
state |v*, A, A5) ® |I), this operator produces new states
with the following quantum numbers v and (A, A,), where
the two identifications (a, b) = (o, 8) and (a, b) = (8, o)

are allowed:
Hv=v*—4>0
—4 —2
(A;, .Y ) (/\Z, — )
*x _9 v —4 — 4
(v . A;, — AZ), <A:, A*)

(i) v =v*

v vt 42
) B Gt
v+ 2 v*

( - A;,U*HA;), (A%, A2),

and, if v* > 2, also

* * 2 * * * *
pr Y N3 4
'U

v —2 v*
)

v v*

(iii)) v =v* + 4

v*+4 v*+2
(o) (55)

U*+2A* v*+4A* A v +4
a)v*+2 b ) a,—v* b )

U*
We see that the effect caused on the A labels does not
depend on the reference quantum numbers A% and A%, but
only on the value of v* = g + 4k*. This dependence is
through fractional factors whose denominator is two or
four units bigger or smaller than the numerator.
Therefore, it is possible to see that, starting with
[v*, A}, A5) ® [It) and restricting the consideration to the
given value v* of the label v, the iterative action of the
constraint operator leads only to states whose quantum
numbers A, are of the form A, = w_ A} (a = o, §), with
w, belonging to the set
— b4 k!
W, = {(a 2) l—[ (s +2m> }
€ e+ 2n

m,neN

(4.26)

where k' € N, and z € Z if ¢ > 2, while z vanishes when
€ = 2. The discrete set W, is countably infinite and turns
out to be dense in the positive real line. The proof of this
last statement can be found in Appendix D 3. Therefore,
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whereas the variable v has support on simple semilattices
of constant step, the variables A, take values in much more
complicated sets. Nonetheless, they are also superselected
in separable sectors, a fact which had not been realized in
previous literature. As a particular case, we can see that if

J

Cylseasaz = span{lv, Ay, As)iv € L, A, = A7, 0, € W, A e RYL

As a consequence, the Hilbert subspaces

Hopr®F (4.28)

provide superselection sectors. Moreover, the Hamiltonian
constraint operator C]é has well-defined restrictions on any
of the subspaces H, ap e ® Fx, with corresponding
dense domain given by Cylg ; yx \+ ® Sxk.

V. PHYSICAL SECTOR IN CASE A

A. Imposition of the Hamiltonian constraint

In Ref. [21] we already determined the solutions (/| of
the Hamiltonian constraint Cé, which were given by an
expansion of the form

(= >

vaeﬁ%
® (lpw,,,wa (U(?)l-

Here, |w,) (a = o, §) denotes the generalized eigenstates

[, dosdoswil @ (@, 8 sl

(5.1)

(with real generalized eigenvalue w,,) of 0,. These opera-
tors are constants of motion (they commute with C2), and
therefore the states |w,) are stable under the action of éé
The concrete expression of these states can be found in
Ref. [11]. On the other hand, remarkably, the projections
(¥ o, w;(€9 + 2k)| of the solution on the sections with
constant value of vy = g4 + 2k for every k € N7, are
all formally determined by the initial data (¢, . (go)l
through the action of a complicated operator, which in-
volves the iterative action of I:Ig and I:Iié;t. Again, the
explicit expression is provided in Ref. [21].

In addition, the physical solutions must be annihilated
by the generator of translations in S'. This S! symmetry is
preserved by the dynamics, since the quantities X,, are
constants of motion; therefore we can ignore it at this stage
and impose it after dealing with the Hamiltonian
constraint.

B. Physical Hilbert space

The resulting form of the general solutions (| of the
Hamiltonian constraint is only formal, in the sense that
they do not belong to the dual of the domain of definition of
CA. Namely, some of the coefficients (Y, 0, (Ve)|N) of
the solutions diverge, for example, when v, = g4 + 4.

PHYSICAL REVIEW D 82, 044048 (2010)

e = 2 and AY is a fraction, then A, can take any value in
the set of positive rational numbers.

In conclusion, &2 leaves invariant the Hilbert subspaces
H BPYIY. defined as the Cauchy completion with respect to

the discrete inner product of

4.27)

[

Indeed, it is not difficult to see that the space Sy is not in
the domain of the operator I:Igl:liit, because this contains
the term ¥, N,,Y,.. The action of this term on a generic
state of Sy does not lead to a normalizable state of the Fock
space Fx, not even in the (conventional) generalized
sense, since, in particular, it involves the creation of pairs
in an infinite number of modes and then a sum over the
number of all of those particles.

This problem can be traced back to the choice of domain
for the Hamiltonian constraint, since the present one is not
invariant under the action of @é. Indeed, it is worth point-
ing out that the determination of an invariant domain (and
such that the Hamiltonian constraint be an essentially self-
adjoint operator) would allow one to resort to group aver-
aging techniques [27] in order to construct the space of
physical solutions. However, the selection of an alternative
domain that remains invariant is an extremely difficult task,
given the complexity of our model, and no satisfactory
choice is actually at hand. In this sense, the kinematical
structure of our quantization is not well adapted to the
physical one, and their relation is not straightforward
a priori.

Nonetheless, we can still complete the quantization
program: we just need to make sense of the solutions and
provide them with a Hilbert structure. As we have already
said, the solutions to the densitized Hamiltonian constraint
are completely determined, at least formally, by a single
piece of initial data (¢, ,,, (g,)], and then we can identify
these solutions with the corresponding data. The determi-
nation of a complete set of real classical observables acting
on these initial data, together with the condition that they
be represented as self-adjoint operators, determines a
unique inner product [28] that characterizes the Hilbert
structure. Moreover, taking into account the additional S'
symmetry, implemented by condition (3.11), we conclude
[20,21] that the initial data (¢, ,,, (£¢)| must belong to the
Hilbert space

L2(R2, dw,dws) ® F,, (5.2)

which we identify as the physical Hilbert space.
Alternatively, we can argue that this is the physical
Hilbert space following a different line of reasoning, based
on the idea that we can regularize the theory by means of a
cutoff for the wave number m > 0 and analyze the limit of
arbitrarily large values of the cutoff. Note that we are
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allowed to carry out this further reduction of the phase
space because, in the Gowdy model, the field modes with
different wave numbers are not mixed dynamically.

Regularized model

Let Sy, be the subspace of S spanned by the n-particle
states which satisty N,, = 0 for all m > M > 0, and let SAJ;,
be its orthogonal complement. In addition, let 2,; and ]31%,,
be the projectors on the subspaces Sy, and Sﬁﬁ, respec-
tively. We are now interested in finding the physical Hilbert
space of the truncation of the Gowdy model in which all
the field modes with wave number bigger than the cutoff M
vanish. Obviously, this truncated system is governed by the
constraints

(W, .0, We) P2y = 0, (5.3)
(W 1,0, 0 PCELY = 0, (5.4)
(l/fw(,,wa(ve)mMaeﬁM =0. (5.5)

Simultaneous solutions to the first two equations have
the same form as the solutions to the Hamiltonian con-
straint in the full Gowdy model, but containing exclusively
wave numbers m equal or smaller than M, so that they now
possess only a finite number of terms. As a consequence,
the divergences caused by the infinite production of pairs
of particles disappear, and the coefficients (¢, ,,.(vq)|Jt)
of the solutions to Egs. (5.3) and (5.4) are now finite for all
vy. Therefore, the solutions (for fixed vy, w,, and wj) live
in the dual S}, of the space spanned by the n-particle states
with the cutoff. Similarly to what we did in the previous
subsection, we can now endow the data at v, = g4 with a
Hilbert structure. We construct the same complete set of
observables [21], with the difference that now we do not
have an infinite number of them in the inhomogeneous
sector, but only 4M (corresponding to 2 degrees of freedom
on phase space for each of the 2M wave vectors). The
resulting observables act on the solutions (¢, ,.(g4)| and
are self-adjoint in L?(R? dw,dws) ® F,, where F,, is
the Fock space obtained by completing Sj,. Taking into
account the remaining constraint (5.5), which implements
the S' symmetry, the physically admissible states have
finally the Hilbert structure

LX(R?, dw,dws) ® (F ). (5.6)
where (F,)y is the subspace of ) spanned by the
n-particle states that verify the condition ¥¥_ mX,, = 0.

As the cutoff M increases, we get closer to the non-
truncated theory for the Gowdy model. This indicates that,
in the limit M — oo, we should recover the full Fock space:

PHYSICAL REVIEW D 82, 044048 (2010)

(Fp)m — F . This supports our previous statement that
the physical Hilbert space of the nontruncated Gowdy
model is in fact the space (5.2).

The introduction of the cutoff in the wave number also
makes manageable the numerical study of the effect that
the inhomogeneities have on the dynamical behavior of the
system and, in particular, of the changes that occur in the
dynamics of the Bianchi I background when the inhomo-
geneities grow. Actually, this kind of analysis has already
been carried out at the effective level and is included in the
study of Ref. [29], where the classical Hamiltonian has
been modified in an effective way in order to take into
account the corrections that arise from the quantum the-
ory—although the results obtained there are extended to
the full model without the cutoff.

VI. PHYSICAL SECTOR IN CASE B

A. Imposition of the Hamiltonian constraint

Unlike in case A, the homogeneous sector of the kine-
matical Hilbert space, H B A%, A% is not factorized in three

independent directional subsectors, and none of the opera-

tors JVE AV appearing in the expression of the constraint
@2 (i.e., the counterpart of @,- in case A) is now a constant
of motion [30]. Therefore, in this case we cannot simplify
the action of the Hamiltonian constraint operator by diago-
nalizing it in the directional subsectors labeled by o and &,
as we did in scheme A.

Then, in order to solve the Hamiltonian constraint rep-
resented by ég, we expand the solutions (/| using the basis
of states |v, A, Ag) for the homogeneous sector. Namely,

(= 3 D W, ol

vEL, 0, EW, &,EW,

® (Y(v, w A, @ AF)I. 6.1)

Inserting this expansion into the (dual of the) constraint
equation, projecting on the homogeneous sector, and tak-

ing into account the action of e given in Appendix D 2,
we get that the projections

(¢(vr Ag, /\6)| = (',b(l), ws/\zv CDs)‘:{s‘)l

satisfy a series of relations that can be interpreted as
difference equations in v. Introducing the projections of
(/| on the combinations of states defined in Egs. (D5)-
(D8) of Appendix D 2, which we call

(djt(v * 4, Am Aﬁ)l = (¢|U *4, )‘0'! )‘6>i

and in a similar way for the rest of projections, the relation
obtained is
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(W +4, 1, Al = BBY(, Ay A3 (0 + 4, A0 A5)

PHYSICAL REVIEW D 82, 044048 (2010)

(¢f’ (v + 4, Ag, A5 HE,

1w ¢ 5w %)
= Bm(lﬂ(v Ao AS)HS + x+( )(lﬁo o e )(l//0+(v, Ags As)
0 = 4 Aa)] + B30 A A B30 — 42020 0= 4000

x (v)

+(v)

b, )\o,/\a)[ (- (v, Ay A)] +

Here, by, x., and x(f are the functions defined in

Appendices B 2 and D 2.

B. Analysis of the solutions

We want to prove now that, as in case A, the solution is
completely determined by the data on the first section v =
e (at least formally). Specifically, we want to show that,
given a set of initial data (Y (e, w A}, @,A%)| (belonging
to Sy for all w,, @, € W,), it is poss1ble to determine
each term (¢ (v, A, )\5)| of the solution, for every v > ¢ in
L,.

The presence of the interaction term on the left hand side
of Eq. (6.2) complicates a direct proof of the above state-
ment. However, it is possible to attain the result by means
of an asymptotic analysis of the solutions. Remarkably, our
theory involves a dimensionless parameter, 3, introduced
in Eq. (D4), and recurring to it we can naturally adopt an

( )

2 A )la)|:|} 62)

(e + 4k, Ay M)l = D B ("ih(e + 4k, Ay, As)l,

neN

VkeNT. (6.3)

Note that the linear combinations introduced in Eq. (6.2),
like, e.g., (- (v =4, Ay, Ag)|, adopt then similar expan-
sions, and we will denote their terms using an obvious
notation, for instance, ("¢, (v = 4, A, Ag)|. Substituting
the expansion (6.3) in the constraint (6.2), and considering
powers of (3 order by order, we obtain an expression for
every term ("¢, (v + 4, A,, Ag)| (for generic v) provided
that the data at v and v — 4 are known. The explicit result
is the following (to simplify the notation, we obviate the
dependence of the states and of the function b, on the A’s):
(1) Leading term:

asymptotic approach without the need to introduce any Oy L(v+4)|= #(Olp(vﬂ hé , (6.4)
external parameter by hand. Note that, since the area gap Ao A5x4 (v)
A is proportional to yI3,, B is proportional to the inverse of
the Immirzi parameter 7. Thus, in the limit 8 — 0, we
expand the solutions in asymptotic series of the form: (i1) first order correction:
32v xp (v) ( )
(g (v+4)= —7(1 WA + 2=y ()] + /O]
v ' e P
+ B()b3(v + 4) = (%/; (v + 4)AE, (6.5)
(iii) second order correction:
32v xg (v) xg (v) x_(v)
Cy v+l =- 7(2 WA + 2=y )] + 2= (s ()] — Cy-(v -4l
v e, Y i O Ty W ) T
Xy (v Xy (v v+4
+ -0 0y 0l + S 0 w1+ e+ 9 e v allag,  co
x4 (v) x4 (v)

(iv) n-th order correction (n = 3):
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\ B 32v . ¢y xg (), - xg (), -
( ¢+(U +4)| - Az )\% +( )( l;b( )lH (j—(v)( llﬂO’(v)l +x(j—(v)( 1¢0+(v)|
x(v) v — v 2(y X @) o v X @) s v
S )+ B b >[x+(v)< iy )+ 22 )

+ bi(v +4)—(" Lyl (v + 4)] + b2 — 42—

Ty - 4)|} 6.7)

The above expressions simplify considerably in the cases v = ¢ and v = ¢ + 4. This is due to the fact that, on the one
hand, the data on the very initial section are not given by asymptotic series, that is, in principle (¢ ()| = (°(e)| and hence
(" (e)] = Oforall n = 1. And, on the other hand, x_(g) = O forall ¢ € (0, 4], whereas x; (¢) = 0if ¢ = 2 [see Egs. (D9)

and (D11)].

In view of these equations, we see that, for v > 4, the knowledge of the solution on the sections v — 4 and v, together
with the terms of asymptotic order n — 1 on the section v + 4, determine on this last section the terms of the solution at

order n via the following linear combinations:

44
(", (v+ 4 A, Al = ("¢(v AN v 2/\5)

v+4
+ <"¢<v + 4 )lg., )\5)

+<"¢<v+4v+2 )

On the other hand, for 0 < v < 4, the data on the section
v — 4 are spurious, and their knowledge its not required to
determine the terms of the solution for v + 4.

Actually, a similar structure appears also in the solutions
to the Hamiltonian constraint for the Bianchi I model,
inasmuch as the solution on the section v + 4 is deter-
mined in terms of the same kind of linear combinations.
Furthermore, it has been recently shown [31] that, for all
v > 0, the set of linear combinations

{g (v +4, w Ay, 0 M) 0, &, € W, }
determines the set of individual terms
{((v +4 w Ay, @A) 0, @, € W,

through a one-to-one map. This result can be applied here
as well as for Bianchi I cosmology. Therefore, starting with
the initial data, we can obtain, step by step, the terms of the
solution—up to the desired asymptotic order—on all of the
consecutive v sections.

In conclusion, the initial data (¥ (e, Ay, Ag)| (with A,
and A taking all possible values in the corresponding
superselection sectors) completely determines the solution,
as we wanted to show. The solutions, constructed in this
way, are formal, as happens to be the case in scheme A, in
the sense that the objects ("i(v + 4, A, As)| do not be-
long in general to the dual space of the domain chosen to
define the Hamiltonian constraint operator, owing to the
presence of the operator A - in their expressions.

42
( ¢(v+4,/\(,,vv )\5)

v+2
( <v+4 Ay
v

( ( +4v+4A v+2/\
o v+2 v 6)

v+4/\)
7y+27°

(6.8)

C. Physical Hilbert space

In order to provide the solutions with a Hilbert structure,
we proceed in the very same way as in case A. Once we
have shown that the set of initial data

{(Y(e, w AL, @A) 0, @, € W}

characterizes the solution, we can identify solutions with
their corresponding data, and the physical Hilbert space
with a Hilbert space of such initial data.

The requirement that a complete set of observables act-
ing on these initial data be self-adjoint operators deter-
mines again uniquely the inner product that provides the
Hilbert structure. Such observables are given, for instance,
by a complete set of observables for the Bianchi I model
in vacuo and by the observables introduced in scheme A
for the inhomogeneities. Imposing the remaining S' sym-
metry on the resulting Hilbert space, we finally get the
same structure found in case A for the physical Hilbert
space, namely, the tensor product of the Fock subspace F,
and the physical Hilbert space of the Bianchi I model
in vacuo, though now in scheme B:

}[Ehys thys,BI ® F) (6.9)

The explicit form of .’}'-[Ehys‘BI is analyzed in Ref. [31].
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VII. SUMMARY AND CONCLUSION
A. Recovery of the standard quantum field theory

As we have commented in the Introduction, one of the
motivations of this work is to investigate the plausibility of
the recovery of standard quantum field theory in the frame-
work of loop quantization. In particular we wanted to show
that, in the Gowdy model, one attains a Fock description of
the inhomogeneities over a polymerically quantized
Bianchi I background in the space of physical states, start-
ing with a hybrid quantization in the kinematical setting.
Indeed, we have proved that this is the case, since the
physical Hilbert space obtained in both schemes has the
structure of the tensor product of the physical Hilbert space
of the Bianchi I model and a Fock space, which turns out to
be equivalent to the space obtained in the standard Fock
quantization [18,19]. This result supports the validity of the
hybrid quantization, because the latter should lead to the
standard quantization of the system in the limit in which
the effects arising from the discreteness of the geometry
become negligible. Let us remark that the result is non-
trivial, inasmuch as the hybrid approach is introduced in
the kinematical arena and the relation between the kine-
matical and physical Hilbert structures cannot be antici-
pated before completing the quantization, even more if one
takes into account the fieldlike complexity of the model.

B. Resolution of the cosmological singularity

The classical solutions of the linearly polarized Gowdy
T3 model present generically a cosmological singularity. In
Ref. [15], e.g., a curvature invariant was explicitly calcu-
lated and proven to diverge almost everywhere at initial
time. In terms of the variables that we have employed, the
cosmological singularity corresponds to vanishing values
for the components p; of the densitized triad. Actually, as
we can see in Eq. (A1), the metric is ill defined if any of the
p;’s is zero.

In our quantum theory, the polymeric quantization per-
formed in the homogeneous sector succeeds in eliminating
the singularity. More explicitly, we have been able to
remove the kernel of all the operators p; and, as a conse-
quence, an analog of the classical cosmological singularity
does not exist any more quantum mechanically. This reso-
lution of the singularity is achieved at a kinematical level.
Of course, it persists in the physical Hilbert space, since
physical states do not have projection onto the zero eigens-
paces of the operators p;. Furthermore, they only have
support on a sector with fixed orientation of the triad
components and, then, they do not cross the singularity
to another branch of the universe corresponding to a differ-
ent orientation.

On the other hand, in addition to this kinematical reso-
lution of the cosmological singularity, it is worth comment-
ing that, at least for scheme A and in the framework of the
effective description corresponding to the hybrid quantiza-
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tion put forward here, the numerical simulations performed
so far for the Gowdy model show the presence of a bounce
which replaces the singularity and which emerges owing to
the quantum geometry corrections to Einstein’s theory
[29]. Similar numerical calculations are being developed
currently for scheme B [32], in order to validate this
stronger result about the resolution of the singularity.

Let us emphasize that the standard (nonpolymeric)
quantum methods do not succeed in resolving the cosmo-
logical singularity. On the one hand, in the Fock quantiza-
tion of the deparametrized system, which has been
discussed in the literature [17] and which has been success-
fully accomplished till completion in Refs. [18,19], a
classical time parameter is present explicitly in the quan-
tum description, and the curvature invariant calculated in
Ref. [15] depends on its inverse in such a way that the
invariant still blows up at initial time. On the other hand, if
one does not deparametrize the system, following our
gauge reduction, and quantizes the homogeneous sector
in a standard (nonpolymeric) way, as in the Wheeler-De
Witt approach, then the zero eigenvalue would be included
in the continuous spectrum of the triad operator, instead of
the discrete spectrum, and there would not exist a proper
subspace associated with this eigenvalue which could be
decoupled and removed.

C. Concluding remarks

In conclusion, we have rigorously constructed a hybrid
quantization of the Gowdy model with three-torus topol-
ogy and linearly polarized gravitational waves. The homo-
geneous sector of the phase space, which coincides with
the phase space of a Bianchi I model, has been polymeri-
cally quantized, whereas we have applied a (distinguished)
Fock quantization to represent the inhomogeneous sector.
In the LQC literature, there exist two different schemes for
the polymeric quantization of the Bianchi I universes,
denoted in this paper as schemes A and B. We had already
analyzed the hybrid quantization of the Gowdy model
adopting scheme A in Refs. [20,21]. Here, we have revis-
ited that quantization and extended our hybrid approach to
the alternative case B, in which the homogeneous sector
has a different representation.

In both schemes, the quantum Hamiltonian constraint
has been densitized, in order to deal with a simpler con-
straint, and then has been promoted to an operator, well
defined in some dense domain of the kinematical Hilbert
space. This is truly a nontrivial result, because our system
possesses an infinite number of degrees of freedom and the
two sectors, on which the constraint operator acts, are
coupled and quantized with entirely different methods.

As we have seen, the kinematical structure over which
we have defined the theory and the choice of domain for
our quantum operators do not suffice to make sense of the
formal solutions to the Hamiltonian constraint. None-
theless, we have found a procedure to overcome the prob-
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lem and complete the quantization. Indeed, in our hybrid
approach, the Hamiltonian constraint provides a difference
equation in an internal discrete parameter (v, in scheme A,
v in scheme B) which has a strictly positive minimum
value, and the solutions to the Hamiltonian constraint are
completely determined by the data provided on the initial
section of such a discrete parameter. One can say that the
solutions follow a no-boundary prescription, in the sense
that they arise in a single section without the need to
impose any particular boundary condition. This behavior
has two important consequences. On the one hand, this
immediately resolves the classical singularity in the quan-
tum theory at a kinematical level. On the other hand, it
allows one to deal with these solutions by identifying them
with initial data. In this way, we have been able to charac-
terize the physical Hilbert space in both schemes A and B.
Remarkably, as we have pointed out, this procedure leads
to the recovery of the standard quantum field theory for the
inhomogeneities.
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APPENDIX A: CLASSICAL METRIC

To derive the form of the classical metric of the linearly
polarized Gowdy 7> model, one can start with its expres-
sion in the (field) parametrization of Ref. [18], apply the
gauge fixing procedure, and perform a canonical trans-
formation from the elementary variables chosen for the
homogeneous sector in that parametrization to the corre-
sponding Ashtekar variables {c;, p;}. A careful calculation
shows that, in our variables, the nonvanishing components
of the induced three-metric are

1 | pops { 2 ( CsPs )~
do0 = —1)&(0)
“am | py [Pl \ CoPo T C5Ps
mr 877G
- T LEO)P - 774«0)},
|pol CoPo T C5Ps
1 2 -
Qoo = 73 PoPs CXp{— —Wé:(a)}:
4 Po [pol
1 . 5
dss = — | 222 p{ 5(0)}, (Al)
4m= | ps [ pol
where
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& 1 G * im
f(H) = ;go\/%(am + a*m)e 9,

: _ A m + ml|m|
(6) = ’Z Z sgn(m + m)ﬁ
m#0 m+0
X (a—rh - a:ﬁ)(am+rh + ai(erﬁl))eimt‘)_
Besides, owing to the homogeneity of the shift function
N?, required by the gauge fixing, we can reabsorb it by
means of the following redefinition of the coordinate 6:

o+ [ "IN (1) — 6,
t;

where ¢; is any initial time. Then, the spacetime metric
becomes

2
ds® = —400(@) N?di* + qgod0* + q,,do?
T

Here, N is the densitized lapse function, which in our
gauge is spatially homogenous. The metric of the
Bianchi I spacetime is the result of ignoring the inhomo-
geneities in Eq. (A1), setting € = 0 = (.

APPENDIX B: INVERSE HOMOGENEOUS
VOLUME OPERATOR

Following the procedures of LQG, the classical expres-
sion of 1/(|p;|'~") in LQC, for r > 0, is represented by the
regularized operator (see, e.g., Ref. [3])

T ) [Ta a
R R P
|pil BmylprLi;

o Nﬂilpil N*ﬁi]’

i
(BI)

where [1/ ;] is the quantum counterpart of the expression
given in Eq. (3.1) for each of the considered schemes. The
choice of r is arbitrary.

1. Scheme A
In case A, and for » = 1/2, one obtains [9,11]

-o[ 1]

[L]m = b(v)lv),

1
b(vi) = —|Ui|1/3||vi + 1|1/3
2(277)/1123]\/K)1/3

- |Ui - 1|1/3|-
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2. Scheme B

In case B, choosing r = 1/4 and combining all the
powers of |py|, we obtain the expression

1 ] sg;(;f)) — N —~1/4 ~
= lpopsllN -z, Ipal ~ N,
[|P6|1/4 277[12)1\/K popsll Byl Po Ay
N ~1/4
= N, Ipol —a,) (B3)

and similarly for [1/]|p,|"/#] and [1/|ps|'/*]. Their action
on our basis of states turns out to be

—_

bi(v’ A(rr /\3)

1
[W]W Ags Ag) = W lv, Ay, As), (B4)

where (a = o, 8)

bo(v, Ay, As) = \/2IA,,A5||~/|U + 1] —lv —1]|,

Wlv + 1] = v = 1]L.

(B5)

ba(vr /\a-r /\5) =

The inverse homogeneous volume operator can then be
represented as the regularized operator

— — 2

[V] N [|pll|'/4] '

APPENDIX C: DETAILS OF THE QUANTUM
MODEL FOR SCHEME A

For completeness in the presentation, we include here

(B6)

some details about the operator @,- that appears in the
expression (4.13) of the densitized Hamiltonian constraint

operator @é for scheme A. The definition of ® ; in terms of
|

sgn(A )

F v AL, Ag) =
I=%1,—1

Z [[sgn{|v| + 2Isgn(A,)} + 1] | v + 2Isgn(vA,), A, + 21| -2
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holonomy and fluxes operators is [11,21]:

—1/2 =~

] N -
z,-L)JM[

N

© 4J‘[

*Zﬂ,)sg;(\pi)

— . ) 1 -1/2

+sgn(p)(Noz, — N - ﬁ] (C1)
Pi

Its action on the states |v;) is given in Eq. (4.14), where the
functions f(v;) are:

f+() = gv; = 2)s+(v)g(v)), (C2)
with
s+(v;) = sgn(v; * 2) + sgn(v,),
1/3 1/3]-1/2
glv,) = 1+i| —Il—i , ifv; #0,
v; v
2(0)=0. (C3)

APPENDIX D: DETAILS OF THE QUANTUM
MODEL FOR SCHEME B

1. The operators ﬁ‘,-

Expressing each operator F; in terms of N sp, @
straightforward calculation shows that

sgn(AyAs)

F9|U /\0" /\8>_ D)

Z [[sgn(v)

I=+1,—1
+ sgn{v + 2Isgn(A,As)}]

X v + 2lsgn(A,As), Ay, As), (D)

Ag

, /\5>. (D2)

The action of F; is similar to that of F',, interchanging the roles of A, and A.

2. The operator (AZ]é

The action of the constraint operator on the states |v, A, A5) ® |[Jt) of our basis, with v, A, and A5 being all positive, is

the following:
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(m13))?

Colv. Mg A5) @ [90) = 2

— x5 (W, Ay Agdor +xi(W)lv + 4,4, As)s +

v—4

X I:bg(v - 4, )la, )13) v

x_(v)|v —
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{x_(v)|v — 4 A As)- — x5 ()], Ay, Asdo-

32 v2 Ng A
& g Holv. A 4) = BB A As)

4’ Aa’! A3>/— - b%(v; )\a" AB)

+4
XL ) A Ay + 3 )l A A+ B0 + 4 A 29w )l + 4,4, 40, |
v
® |N), (D3)
where
Ipy )2/3
= (D4)
(477)/\/K
and we have introduced the following notation:
vE4 vE2 vE4 vE2
|Ui4,/\0.,)l5>t= Ui4,)lg.,m).§>+ U_4 /\g, v )\5>+ Ui4,vi2 o v )l§>
v*+4 *2 wv=*4 *2
+ vz 4,m)t,,, A3> + lvxd—A,, - 2)\5> + v x4 Ags )t5>, (D5)
v v*2 v v*2
|‘U, /\0., )\5)07 = v, )\0., m/\g) + v, /\0., v A5> + v, e )\0., A3> + v, T2 )\0., /\5)
v*2 v*t2
+ |, Ay /\5> + v,—/\m—)t5>, (D6)
v v *2
+4 +4 *+2 +4
lvxd A, Ay = v =44, 2 A5> + v+ 4,”—/\,,,"—A5> +lvxa 2=, /\5>
v v*E2 v v
T L ”—“A) (D7)
Ty Ty x2)
vE2 v v vE2
|U, /\0., )\5>(/)1 = 2|U, /\0., /\5> + v, /\0, m/\g) + v, v+ 2 )\a'r T)l5>, (DS)
[
and Let a and b be any two positive real numbers, such that
b — a > 0. Besides, we define the set
x_(v) =2Jo(v —2)vv — 4[1 + sgn(v — 4)], (DY)
€
X+(U) — xi(v + 4)’ (DIO) VS == {Z + n,n S N} (D14)
xo (v) =2(v — 2)v[1 + sgn(v — 2)], (D11)  Then there always exists a number s = &/4 +n; € V,
such that 1 < s(b — a), or equivalently
xg (v) = x5 (v +2). (D12)

3. Support of the anisotropies

We want to prove that the set W, is dense in R*. For
this, we will show that its subset U,, defined as

e+ 4m
& &

I D13
+ 4n ( )

;m,nEN},

is already dense in the positive real line.

sa+ 1 <sb. (D15)

Let us denote by 1 = g/4 + m,; the largest number in V,
which is smaller or equal than sa + 1, that is

sa<§+m1 <sa+ 1. (D16)

Equations (D15) and (D16) imply that sa < /4 + m; <
sb. These inequalities can be written equivalently as
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e+4m
a<—""l<p,

D17
e+ 4n, ( )

In conclusion, given any two positive numbers a and b
with a < b, there always exists a number # € U, such that
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a <u <bh. As a consequence U,, and W, a fortiori, are
dense in the positive real axis, as we wanted to prove.
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