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The interaction of black holes with ambient magnetic fields is important for a variety of highly

energetic astrophysical phenomena. We study this interaction within the force-free approximation in

which a tenuous plasma is assumed to have zero inertia. Blandford and Znajek used this approach to

demonstrate the conversion of some of the black hole’s energy into electromagnetic Poynting flux in

stationary and axisymmetric single black hole systems. We adopt this approach and extend it to examine

asymmetric and, most importantly, dynamical systems by implementing the fully nonlinear field equations

of general relativity coupled to Maxwell’s equations. For single black holes, we study, in particular, the

dependence of the Poynting flux and show that, even for misalignments between the black hole spin and

the direction of the asymptotic magnetic field, a Poynting flux is generated with a luminosity dependent on

such misalignment. For binary black hole systems, we show both in the head-on and orbiting cases that the

moving black holes generate a Poynting flux.
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I. INTRODUCTION

Enormously powerful events illuminate the Universe
that challenge our understanding of the cosmos. Indeed,
intense energy outputs of order 1051 ergs [1,2] are rou-
tinely observed in supernovae and gamma-ray bursts and in
other puzzling systems, outputs as high as 1060 ergs have
been inferred [3]. Despite important theoretical and obser-
vational advances, we still lack a complete understanding
of systems such as active galactic nuclei, gamma-ray
bursts, etc., and intense observational and theoretical ef-
forts seek to unravel these fascinating phenomena. While
the full details are still elusive, a natural ingredient in
theoretical models is the inclusion of at least one spinning
black hole which helps convert binding and rotational
energy in a highly efficient process.

Our understanding of these systems benefits hugely from
progress on the observation front. On the one hand, a
proliferation of sensitive telescopes are providing a wealth
of information gathered in the electromagnetic band.
While on the other hand, the advent of sophisticated
interferometric gravitational wave observatories and their
continued upgrades promise to provide a new and comple-
mentary view of these events. Coincident detection of both
electromagnetic and gravitational wave signals promises to
revolutionize our understanding while at the same time
leading to the refinement of theoretical models (e.g.,
[4–7]).

The starting point for these theoretical models can be
traced back to ideas laid out by Penrose [8] and Blandford
and Znajek (BZ) [9] to explain the extraction of energy
from a rotating black hole. These seminal studies, along

with subsequent work (see references in, e.g., [10–12]),
have provided a basic understanding of highly energetic
emissions from single black hole systems interacting with
their surroundings. While observations are consistent with
these ideas, uncertainties remain due to insufficient knowl-
edge of the physical parameters governing these systems.
Gravitational waves from black hole systems should pro-
vide a much cleaner ‘‘picture’’ of the central engine,
potentially revealing key properties. Binary systems with
either two black holes or a black hole and a neutron star are
copious producers of gravitational waves and should be
observable with Earth-based gravitational wave detectors
out to ’ 1 Gpc and with spaced-based detectors up to
redshifts of ’ 5–10 [13].
We therefore consider this basic picture of the extraction

of energy from black holes in the more complex regime of
binary black holes in the hope of revealing an emission
mechanism complementary to gravitational waves. We
concentrate on understanding possible Poynting flux emis-
sions from both isolated black holes and binary black hole
systems. Our goal is to elucidate the basic phenomenology
arising from the interaction of single and binary black hole
binaries interacting with plasma environments. This latter
scenario may arise as a result of galaxy mergers [14,15]. As
the galaxies approach, their respective supermassive, cen-
tral black holes form a binary in the merged galaxy.
Through diverse interactions, the black hole binary tight-
ens, hollowing out a region surrounded by a circumbinary
disk. Eventually, its dynamics is governed by gravitational
radiation reaction which ultimately leads to the merger of
the black holes. The circumbinary disk will likely be
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magnetized, anchoring field lines, some of which will
traverse the central region containing the binary. As a result
of the ambient magnetic field, a low density plasma will
surround the black holes [9] which will be affected by the
binary black hole dynamics. This system, composed of two
black holes, ambient magnetic field and tenuous plasma,
can lead to a net Poynting flux from the system [16].

This work is organized as follows: We begin in Sec. II
with a description of the equations and assumptions em-
ployed. Section III includes details of our numerical im-
plementation, and Sec. IV describes our results for both
single and binary black holes. In the former case, we
include a brief description of known solutions, which we
use to further test our implementation. We conclude with
final comments in Sec. V. We discuss details of the
Blandford-Znajek mechanism in the Appendix.

II. FORMULATIONANDNUMERICALAPPROACH

We solve the coupled Einstein-Maxwell system to
model the black hole merger interacting with a force-free
environment produced by an externally sourced magnetic
field. The particular formulation for these systems has been
discussed in detail in [17], so we only summarize briefly
the main results, focusing on the treatment of charge and
current following the force-free approximation.

A. The Einstein equations

We adopt a Cauchy, or 3þ 1, formulation where the
space-time ðM;gabÞ (a, b ¼ 0, 1, 2, 3) is foliated with
spacelike hypersurfaces labeled by constant coordinate
time x0 � t ¼ const. The intrinsic metric of these hyper-
surfaces is �ij ¼ gij (i, j ¼ 1, 2, 3). The normal vector to

the hypersurfaces is na � �rat=jjratjj, and coordinates
defined on neighboring hypersurfaces can be related
through the lapse function, �, and shift vector, �i. With
these definitions, the space-time line element can be ex-
pressed as

d s2 ¼ gabdx
adxb

¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ: (1)

The normal vector/covector are given explicitly by

na ¼ 1

�
ð1;��iÞ; na ¼ ð��; 0Þ: (2)

Indices on space-time quantities are raised and lowered
with the 4-metric, gab, and its inverse, while the 3-metric,
�ij, and its inverse are used to raise and lower indices on

spatial quantities. The following simple expressions relate
the 3þ 1 basic variables f�ij; �; �

ig with the four-

dimensional metric fgabg by

�ij ¼ gij; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=g00

q
; �i ¼ �ijg0j: (3)

We adopt Einstein’s equations written in the generalized

harmonic formulation to evolve the full space-time metric
gab. We adopt a fully first order formulation of the gener-
alized harmonic equations together with constraint damp-
ing as described in [17–20]. The 3þ 1 variables
f�ij; �; �

ig are employed to express Maxwell equations

in a more familiar form.

B. Maxwell equations

To implement the Maxwell equations, we adopt the
formulation described in [17,21]. The equations of motion
for the electric and magnetic fields are given by

ð@t �L�ÞEi � �ijkrjð�BkÞ þ ��ijrj�

¼ � trKEi � 4��Ji; (4)

ð@t �L�ÞBi þ �ijkrjð�EkÞ þ ��ijrj� ¼ � trKBi; (5)

ð@t �L�Þ�þ �riE
i ¼ 4��q� ��2�; (6)

ð@t �L�Þ�þ �riB
i ¼ ���2�: (7)

with trK the trace of the extrinsic curvature, q the charge
density and Ji the current density. The fields � and � are
introduced to dynamically enforce the constraints via an
exponential damping in a characteristic time scale 1=�2.
In previous works, we have employed this formulation

to study electrovacuum scenarios [17,22,23]. We are here
interested in the more realistic case that considers plasma
around the black holes. To this end, we recall that in the
magnetospheres of the neutron stars or black holes the
density of the plasma is so low that even moderate mag-
netic fields stresses will dominate over the pressure gra-
dients. In turn, this means that the stress-energy tensor is
dominated mainly by the electromagnetic component

T�	 ¼ Tfluid
�	 þ Tem

�	 � Tem
�	; (8)

the stress-energy conservation law implies that the Lorentz
force is negligible. This is known as the force-free approxi-
mation [9,24,25], which can be written in terms of Eulerian
observers as

EkJk ¼ 0; qEi þ �ijkJjBk ¼ 0: (9)

By considering the scalar and the vectorial products with
the magnetic field Bi in Eq. (9), one obtains

EiBi ¼ 0; (10)

Ji ¼ q
�ijkEjBk

B2
þ JB

Bi

B2
; (11)

where JB � JkBk is the component of the current parallel
to the magnetic field. The first relation implies that the
electric and magnetic fields must be perpendicular, while
the second defines the current up to the parallel component
JB. By using Maxwell equations, one can compute
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@tðEiBiÞ, which has to vanish due to the constraint in
Eq. (10). This condition imposes a relation for JB, which
can be substituted into Eq. (11) in order to complete the
specification of the current (e.g., [25,26]).

An alternative approach to determine the parallel com-
ponent is through the introduction of a suitable Ohm’s law
of the type

JB ¼ �BE
kBk; (12)

where �B is the anisotropic conductivity along the mag-
netic field lines. Once the current is complete, we can use
the Maxwell equations to compute again the time deriva-
tive of Eq. (10), obtaining

@tðEiBiÞ ¼ . . .� ��BðEiBiÞ; (13)

which enforces the constraint of Eq. (10) in a time scale
given by 1=�B. In the case of force-free plasmas, one has
the limit �B ! 1.

The above describes the basic aspects of the force-free
equations which we use to model our systems of interest. In
this approach, we are free to eliminate the charge density q
from our set of variables by substituting for it with the
electromagnetic constraint q ¼ riE

i. Consequently, this
constraint is removed and so the corresponding divergence
cleaning scalar field reduces trivially to� ¼ 0 (for further
details on the implementation of divergence cleaning tech-
niques see [17]). Furthermore, since in the force-free limit
the inertia of the fluid is neglected, the fluid equations need
not be evolved at all. It is useful to note that the character-
istic speeds of theMaxwell equations in the force-free limit
are given by two Alfvén waves and two magnetosonic
waves, moving at the speed of light.

One last delicate point is that the force-free approxima-
tion may break down during the evolution in some regions.
For instance, in some regions current sheets develop such
that

B2 � E2 > 0 (14)

is not satisfied everywhere. Ideally, in such regions one
expects anomalous isotropic resistivity to appear, restoring
the dominance of the magnetic field. However, implement-
ing some form of Ohm’s law that accounts for this resis-
tivity will generally lead to stiff terms in the evolution
equation of the electric field. As a result, a severe constraint
on the size of time step is introduced as �t � 1=�B. This
condition is computationally prohibitive in realistic scenar-
ios and generally requires specialized algorithms to solve
it. One possible approach is the use of implicit-explicit
Runge-Kutta methods [27], although its implementation in
general relativistic settings is far from mature.

We here adopt a different, simpler, option which consists
of implementing these two resistivities (i.e., the infinite
anisotropic one and the anomalous isotropic one) by fol-
lowing a prescription given in [21,28]. We evolve the
Maxwell equations with the component of current perpen-

dicular to the magnetic field given in Eqs. (11), but, after
each time step, we modify the resulting electric field to
account for the role the resistivity would play. In particular,
we modify the electric field so that it satisfies both EiBi ¼
0 and B2 � E2 > 0. These conditions are enforced by
suitably projecting Ei as

Ei ! Ek

�

i
k � Bk

Bi

jBj2
�
; (15)

Ei ! Ei

�
ð1��ð�ÞÞ þ jBj

jEj�ð�Þ
�
; (16)

where � ¼ E2 � B2 and function�ð�Þ ¼ 1 if �> 0 and 0
otherwise. After each iteration of the Runge-Kutta time
step, Eq. (15) is applied to remove any component parallel
to the magnetic field and then Eq. (16) is applied to limit
the magnitude of the electric field to that of the magnetic
field.

III. IMPLEMENTATION

A. Numerical implementation

We adopt finite difference techniques on a regular
Cartesian grid to solve the overall system numerically. To
ensure sufficient resolution in an efficient manner we
employ adaptive mesh refinement (AMR) via the HAD

computational infrastructure that provides distributed,
Berger-Oliger style AMR [29,30] with full subcycling in
time, together with an improved treatment of artificial
boundaries [31]. The refinement regions are determined
using truncation error estimation provided by a shadow
hierarchy [32] which adapts dynamically to ensure the
estimated error is bounded by a prespecified tolerance. A
fourth order accurate spatial discretization satisfying a
summation by parts rule together with a third order accu-
rate in time Runge-Kutta integration scheme are used to
help ensure stability of the numerical implementation [33].
We adopt a Courant parameter of � ¼ 0:2 so that �tl ¼
0:2�xl on each refinement level l. On each level, one
therefore ensures that the Courant-Friedrichs-Levy condi-
tion dictated by the principal part of the equations is
satisfied.
To extract physical information, we monitor the

Newman-Penrose radiative scalars; in particular, the elec-
tromagnetic (�2) and gravitational (�4) radiative scalars
[34]. These scalars are computed by contracting the
Maxwell and theWeyl tensors, respectively, with a suitably
defined null tetrad

�2 ¼ Fabn
a �mb; �4 ¼ Cabcdn

a �mbnc �md; (17)

and they account for the energy carried off by outgoing
waves at infinity. The total energy flux (luminosity) in both
electromagnetic and gravitational waves are
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LEM ¼ dEEM

dt
¼

Z
FEMd� ¼ lim

r!1

Z r2

2�
j�2j2d�; (18)

LGW ¼ dEGW

dt
¼

Z
FGWd�

¼ lim
r!1

Z r2

16�

��������
Z t

1
�4dt

0
��������

2

d�: (19)

B. The Blandford-Znajek model

Seeking to understand the nature of the central engine
powering active galactic nuclei, BZ studied the extraction
of rotational energy from a spinning black hole (BH) by
means of an electromagnetic field [9]. Their model as-
sumes a spinning black hole immersed in an magnetic field
produced by a magnetized accretion disk. The rotation of
the BH within the magnetic field induces a charge separa-
tion between the poles and the equator of the BH horizon
(which can be understood easily by the membrane para-
digm [36]), producing a potential difference in the imme-
diate vicinity of the black hole. A single electron (or
positron) accelerated by this potential difference will reach
a high enough energy to radiate gamma-ray photons, which
in turn may decay into an electron-positron pair. This pair
production process can be repeated, leading to a cascade.
The time-averaged structure of this magnetosphere is rea-
sonably well described by the force-free approximation.

Another important diagnostic quantity measures the be-
havior of the electromagnetic field. Let us write down the
Maxwell tensor in terms of the vector potential Aa, namely,

Fab ¼ @aAb � @bAa; (20)

and assume that the space-time is axisymmetric and sta-
tionary, that is, @�F ¼ @tF ¼ 0 for any field F. The force-

free condition EiBi ¼ 0 can be written as �FabFab ¼ 0, or
in terms of the vector potential and standard spherical
coordinates

A�;At;r � At;�A�;r ¼ 0: (21)

We can define a function �Fðr; Þ such that

�F � � At;r

A�;r

¼ � At;

A�;

; (22)

which can be interpreted as the rotation frequency of the
electromagnetic field. Because the poloidal field surfaces
can be defined by A� ¼ constant (i.e., it is a stream func-

tion for the magnetic field), �F and the electrostatic po-
tential At are constant along magnetic field lines. Notice
that�F can also be written in terms of the Maxwell tensor,
in particular,

�F ¼ Ftr

Fr�

¼ Ft

F�

: (23)

The quantity�F thus represents a useful quantity which
we monitor in our simulations. We emphasize however that

�F is defined strictly in terms of a stationary, axisymmetric
space-time, and so it need not be useful for the dynamical
or asymmetric cases that we study in what follows.
Traditionally, two lines of thought have been adopted

when describing the ability to extract energy from a black
hole interacting with a magnetic field in the force-free
approximation. One of them exploits the assumption of
stationarity to calculate the amount of energy extracted
from the system while the other appeals to the membrane
paradigm to interpret the system as a loaded circuit which
dissipates energy. (For reference we include a brief over-
view of both approaches in the Appendix). Notice that both
options suffer from caveats in their interpretation; however,
their basic picture and message is the same. Namely, that a
net flux of electromagnetic energy is produced the magni-
tude of which scales as / ðBrÞ2�Fð�H ��FÞ with�H �
a=ð2MrHÞ the frame dragging orbital frequency at the
horizon, Br the normal component of the magnetic field
at the horizon, and rH is the horizon radius of the BH.
Without a known solution for the cases of interest, both Br

and �F need to be obtained from numerical solutions. In
cases studied [9], it has been found that�F ’ �H=2 for the
monopole case, and also at the poles in the case of a black
hole immersed in an otherwise constant magnetic field
aligned with the black hole spin (discussed more in
Sec. IVA1).

C. Initial data

We consider both single and binary black hole simula-
tions, immersed initially in a constant magnetic field such
as one produced by a distant disk surrounding the black
hole. Thus the influence of the distant current loop is
accounted for via initial and boundary conditions.
Because the electromagnetic field is affected by the curved
space-time, it will be dynamically distorted from its initial
configuration, but will eventually reach a quasistationary
configuration.
In addition to its direction, we must choose an initial

magnitude B0 for the magnetic field, and we choose an
astrophysically relevant value. To this end, we first express
the magnitude in geometrized units

B½1=M� ¼ 1:2� 10�20

�
M

M�

�
B½G�: (24)

We adopt (except in the monopole case described in
Sec. IVA1) a field strength of B0 ¼ 104ðM=108M�Þ G,
which is consistent with possible values inferred in
relevant astrophysical systems [37,38] and which is b

elow the Eddington magnetic field strength B ’
6� 104ðM=108M�Þ�1=2 G [39]. Such realistic magnitudes
for the magnetic field dictate that the energy associated
with the electromagnetic field remains several orders of
magnitude smaller than that of the gravitational field and so
they have a negligible influence on the dynamics of the
black holes. For all binary cases considered here, the
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orbital plane of the evolution is assumed to be aligned with
that of the distant circumbinary disk. Because the magnetic
field is anchored in the disk, its associated magnetic dipole
is aligned with the orbital angular momentum. The electric
field is always chosen to be initially zero.

For the single black hole cases, we adopt the Kerr space-
time written in horizon penetrating (i.e., Kerr-Schild) co-
ordinates. A superposition of two isolated black holes in
these coordinates is used for the head-on binary black hole
case. The individual mass of each black hole is Ms ¼ 2,
and they are initially at rest and separated by a distance of
16M, where M ¼ 2Ms the total mass.

For orbiting binary black holes, we adopt initial data
corresponding to quasiequilibrium, equal-mass, nonspin-
ning black holes constructed by the publicly available
LORENE code [40]. The black holes are initially separated

by a distance of� 6M, lying beyond the approximate inner
most stable circular orbit [41]. With this separation, the
merger takes place after about one orbit and we can com-
pare with the results obtained in the electrovacuum case
[17,22].

IV. NUMERICAL RESULTS

The analysis of the single black hole case serves not only
as a test of our numerical implementation, but also as a
more basic system with which to understand the orbiting
case. In particular, the features of the initial transient, in
which the electromagnetic (EM) field adapts to the geome-
try of the black hole space-time, gives rise to an electric
field and deforms the initially vertical magnetic field (see
also [42,43]). Notice however that the electric and mag-
netic fields are not coordinate invariant quantities [44].
Therefore, in general they will have different forms in
different coordinate systems and, as always, one should
proceed with care when examining noninvariant quantities.

To explore the effects of the merger dynamics on the
electromagnetic field, we compare single spinning black
hole with cases of equal-mass merging black holes. For
single black hole cases, we examine the behavior of the
system with respect to variations on the spin parameter as
well as different inclinations between spin and asymptotic
magnetic field directions.

A. Single black holes

We consider two cases involving single black holes as
tests of our implementation. We note our use of Cartesian
coordinates which are not adapted to the symmetries of
these two test cases, and so our angular resolution is
generally not as refined as in other work with two-
dimensional axisymmetric codes [45]. However, compari-
son of our results with such work gives us further confi-
dence on our implementation. In these simulations of
single black holes the geometry is kept fixed.

Our numerical domain consists of a right parallelpiped
region defined by the intervals ½�40M; 40M�2 �

½�100M; 100M�. This structure allows us to refine further
along the z direction to better resolve the resulting colli-
mated Poynting flux. We employ a fixed mesh refinement
configuration with five levels of refinement, each one
covering half of the domain of the parent, coarser level.
The coarsest resolution employed is �xi ¼ 2M while the
finest one is �xi ¼ 0:125M. The damping parameter is set
to be �2 ¼ 1M.

1. The monopole solution

There is an exact, flatspace solution of Michel [46] for a
nonrotating black hole with purely radial magnetic field
[9,21]

Br ¼ B0 sin=
ffiffiffiffi
�

p ¼ �B0=r
2: (25)

For scenarios with a 	 1, the poloidal magnetic field is
not expected to differ much from this exact solution be-
cause the differences scale with Oða2Þ. Blandford and
Znajek found a perturbative solution for slow rotation
which demonstrates rotation of the magnetic field lines
[9]. Matching this solution for large radius with Michel’s
monopole solution in flat space-time leads to�F ¼ �H=2;
the magnetic field lines rotate with constant angular veloc-
ity everywhere at half of the rotation frequency of the BH.
We adopt B0 ¼ 0:01 in geometrized units and a ¼ 0:1,

since for this low spin the numerical solution results are
close to the perturbative one. The initial electric field is set
initially to zero, although it evolves gradually to the
Blandford-Znajek monopole solution during the evolution.
Figure 1 displays the magnetic field lines on the z ¼ 0
plane and the angular distribution of �F in the azimuthal
and axial directions at t ¼ 100M. The results are in good
agreement with the perturbative solution and compare well
with Komissarov (see Fig. 2 of [21]).

2. The force-free ‘‘Wald solution’’

In the absence of charges and currents (i.e., the electro-
vacuum case), an exact solution was constructed by Wald
[47] for a black hole immersed in an external magnetic
field aligned with the spin. Although an analogous exact
solution for the force-free approximation is unknown,
several numerical studies have made use ofWald’s solution
as initial data for a force-free evolution [21,48]. These
studies found that all magnetic field lines penetrating the
ergosphere rotate with a frequency similar to the parabo-
loidal case of Blandford-Znajek [9].
We revisit this setup and consider different spin values

and alignment. In the latter case we adopt a spin parameter
given by a ¼ 0:7M which is close to the spin expected for
a merged black hole from an equal-mass, nonspinning
binary system. We adopt this value for comparison with
the binary black hole scenario presented in the next
section.
The initial magnetic field is poloidal resulting from a

circular current loop, the radius of which is assumed to be
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larger than the region of interest [49]. We assume the disk
lies at 103M, and for these distances the magnetic field is
essentially constant and vertical within our computational
domain. We therefore simply set Bi ¼ B0ẑ (with B0 ¼
104 G) with an initially vanishing electric field.

The evolution shows an initial transient during which the
magnetic field twists around the spinning black hole and an
electric field is induced. After t ’ 80M the solution evolves
towards a quasistationary state. As displayed in Fig. 2, all
magnetic field lines crossing the ergosphere acquire a
rotation velocity consistent with previous studies [21,48].
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FIG. 2 (color online). ‘‘Wald solution’’: Late-time (t ¼ 100M) behavior for a single spinning black hole with a ¼ 0:7. Left: Contour
lines of the rotation frequency �F=�H between 0.01 and 0.9, together with the apparent horizon (green inner circle) and the
ergosphere (blue outer ellipse) Right: The rotation frequency interpolated onto the half-circle in a meridional plane.
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FIG. 1 (color online). Monopole test: Left: Magnetic field lines in the z ¼ 0 plane at t ¼ 100M for a single spinning black hole with
a ¼ 0:1. Right: The rotation frequency �F of the magnetic field along the axial and azimuthal angles about the origin. The known
perturbative solution is also shown for comparison purposes.
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We compare the resulting electrovacuum and force-free
solutions at late time in Fig. 3. From the figure, it is quite
apparent that the force-free solution results in significantly
more deformation of the magnetic field lines because of the
resulting currents near the horizon. Similarly, the electric
field of the force-free case reveals a ‘‘flow’’ structure on the
black hole which can support currents along it. In contrast,
the electrovacuum case has an induced separation of
charge but no current. The presence of charge and current
in the force-free model is the critical difference which
allows for the large Poynting flux and energy extraction
from the black hole.

3. The Dependence of luminosity on spin and orientation

The single black hole, outside the scope of any test,
represents a physically interesting scenario in and of itself,
and it also describes the late stage of dynamical processes

resulting from the merger of black holes. In particular, we
consider the dependence of the radiated power computed in
Eq. (18) on the spin of the black hole. Figure 4 (top panel)
shows the results of varying the spin parameter a along
with a fit obtained by the following argument. Following
the analysis of [50] for the monopole solution, we have

�F ’ �H

2
; Br ’ �T

r2
; (26)

where �T is the total magnetic flux threading the black
hole. Substituting these into Eq. (A4), we obtain that the
EM luminosity behaves as LEMðaÞ ’ k�2

T�
2
H for some
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FIG. 3 (color online). Comparison of electrovacuum and
force-free solutions: Snapshot at t ¼ 100M of a single spinning
black hole with a ¼ 0:7 on the y ¼ 0 plane with the apparent
horizon (green) and the ergosphere (magenta). For x < 0, we
show the force-free solution while for x > 0 the electrovacuum
solution is shown. Top: Magnetic field lines. Bottom: Electric
field lines.
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FIG. 4 (color online). Dependence of luminosity on spin and
orientation for a black hole with mass M ¼ 108M� and initial
magnetic field of B0 ¼ 104 G. Top: The luminosity is shown as a
function of the black hole spin a for the aligned case 0 ¼ 0.
Also shown (red, solid line) is a fit to LEM / �2

H. Bottom:
Luminosity as a function of the angle 0 between the asymptotic
magnetic field and the spin angular momentum of the black hole
for the cases a ¼ 0:7 and a ¼ 0:1. Also shown (red, solid line) is
the curve Ao½1þ cosðoÞ2� where Ao is a constant obtained by
matching just the point at o ¼ 0.
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constant k. As shown in Fig. 4, the dependence on �2
H fits

the numerical results quite well. Higher order expansions
developed in [50] show that the next leading order goes like
�4

H.
Of perhaps more interest, we consider the dynamics

when the spin of the black hole is not aligned with the
asymptotic direction of the magnetic field. We define the
angle between these two directions as 0 such that the
aligned case is 0 ¼ 0. Varying 0 up to �=2 radians
breaks axial symmetry which we can study since our
implementation does not assume any symmetry [51].
Figure 4 (bottom panel) illustrates the observed luminosity
for two cases with spin parameter fixed at a ¼ 0:7 and a ¼
0:1 but misaligning it with respect to the asymptotic direc-
tion of the magnetic field. The emitted power decreases
gradually for larger angles but even for the extreme case
where the black hole spin is orthogonal to the asymptotic
magnetic field, the power output is decreased to only about
half that of the aligned case. Thus regardless of the spin
orientation with respect to the magnetic field direction, a
significant Poynting flux arises.

The observed dependence with inclination can be under-
stood, in the slowly spinning limit, by combining the
understanding of the BZ mechanism (within the membrane
paradigm point of view) together with results of [58]. The
work of [58] considers a slowly spinning and misaligned
black hole within which currents are induced as it spins
within the ambient magnetic field. Integrating the induced
electric field, one obtains the electromotive force �V
which is consistent with the black hole serving as a battery
(also discussed in the Appendix). The resulting energy
released at the load far outside the black hole then behaves
as / ð1þ cosðoÞ2Þ. Figure 4 (bottom panel) illustrates the
values obtained for spins a ¼ 0:1, 0.7 for a range of angles
o. We also include for comparison the curve given by
A0ð1þ cosðoÞ2Þ where we obtain the value of the fitting
constant A0 by matching to the value obtained for a ¼ 0:1
at o ¼ 0. For a ¼ 0:1 good agreement is observed, espe-

cially for o < 45
, suggesting the dominant behavior is
indeed captured by the argument above. Because trunca-
tion errors in the calculated values are larger for higher
angles, the discrepancy observed should not be taken too
seriously before further refined results are available.
Interestingly, the data for a ¼ 0:7 demonstrates a similar
trend, but a small bump arises around o � 15
. Further
work is required to assess whether this effect is real or
driven by numerical errors.
It is instructive to examine the induced currents in both

the aligned and orthogonal cases. Figure 5 shows the
currents within the x̂-ẑ plane, demonstrating that in both
cases the current flows along the z axis, following the
background B0ẑ field. For the aligned case, the current
flows in a region near the z axis down to the black hole,
and then back up within a cylindrical shell at larger radius.
The currents in the orthogonal case resemble those in the
aligned case after antisymmetrization along the central
axis.
Figure 6 shows cross sections of the magnetic field

structures for the two alignments. We have switched to
the x̂-ŷ plane at a distance z ¼ 4M above the black hole, so
that the current Jz now flows perpendicular to the dia-
grams. The aligned case (o ¼ 0) shows the standard
toroidal B field with clockwise rotation. For the anti-
aligned case at o ¼ � one would find the mirror image,
with counterclockwise rotation. For the intermediate an-
gles 0< o < � however, this simple, single toroidal
structure is not possible. In particular, directly flipping
the helicity for a single toroidal B field would result in
irrotational field at o ¼ �=2, and thus zero current and
energy flux for this alignment. Instead we find that the
system responds by generating two counter-rotating toroi-
dal B fields at o ¼ �=2, offset by about the diameter of
the black hole. It is this structure which leads to the
antisymmetric currents seen in Fig. 5, and allows for a
smooth transition from o ¼ 0 to � while always keeping

r� ~B nonzero.

FIG. 5 (color online). Charge density and currents at t ¼ 100M for a single spinning black hole with a ¼ 0:7. Left: An aligned black
hole (o ¼ 0). Right: A misaligned black hole with o ¼ �=2.
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Finally, as an illustrative example of the collimation
characteristic of the energy output by the system, we dis-
play the energy flux density in Fig. 7 together with the
magnetic field lines for two cases, o ¼ 0 and o ¼ �=4.
The spin is set to a large value, a ¼ 0:99, in order to
demonstrate the twisting of the magnetic field lines.
Clearly, the Poynting flux is directed along the field lines
and is concentrated on the magnetic field lines which pass
through the ergosphere.

B. Binary black holes

In the cases with single black holes studied above, the
energy was extracted along the field lines that cross the
ergosphere. The monopole solution, therefore, radiates in
all directions since all field lines cross the ergosphere. In

contrast, the force-free Wald solution demonstrates a colli-
mated energy flux along the direction of the magnetic field.
This collimation is induced even when the spin of the black
hole is orthogonal to the asymptotic magnetic field. These
results lead one to consider nonspinning black holes that
are nevertheless moving with respect to the asymptotic
magnetic field.
We therefore now consider binary black hole cases,

beginning with the simpler case of a head-on collision
and following with an orbiting case. In all cases for sim-
plicity we adopt equal-mass binaries. The initial magnetic
field is chosen once again as a poloidal configuration

produced by a circular loop with large radius, so that ~B ¼
B0ẑ. The electric field is initially zero throughout the
computational domain and the magnetic field strength
adopted is B0 ¼ 104 G.

1. Head-on collision

The domain is a cube given by ½�66M; 66M�3 and we
employ an AMR configuration with 4 levels of refinement
in which the coarsest resolution is �xi ¼ 1:5M while the
finest one is �xi ¼ 0:093 75M. We adopt the same gauge
parameters as in [17,22]. The black holes begin stationary,
accelerate towards each other and eventually merge. As
time progresses the black holes increase in speed and
eventually merge.
As illustrated in Fig. 8, the field lines are pulled by the

motion of black holes. Because the field lines are fixed
asymptotically by the distant circumbinary disk, the field
lines cannot simply move with the hole. Instead, the local
distortion of the field lines represent a complicated inter-
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FIG. 6 (color online). Cross sections of the magnetic field structure at z ¼ 4M for the aligned and 90 degree cases. Left: A clockwise
toroidal B field is generated in the aligned case. Right: We find two offset and counter-rotating toroidal fields for o ¼ �=2.

FIG. 7 (color online). Density of energy flux FEM at t ¼ 100M
for a single spinning black hole with a ¼ 0:99, together with the
magnetic field lines. Left: An aligned black hole (o ¼ 0). Right:
A misaligned black hole with o ¼ �=4.
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play among the black hole, the electromagnetic field, and
the current of the plasma. The net result of this interaction
is that some energy of the black hole is propagated by
means of Alfvén waves.

Evident in Fig. 8 is a region of flux associated with each
black hole. This flux is not associated with a rotation of the
magnetic field lines, and so it is qualitatively different from
what we find with single, spinning black holes. It is also
important to note that we are venturing away from the
scenario described by [9], since we have two nonspinning
black holes with no angular momentum. There is therefore

no ergoregion. Instead, the motion of the black holes with
respect to the preferred frame of the magnetic field is
serving to convert gravitational to electromagnetic energy.
However, this process can be understood in terms similar to
those used by BZ to describe single black holes. In par-
ticular, the motion of the black holes through the back-
ground magnetic fields induces an electromotive force—as
in any circuit moving through a magnetic field. As the
black holes merge, the final one is stationary with respect
to the asymptotic field lines and does not spin, therefore its
Poynting flux decreases to zero.

FIG. 8 (color online). Head-on collision of two black holes: Snapshots at times t ¼ 20M, 40M and 60M. Left: The electromagnetic
energy flux (shaded) and representative magnetic field lines (solid blue lines). Right: The magnetic field lines in detail on the x ¼ 0
plane, showing only field lines close to the black holes are being perturbed, and that, after the BH passes, they recover their original
shape due to the magnetic tension.
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Finally, the structure and sign of the charge densities can
be observed in Fig. 9. The membrane paradigm predicts a
separation of charges on the apparent horizon analogous to
the Hall effect. Notice a small current sheet develops
behind the black holes.

2. Orbiting black holes

We now turn our attention to an orbiting binary black
hole case. We adopt a cubical domain given by
½�106M; 106M�3 and employ an AMR configuration
with 6 levels of refinement. The coarsest grid has just 47
points along each direction, so that the coarsest resolution
is �xi ¼ 4:6M while the finest one is �xi ¼ 0:072M. We
adopt the same gauge parameters as in [17,22].

The black holes rotate around each other for about an
orbit before merging. Snapshots of this process are shown
in Fig. 10. Even though the black holes have no initial spin,
we observe a collimated region of Poynting flux associated

with each of the black holes while in orbit. After merger, as
the remnant black hole settles into a stationary, Kerr con-
figuration, the Poynting flux likewise settles into what
appears to be the standard Blandford-Znajek scenario.
This result indicates that the BZ scenario is a stable,
attracting solution with no assumed symmetries and with
dynamical gravity.
The electromagnetic and the gravitational luminosities

throughout the merger are shown in Fig. 11. These lumi-
nosities are obtained with Eqs. (18) and (19) by integrating
over a large sphere enclosing the system (radius R� ¼
20M). As can be discerned in the figure, the luminosities
increase dramatically at merger. It is also interesting that
the gravitational wave luminosity is so much larger than
the electromagnetic emission that it has to be scaled down
to appear on the graph.
We are interested in estimating the amount of luminos-

ity, L
isotropic
EM , that is not collimated because such emission

could potentially be visible when the jet is not pointing at
us. This estimation, however, is delicate because the pres-
ence of a nonvanishing magnetic field throughout the
computational domain obscures the computation of the
radiative components of the electromagnetic fields and so
the luminosity.
So we proceed by trying to isolate various contributions

to the electromagnetic luminosity. First, we compute the
EM power produced mainly by the orbital motion, Lorbital

EM ,
by decomposing �2 into spherical harmonics and keeping
just the m ¼ 2 modes for the surface integration. The idea
is that Lorbital

EM captures the energy released in all l modes
(we calculate up to l ¼ 8) but by excluding the other
modes, it avoids the spurious contribution from the back-
ground field. Because at merger the luminosity transitions
from m ¼ 2 to m ¼ 0, Lorbital

EM vanishes at this stage.
Second, we measure the collimated contribution,

Lcollimated
EM , to the EM power by integrating only where we

estimate the jet to be. We therefore integrate over just a
solid angle centered on the z axis of width 15 degrees. This

FIG. 9 (color online). Head-on collision of two black holes: The charge density before and at the merger on the equatorial plane.

FIG. 10 (color online). Orbiting binary black holes: The elec-
tromagnetic energy flux at different stages of the evolution: early
when the black holes are separated; shortly after they merge. The
final state is similar to the single spinning black hole studied
previously. Notice that the ‘‘clumps’’ seen in the left frame are
artifacts from the initial data.
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luminosity does not vanish after the merger, but rather it
tends to the one corresponding to a single spinning black
hole as studied in the previous section with spin a ’ 0:67
(which corresponds to the final black hole).

We can now obtain our estimate of the noncollimated
EM luminosity by subtracting these two luminosities, i.e.,

L
isotropic
EM � Lorbital

EM � Lcollimated
EM . Examination of the figure

shows that the noncollimated contribution is smaller than
the collimated one for most of the early stage of the
evolution. At the merger stage however, a strong burst is
produced radiating energy in all directions signaling tan-
talizing prospects for electromagnetic counterparts to
gravitational waves, possibly observable regardless of the
jet direction.

V. FINAL COMMENTS

We have studied the interaction among a black hole, the
tenuous plasma in its vicinity, and a magnetic field an-
chored by a circumbinary disk, extending the work of BZ
who work under assumptions of stationarity and axisym-
metry. Working with dynamical gravity with no assumed
symmetries, we find that orbiting, nonspinning binary
black holes produce collimated tubes of Poynting flux for

each black hole in addition to the expected gravitational
wave output. We then remove all angular momentum by
considering the head-on collision of two black holes.
Remarkably, this system also generates Poynting flux as-
sociated with each black hole, suggesting that the motion
of the black hole relative to the asymptotic magnetic field
direction will generically produce Poynting flux in what
might be considered a generalization of the BZ
mechanism.
We also study single black holes, both as tests of our

code and as simpler physical systems than the binary cases.
We study the dependence of the luminosity on black hole
spin and alignment. Even when the black hole spin is
perpendicular to the asymptotic magnetic field, it still
produces a nonzero electromagnetic luminosity.
An important aspect of this work concerns the implica-

tions for observing such binary systems. The collimated
Poynting flux can be expected to accelerate charges in the
vicinity of the black hole which will then radiate copiously
through synchrotron processes. There is also the possibility
that the radiation will interact with surrounding matter in
way that might be observable.
That the EM fields have a clearly discernible pattern tied

to the dynamics of the system, makes them possible tracers
of the space-time—in the electromagnetic sector—physi-
cal characteristics of the systems might be discernible from
observable EM signals. In particular, the Poynting flux
from the merger resembles the ‘‘pair of pants’’ picture of
the event horizon for such a merger [59], with the impor-
tant difference that the Poynting flux is potentially observ-
able. The collimated flux of energy displays a twisting
behavior directly tied to the orbital motion of the individual
black holes suggesting the remarkable possibility of ‘‘see-
ing’’ strong-field gravity in action. Even after the merger
when the gravitational waves cease, the Poynting flux
continues as per the original BZ mechanism.
Black holes interacting with plasmas may constitute

ideal systems for coincident detection in both gravitational
and electromagnetic spectra. Deciphering the combination
of information obtained in both bands will allow unprece-
dented scrutiny of strongly gravitating and highly dynami-
cal systems. At a more speculative level, such combined
signals might be exploited to shed light on alternative
theories of gravity in which photons and gravitons might
propagate at different speeds or gravitational energy could
propagate out of our four-dimensional brane (for a recent
discussion of some possibilities, see [60,61]).
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APPENDIX

1. BZ mechanism. Exploiting symmetries

One common way to interpret the BZ mechanism ex-
ploits the time symmetry of the problem to examine the
rate of energy flux from the black hole [45]. Unfortunately,
the energy flux is not positive definite and thus the asso-
ciated fluxes need to be interpreted with care. We briefly
review the main details of this approach below.

For any stationary axisymmetric system, one can define
a conserved flux vector from the energy conservation
equation

rbð�aT
abÞ ¼ 0: (A1)

The conserved electromagnetic energy flux is constructed
with the time killing vector (i.e., stationary space-time)
�t ¼ ð1; 0; 0; 0Þ. The conservation Eq. (A1) implies that the
radiated energy crossing a spherical surface at a given
radius is

@tE ¼ 2�
Z �

0

ffiffiffiffiffiffiffi�g
p

FEMd; FEM � �Tr
t : (A2)

Assuming Kerr-Schild coordinates, we compute the en-
ergy flux density FEM

FEM ¼ 2ðBrÞ2r�F

�
a

2Mr
��F

�
sin2� BrB��F�sin

2;

(A3)

where � ¼ r2 þ a2 � 2Mr. This expression simplifies at
the horizon since r ¼ rþ ¼ rH and � ¼ 0 so that it be-
comes

FEMjr¼rH ¼ 2ðBrÞ2rH�Fð�H ��FÞsin2; (A4)

where rH ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
is the radius of the horizon.

This result implies that if 0<�F <�H and Br � 0, then
there is an outward directed energy flux at the horizon;
rotational energy is being extracted from the black hole due
to the magnetic field lines. The use of Kerr-Schild coor-
dinates allow for direct computations of the flux at the
horizon without any special treatment. However, as men-
tioned, one message from this calculation is that energy
comes out of the event horizon which is forbidden at the
classical level. The problem lies in the fact that the

energy defined with the killing vector � is not positive
definite within the ergosphere. Consequently this effect is
interpreted as negative ‘‘Killing’’ energy falling into the
horizon.

2. BZ mechanism. Exploiting an analogy

A second standard treatment of the problem relies on the
membrane paradigm which treats the horizon of the black
hole as a fictitious membrane. A thorough discussion of
this treatment is presented in [36] and we refer the reader to
it for details. Here we briefly mention its key features. This
membrane is regarded as having surface charge density,
current and resistivity. In particular, the surface resistivity
is equal to the vacuum impedance (RH ¼ 377�). Within
this framework, it is natural to imagine a circuit with wires
parallel to magnetic field lines in the vicinity of the black
hole and connected to some load at far distances. To
examine the power released by such a circuit in which
the rotating horizon of the black hole plays the role of a
battery. one needs to find the electromotive force of the
black hole. Employing Faraday’s law of induction in such
circuit one obtains

�V ’ ð2�Þ�1�HB
rr2H; (A5)

which can be used to estimate the total current flowing
through the circuit as

I ’ �V

�RH þ�RL

; (A6)

where �RH ’ RH and �RL ’ �F=I are the resistances
along the short end of the circuit near the horizon and at
far distances (the load), respectively. With these, the total
power dissipated by the circuit can be estimated as

P / �Fð�H ��FÞðBrÞ2: (A7)

Notice that this analogy can be extended to argue an
electromotive force will be induced also if a black hole
moves through an (asymptotically) stationary magnetic
field configuration. Thus explaining the Poynting fluxes
we see in both the head-on and orbiting binary black hole
cases.
Last, a recent work [62] presents an alternative point of

view which relies on regarding the region surrounding the
black hole as an electromagnetically active medium and
reinterprets the extraction process in a way closely tied to
Penrose’s extraction process from a rotating black hole.
These different approaches to the BZ mechanism agree

in their main message. Namely, that a net flux of electro-
magnetic energy is produced by the system the magnitude
of which scales as / ðBrÞ2rH�Fð�H ��FÞ. This flux is
powered by the rotational energy of the spinning black
hole.
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