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This work discusses gravothermal catastrophe in astrophysical systems and provides an analytic

collapse solution which exhibits many of the catastrophe properties. The system collapses into a trapped

surface with outgoing energy radiated to a future boundary and provides an example of catastrophic

collapse.
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I. INTRODUCTION

Since 1968, Lynden-Bell [1–3] has illuminated the con-
cept of negative heat capacity in astrophysical systems. He
explained Antonov’s theorem [4] which states (roughly)
that a spherical collection of self-gravitating point masses
has no global entropy maximum. Explanation was needed
since the most probable state for such a system is at the
maximum of the Boltzmann entropy. Lynden-Bell and
Wood considered a self-gravitating gas sphere. They cal-
culated the energy E and heat capacity CV of the isother-
mal sphere. A graph of the sphere’s binding energy vs
density contrast showed a local maximum near an inflec-
tion point, and the plot of specific heat vs density contrast
showed a stable branch for negative specific heat.

Negative CV can be understood as follows: the virial
theorem for inverse square forces of bounded systems
relates the average kinetic energy and average potential
energy as

hK:E:i ¼ �1
2hP:E:i:

With total energy E ¼ hK:E:i þ hP:E:i one has
E ¼ �hK:E:i negative;

but for moving particles K:E: ¼ 3
2NkBT. It follows that the

specific heat is negative

CV ¼ dE

dT
¼ � 3

2
NkB:

A negative CV system in contact with a large thermal
reservoir will have fluctuations that add energy and make
its transient temperature lower, causing inward heat flow
which will drive it to even lower temperatures. Thus nega-
tive CV systems cannot reach thermal equilibrium.

Lynden-Bell coined the name ‘‘gravothermal catastro-
phe’’ for stellar systems undergoing such collapse. To
describe the collapse, we quote [5]: ‘‘Conductive transfer
of heat from the central region will raise the high central
temperature faster than it raises the lower temperature of
the outer parts. No equilibrium is possible; the center
continues to contract and get hotter, sending out heat to
the outer parts.’’

Astrophysical systems where gravothermal catastrophe
may occur [6] are older globular clusters with compact
cores, and bright elliptical galaxies with high central den-
sity profiles. Lynden-Bell and Eggleton studied the core
collapse of globular clusters. In particular, they calculated
self-similar collapse features of a gravitating gas sphere.
One of the things they learned from their study was that to
model the formation of a central black hole in a globular
cluster, they needed to go beyond self-similarity and study
more dissipative collapse.
In this work, we present an analytic solution [7] with

shear and radial heat flow (SRH) which models many of
the features of catastrophic collapse. The system collapses
into a trapped surface with outgoing energy radiated to a
future boundary.
In the following section, the SRH collapse metric with

pressure and density is developed. The results are given in
Sec. III and summarized in Sec. IV. This is followed by two
appendixes. Appendix A contains the original SRH solu-
tion with arbitrary functions, and Appendix B has mass and
trapped surface equations.

II. COLLAPSING SRH FLUID

The SRH spacetime [7] is divided into an exterior region
covered by the Vaidya metric and a collapsing interior
region with spherically symmetric metric

gSRH�� dx�dx� ¼ A2dt2 � B2dr2 � R2d�2; (1)

where A ¼ Aðt; rÞ, B ¼ Bðt; rÞ, R ¼ Rðt; rÞ, and d�2 is the
metric of the unit sphere. The stress-energy tensor is given
by (G ¼ c ¼ 1)

T�� ¼ wû�û� � p��� þ q�û� þ û�q�: (2)

p is the isotropic pressure, w is the mass-energy density,
��� ¼ g�� � û�û�, and q� is the radial heat flow vector
orthogonal to û�. Time is comoving with û�@� ¼ A�1@t,

û�û� ¼ 1. We use the notation of Taub [8] for the mass-

energy density w. Taub’s purpose was to distinguish mass-
energy density from proper mass density �, where
w ¼ �ð1þ �Þ and � is specific internal energy.
The original SRH solution, given in Appendix A, pro-

vides the following metric functions and physical scalars
(overdots denote @=@t and primes denote @=@r):
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Rðt; rÞ ¼ et=t0½ð�2
0=2Þe�4t=t0 þ ðrþ r0Þ2�1=2; (3a)

Aðt; rÞ ¼ �0
_R; (3b)

Bðt; rÞ ¼ �0=R: (3c)

Metric functions A and B should be dimensionless and R
should have dimensions of length. We write A ¼ �0ð _R=cÞ
so it is clear that �0 is dimensionless. The other con-
stants have the following dimensions: dimðt0Þ ¼ time,
dimð�0Þ ¼ length, and dimðr0Þ ¼ length.

The heat flow vector and scalar are given by
4�q�dx

� ¼ Qdr. The heat flow scalar is

Q ¼ � 1

�0

�
rþ r0
R3

�
e2t=t0 : (4)

The pressure is

8�p ¼ ðrþ r0Þ2e4t=t0
�2

0R
2

�
R2 þ �2

0e
�2t=t0

R2 � �2
0e

�2t=t0

�
� ð1þ 1=�2

0Þ
R2

;

(5)

and the mass-energy density is

8�w ¼ 1

R2

�
1� 1

�2
0

� ðrþ r0Þ2
�2

0

e4t=t0
�
� 2

�2
0

e2t=t0 : (6)

w is negative when�
�2
0 � 1� �2

0ðrþ r0Þ2
�2

0

e4t=t0
�
� 2�2

0R
2

�2
0

e2t=t0 < 0;

�2
0�

2
0 � �2

0 � �2
0ðrþ r0Þ2e4t=t0 � 2�2

0R
2e2t=t0 < 0;

or �2
0 þ 3�2

0ðrþ r0Þ2e4t=t0 > 0:

This inequality always holds, and so w is negative.

III. COLLAPSE RESULTS

A. End stage of collapse

For small �0, R goes as

R ’ et=t0ðrþ r0Þ: (7)

The pressure and mass-energy density, at late times and for
small �0, go as

8�p ’ e2t=t0

�2
0

; (8)

8�w ’ �3
e2t=t0

�2
0

: (9)

At late times, the magnitude of the mass-energy density
increases exponentially, and the fluid approaches a photon
gas with equation of state

p ¼ 1
3 j w j : (10)

Negative mass-energy density w is linked to the
gravothermal catastrophe. The collapsing fluid has a nega-
tive specific heat which derives from negative internal
energy �. While both w and � are negative, the proper

mass density, � ¼ w=ð1þ �Þ, remains positive. To sepa-
rately compute �would require a complete thermodynamic
analysis. One would need a causal relativistic description
of thermodynamics such as the Israel-Stewart ‘‘second
order’’ type theory [9,10]. This has been left for future
work.
As a model of gravitational dyamics, Chavanis et al. [11]

studied the collapse of a gas of self-gravitating Brownian
particles in a closed sphere. For catastrophic collapse in the
microcanonical ensemble, they found the mass density to
go as

� ’ �0ðr0=rÞ2:21 (11)

and further, in a stability study, they found the perturbation
	�=� has a ‘‘core-halo’’ structure (hinting at central black
hole formation). Without developing the thermodynamics
of a collapsing SRH fluid, the density approximation in
Eq. (11) can be used to compute internal energy from � ¼
w=�� 1. With w at late times given in Eq. (9), we find

� ’ �const
e2t=t0

�0�
2
0

ðr=r0Þ2:21 � 1: (12)

When the density is given a temperature profile (in the

canonical ensemble �� T�1=2), then � ¼ �ðTÞ yields
negative specific heat cV ¼ d�=dT.

B. Trapped surface

From Eq. (B2) the Misner-Sharp mass within a t ¼
const, r ¼ const 2-surface is

2m ¼ R

�
1þ 1

�2
0

� ðrþ r0Þ2
�2

0

e4t=t0
�
: (13)

Null rays entering and leaving the 2-surface are described
by the expansions of their respective generators. Equations
(B6) and (B7) show that both null generators have non-
negative expansions and so a trapped surface exists at
R ¼ 2m. At the trapped surface, Eq. (13) sets a value for
constants �0 and �0.

�2
0

�2
0

¼ ðrtrap þ r0Þ2e4ttrap=t0 : (14)

The expression for R, Eq. (3a), yields

R2
trap ¼ ðrtrap þ r0Þ�0

ð2þ �2
0Þ

2�0

: (15)

We see from Eq. (4) that, at late times, the heat flow
scalar goes to zero

Q ’ � 1

�0

1

ðrþ r0Þ2et=t0
! 0: (16)

The heat flow shuts off as the fluid collapses into the
trapped surface.

C. Rate of collapse

The rate of collapse scalar is � ¼ r�û
� ¼ �1=ð�0RÞ.

We again quote Lynden-Bell: ‘‘During the gravothermal
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catastrophe. . . the center continues to constrict and get
hotter, giving out heat to the outer parts, but the tempera-
ture difference increases and drives the collapse onwards
still faster.’’ At distances just beyond the trapped surface

� ’ � et=t0

�0�0

: (17)

At late times the rate of collapse increases exponentially.
This is a necessary component for a model of catastrophic
collapse.

IV. SUMMARY

An analytic solution of Einstein’s equations for dissipa-
tive collapse has been presented. The original SRH solu-
tion contains arbitrary functions of time which have been
chosen here to provide an explicit solution. The system
collapses into a trapped surface with outgoing energy
radiated to a future asymptotic boundary. The collapsing
fluid has negative mass energy, which has been related to
negative specific heat. Lynden-Bell has linked collapse
with negative heat capacity to gravothermal catastrophe.
The SRH collapse has many features that model the grav-
othermal catastrophe.

APPENDIX A: ORIGINAL SRH SOLUTION

This solution is given in Eqs. (14), (15), and (16) of [7]
[there is an error in the first term of Eq. (16). �2

0h1 should
be ð�2

0=2Þh1]. The metric components are, with arbitrary

functions h1ðtÞ and h2ðtÞ
Aðt; rÞ ¼ �0

_R; (A1a)

Bðt; rÞ ¼ �0=R; (A1b)

Rðt; rÞ ¼ ½ð�2
0=2Þh1 þ h�1

1 ðrþ h2Þ2�1=2: (A1c)

The match of gSRH to exterior Vaidya was done in [7].
The pressure, with parameters and arbitrary functions

unchosen, is

8�p ¼ R2

�2
0

��
R0

R

�
2 þ 2

_R0
_R

R0

R

�
� 1

�2
0
_R2

�� _R

R

�
2
�
� 1

R2

¼ 1

�2
0

�
ðR0Þ2 þ ðR2Þ0 _R0

_R

�
� 1

R2

�
1þ 1

�2
0

�

¼ �ðrþh2
h1

Þ2
�2

0R
2
þ

2ðrþh2
h1

Þ½ðrþh2
h1

Þ � _h2
_h1
�

�2
0½R2 � �2

0h1 � 2ð _h2= _h1Þðrþ h2Þ�

� ð1þ 1=�2
0Þ

R2
(A2)

with mass-energy density

8�w ¼ 1

�2
0
_R2

�
�
� _R

R

�
2
�
� R2

�2
0

�
2
R00

R
þ 3

�
R0

R

�
2
�
þ 1

R2

¼ 1

�2
0R

2

�
�2
0 � 1� �2

0ðrþ h2Þ2
�2

0h
2
1

�
� 2

�2
0h1

: (A3)

The heat flow vector and scalar are given by 4�q�dx
� ¼

Qdr,

Q ¼ � 1

�0

R0

R2
¼ � 1

�0R
2

�
rþ h2
h1

�
: (A4)

For the particular case above, we choose

h1 ¼ e�2t=t0 ; h2 ¼ r0: (A5)

APPENDIX B: MASS AND TRAPPED SURFACE

The collapse metric is spanned by the tetrad

û �dx
� ¼ Adt; r̂�dx

� ¼ Bdr; #̂�dx
� ¼ Rd#;

’̂�dx
� ¼ R sin#d’;

such that

g�� ¼ û�û� � r̂�r̂� � #̂�#̂� � ’̂�’̂�: (B1)

The unique mass [12] m within t ¼ const, r ¼ const 2-
surfaces is

2m ¼ R3R����#̂
�’̂�#̂�’̂�

¼ R½1þ _R2=A2 � ðR0Þ2=B2�: (B2)

The metric is Petrov type D and the only nonzero
Weyl tensor component �2 is invariantly expressed as
48ð�2Þ2 ¼ C����C

����. The two principal null vectors

of metric (1), normal to ð#;’Þ 2-surfaces, are
l�@� ¼ A�1@t þ B�1@r; (B3)

n�@� ¼ A�1@t � B�1@r; (B4)

with respective expansions

l
�
;� ¼

ffiffiffi
2

p
R

� _R

A
þ R0

B

�
; n

�
;� ¼

ffiffiffi
2

p
R

� _R

A
� R0

B

�
: (B5)

Consider a 2-surface S generated by l� and n�. If both
null generators converge, i.e. expansions l

�
;� and n

�
;� have

the same positive sign, then the 2-surface is trapped [13].
When R ¼ 2m, Eq. (B2) provides

_R

A
¼ R0

B
;

which implies

n
�
;� ¼ 0; l

�
;� ¼ 2

ffiffiffi
2

p
_R

RA
: (B6)

Using A ¼ �0
_R, the expansion of l� is

l�;� ¼ 2
ffiffiffi
2

p
�0R

: (B7)

When �0 > 0 both expansions are non-negative signifying
a trapped surface at R ¼ 2m.

GRAVOTHERMAL CATASTROPHE PHYSICAL REVIEW D 82, 044039 (2010)

044039-3



[1] D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. Soc.
138, 495 (1968).

[2] D. Lynden-Bell and P. P. Eggleton, Mon. Not. R. Astron.
Soc. 191, 483 (1980).

[3] D. Lynden-Bell, arXiv/cond-mat/9812172.
[4] V. A. Antonov, Vest. Leningrad Gos. Univ. 7, 135 (1962);

Translation 1995, IAU Symposium 113, 525 (1962).
[5] D. Lynden-Bell, in Statistical Mechanics of Stellar

Systems, 1968 Brandeis University Summer Institute in
Theoretical Physics, edited by M. Chrétien, S. Deser, and
J. Goldstein (Gordon and Breach, New York, 1969).

[6] G. Bertin and M. Trenti, Astrophys. J. 584, 729 (2003).

[7] E. N. Glass, Gen. Relativ. Gravit. 21, 733 (1989).
[8] A. H. Taub, Commun. Math. Phys. 15, 235 (1969).
[9] W. Israel and J.M. Stewart, Ann. Phys. (N.Y.) 118, 341

(1979).
[10] E. Calzetta, Classical Quantum Gravity 15, 653 (1998).
[11] P. H. Chavinis, C. Rosier, and C. Sire, Phys. Rev. E 66,

036105 (2002).
[12] C.W. Misner and D.H. Sharp, Phys. Rev. 136, B571

(1964).
[13] S.W. Hawking and G. F. R. Ellis, The Large Scale

Structure of Spacetime (Cambridge University Press,
Cambridge, England, 1973).

E. N. GLASS PHYSICAL REVIEW D 82, 044039 (2010)

044039-4

http://arXiv.org/abs/arXiv/cond-mat/9812172
http://dx.doi.org/10.1086/345889
http://dx.doi.org/10.1007/BF00759082
http://dx.doi.org/10.1007/BF01645677
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1088/0264-9381/15/3/015
http://dx.doi.org/10.1103/PhysRevE.66.036105
http://dx.doi.org/10.1103/PhysRevE.66.036105
http://dx.doi.org/10.1103/PhysRev.136.B571
http://dx.doi.org/10.1103/PhysRev.136.B571

