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In contrast to alternative values, the quantum of area �A ¼ 8�l2P does not follow from the usual

statistical interpretation of black hole entropy; on the contrary, a statistical interpretation follows from it.

This interpretation is based on the two concepts: nonadditivity of black hole entropy and Landau

quantization. Using nonadditivity a microcanonical distribution for a black hole is found and it is shown

that the statistical weight of a black hole should be proportional to its area. By analogy with conventional

Landau quantization, it is shown that quantization of a black hole is nothing but the Landau quantization.

The Landau levels of a black hole and their degeneracy are found. The degree of degeneracy is equal to the

number of ways to distribute a patch of area 8�l2P over the horizon. Taking into account these results, it is

argued that the black hole entropy should be of the form Sbh ¼ 2� � ��, where the number of microstates

is �� ¼ A=8�l2P. The nature of the degrees of freedom responsible for black hole entropy is elucidated.

The applications of the new interpretation are presented. The effect of noncommuting coordinates is

discussed.
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I. INTRODUCTION

The statistical source of the Bekenstein-Hawking black
hole entropy

Sbh ¼ A

4l2P
(1)

is still a central problem in black hole physics.
Quantization of the black hole area can be one of the
keys to understanding of it. According to Bekenstein [1],
quantization of the black hole area means that the area
spectrum of a black hole is of the form

An ¼ �A � n; n ¼ 0; 1; 2; . . . ; (2)

where �A is the quantum of the black hole area. Despite
this classical result there is still no general agreement on
the precise value of �A; in the literature (see, for example,
[2] and references therein), two alternative values are
mainly considered:

�A ¼ 4 lnðkÞl2P; (3)

where k is an positive integer, and

�A ¼ 8�l2P: (4)

The specific value of �A is important for a statistical
definition of black hole entropy. According to statistical
mechanics the entropy of an ordinary object is the loga-
rithm of the number of microstates accessible to it,��, that
is,

S ¼ ln��: (5)

Since we assume that the entropy of a black hole should
also have the form (5), it follows from (1)–(4) that the
number of microstates accessible to a black hole is

�� ¼
�
kn; in the case where�A ¼ 4 lnðkÞl2P;
expð2�nÞ; in the case where�A ¼ 8�l2P:

(6)

The number of microstates is intrinsically an integer. The
value �A ¼ 4 lnðkÞl2P is consistent with this condition, but
the value �A ¼ 8�l2P is not. Since the value �A ¼ 8�l2P,
as is well known from the literature, is not restricted only to
the semiclassical regime, this inconsistency seems to com-
pound a problem. It is little discussed in the literature.
Medved [2] was the first to consider it. Medved suggested
that if the Bekenstein-Hawking entropy does not have the
strict statistical interpretation of the form (5), then the two
values (3) and (4) can be of comparable merit. In this case
there is no a problem of �A ¼ 8�l2P.
In this paper I suggest an alternative solution of the

problem. Namely I suggest that the black hole entropy is
really associated with the number of microstates but, in
contrast to ordinary matter (5), without the logarithm, that
is,

Sbh ¼ 2� � ��; (7)

where the number of microstates for a given area is

�� � n ¼ A

8�l2P
: (8)

As is well known, a number of other entropy calculations
have also been proposed to explain black hole statistical
mechanics (see, for example, [3] and references therein).*ro@stc.gov.ua
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But they all use the usual expression (5) with the logarithm.
The point is that every such ‘‘calculation’’ is not a calcu-
lation in the ordinary sense, but rather a new definition of
the black hole entropy, which only may be made precise by
referring to the (still missing) quantum theory of gravity.
Moreover, none is yet very convincing.

The organization of this paper is as follows. In Sec. II we
begin with nonadditive properties of a black hole and
define a microcanonical distribution with allowance for
nonadditivity. In Sec. III we show that quantization of a
black hole is nothing but Landau quantization. We calcu-
late Landau levels of a black hole and their degeneracy.
The effect of noncommuting coordinates is discussed. The
new definition of black hole entropy is proposed in Sec. IV.
There the nature of the degrees of freedom responsible for
black hole entropy is elucidated. The applications of the
new interpretation are also presented. Finally, in Sec. V we
consider the holographic principle and suggest an expla-
nation for the area scaling Sbh � A in the case where the
degrees of freedom do not reside on the horizon but are
distributed in a spatial volume.

II. BLACK HOLES AND NONADDITIVITY

A. Motivation

We begin with definitions. The essential reason for tak-
ing the logarithm in (5) is to make the entropy an additive
quantity, for the statistical independent systems. If we can
subdivide a system into n, for example, separate subsys-
tems and each subsystem has k states available to it, then
the statistical independence of these subsystems signifies
mathematically that the number of states for the composite
system is the product of the number of states for the
separate subsystems [4]:

� ¼ k� k� k� � � � ¼ kn: (9)

Then the additive property of the entropy defined as log of
the number of states follows from (9) directly:

S ¼ ln�� ¼ n lnk; (10)

that is, the total entropy of the system is n times the entropy
of a single subsystem. It is these properties that are essen-
tially used in deriving the value �A ¼ 4 lnðkÞl2P. There are
several ways to obtain �A ¼ 4 lnðkÞl2P. A typical assump-
tion is that the horizon surface consists of n independent
patches of area �l2P and every patch has k states available
to it. Then the total number of states is �� ¼ kn, which is
the same as (9). Now assuming the usual interpretation of
the black hole entropy, we obtain S ¼ ln�� ¼ n lnk,
which is just (10). On the other hand, the entropy of a
black hole is related to the area A of its horizon by the
Bekenstein-Hawking formula (1). A comparison of these
two expressions just gives �A ¼ 4 lnðkÞl2P. So it is not a
surprise that �A ¼ 4 lnðkÞl2P satisfies the condition (6) on
the number of states to be an integer. On the contrary,
�A ¼ 8�l2P is sought without any initial assumptions re-

garding statistical interpretation of the Bekenstein-
Hawking entropy; it follows from the periodicity of the
Euclidean black hole solutions, underlying the black hole
thermodynamics (see, for example, [5]). In this case, as
will be shown below, a new statistical interpretation of the
Bekenstein-Hawking entropy follows from �A ¼ 8�l2P.
The above derivation of �A ¼ 4 lnðkÞl2P as well as the

classical formula for the entropy itself rely on the additivity
properties of ordinary matter and, more fundamentally, on
the very possibility of describing a given system as made
up of independent subsystems. However the black holes
are not conventional systems: they constitute nonadditive
thermodynamical systems (for the sake of simplicity, we
shall not make a distinction between nonadditive and non-
extensive properties of black holes). As is well known, the
fact that the gravitational energy is nonadditive appears
already in Newtonian gravity. In general relativity a local
definition of mass is not possible; the Arnowitt-Deser-
Misner and Komar definitions of mass express this very
clearly. Moreover the black hole entropy (1) goes as the
square of mass M2 in a sharp contrast with the additive
character of entropy in ordinary thermodynamics. As em-
phasized by Kaburaki [6] and also Arcioni and Lozano-
Tellechea [7], one has to consider a single black hole as a
whole system; any discussion related to the possibility of
dividing it into subsystems or to the additivity property of
the black hole entropy simply does not take place. The
statistical independence is a postulate in ordinary statistical
physics and many of its general results just fail if this
property is not assumed. This departure from the conven-
tional systems is closely related to the long-range behavior
of gravitational forces. Note that our proposal�� ¼ n also
gives S / n as in the case of conventional systems (10). But
our proposal is inconsistent with any hypothesis of the
statistical independence. We know that if the number of
states for a compound system is a product of factors, each
of which depends only on quantities describing one part of
the system, then the parts concerned are statistically inde-
pendent, and each factor is proportional to the number of
states of the corresponding part. In our approach the num-
ber n cannot be represented as such a product. On the other
hand, if the black hole constituents were statistically inde-
pendent, as in deriving �A ¼ 4 lnðkÞl2P, the entropy (7)
would be nonadditive.
It is obvious that the above aspect of nonadditivity

cannot be ignored in deriving the black hole entropy.
Although the study of nonadditive thermodynamics has
been worked out to some extent (see, for example, [6–8]
and references therein), there is not (with rare exception
[9]) a concrete statistical model of the black hole entropy
with allowance for nonadditivity. It is clear: we do not yet
have a satisfactory quantum theory of gravity whose clas-
sical limit is general relativity. But our task is facilitated by
the fact that the black hole area is quantized just with the
quantum �A ¼ 8�l2P. Thus we can suggest a more con-
crete statistical interpretation of the black hole entropy.
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B. Microcanonical distribution for a black hole with
allowance for nonadditivity

To apply statistical mechanics to a black hole we should
at first define the distribution function. In statistical me-
chanics all properties of a system are encoded in its distri-
bution function [4]. For a quantum system the distribution
functionwn determines the probability to find the system in
a state with energy En. The determination of this function
is the fundamental problem of statistical physics. The form
of the function is usually postulated; its justification lies in
the agreement between results derived from it and the
thermodynamic properties of a system.

We begin with conventional systems. The standard de-
termination of the distribution function for them is given in
detail by Landau and Lifshitz [4]. Following Landau and
Lifshitz, consider an ordinary isolated system consisting of
quasi-isolated subsystems in thermal equilibrium.
According to Liouville’s theorem the distribution function
of an isolated system is an integral of the motion. Because
of the statistical independence of subsystems and, as a
consequence, multiplicativity of their distribution func-
tions, the logarithm of the distribution function must be
not merely an integral of the motion, but an additive
integral of the motion. It can be shown that the statistical
state of a system executing a given motion depends only on
its energy. Thus we can deduce that the logarithm of the
distribution function must be a linear function of its energy
of the form

lnwðaÞ
n ¼ �ðaÞ þ �EðaÞ

n ; (11)

with constant coefficients � and �, of which � is the
normalization constant and � must be the same for all
subsystems in a given isolated system; the superscript a
refers to the subsystem a. Note that assuming another
dependence lnw on E we may not obtain an additive
function on the right side of (11); for example, E2 is
already a nonadditive function. Since the values of non-
additive integrals of the motion do not affect the statistical
properties of ordinary system, these properties can be
described by any function which depends only on the
values of the additive integrals of the motion and which
satisfies Liouville’s theorem. The simplest such function is

dw ¼ const� �ðE� E0Þ
Y
a

d�a; (12)

where the number of states of the whole system d� is a
product d� ¼ Q

ad�a of the numbers d�a of the subsys-
tems (such that the sum of the energies of the subsystems
lies in the interval of energy of the whole system dE). It
defines the probability of finding the system in any of the
d� states. The factor const is the normalization constant
and �ðE� E0Þ the Dirac delta function. The distribution
(12) is called microcanonical. Note that (11) is nothing but
the canonical distribution if we identify � ¼ �1=T, � ¼

F=T, F being the free energy, and T the temperature of the
system.
As is easily seen, the statistical independence and addi-

tivity play a crucial role in deriving the distribution func-
tion for the conventional systems. Now consider the black
holes. Because of the nonadditivity, the black holes cannot
be considered as made up of any independent subsystems.
Therefore, if we want to establish the distribution function
for the black holes, we should remove the restrictions of
the statistical independence and additivity of integrals of
the motion for the subsystems of the black hole. The
presence of the logarithm in (11) was just required by the
statistical independence of the subsystems. So dropping the
logarithm and superscript a in (11) we obtain

wn ¼ fðEnÞ; (13)

where fðEnÞ represents a nonadditive integral of the mo-
tion and is a nonlinear function of the black hole energy.
Besides the energy, in an isolated classical system there is
another integral of motion—the phase volume occupied by
the system �� (Liouville’s theorem). It follows that any
function of ��, in particular the entropy, is also an integral
of motion [10]. Since the Bekenstein-Hawking entropy is
proportional to M2 and nonadditive, it is reasonably as-
sumed that so is the integral of motion. Thus the simplest
function fðEnÞ compatible with this assumption is the
square of energy, so we can write

wn ¼ �E2
n; (14)

where � is a constant coefficient. Note that here, as in
ordinary statistics, the form of the distribution function
must be regarded only as a postulate, to be justified solely
on the basis of agreement of its predictions with the
thermodynamical properties of black holes. Our consider-
ations are intended to make it plausible, and nothing more.
As a result, the (canonical) distribution for a subsystem
(11) transforms to the (microcanonical) distribution for the
whole system. Similarly dropping the product and sub-
script a in (12), we obtain

dw ¼ const� �ðE� E0Þd�; (15)

or after integration,

w ¼ const� ��; (16)

where �� is the number of states accessible to the whole
system in a given state. The functions (14) and (16) are
obviously the same and satisfy the same normalization
condition

P
nwn ¼ 1. So comparing (14) and (16) we get

�� / M2; (17)

where the energy of the black hole is identified with its
mass, M. Thus we arrive at the conclusion that the statis-
tical weight of a black hole should be proportional to the
area
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�� ¼ A

�l2P
; (18)

as is evident from dimensionality considerations. Here � is
a new constant coefficient � > 1, which cannot be defined
exactly from general considerations without assuming
some dynamical model for a black hole.

III. QUANTIZATION OF BLACK HOLE AS
LANDAU QUANTIZATION

A. Motivation

As appears from the above, one has to consider a black
hole as an indivisible fundamental object, for example, as
an elementary particle (in agreement with old idea of
’t Hooft). But the degeneracy factor of an elementary
particle is relatively small [�� ¼ ð2sþ 1Þ, where s is the
spin of the particle]. Where does the large �� of the black
hole come from? Landau quantization is interesting for the
statistical interpretation of black hole entropy mainly be-
cause of the macroscopic degeneracy of Landau levels.
This large degeneracy follows from the fact that the orbital
angular momentum Lz of an elementary particle can be
macroscopically large, proportional to the area of a sample.
As will be shown later, a black hole really has an intrinsic
angular momentum with such a property and the energy
levels of a black hole are nothing but the Landau levels.
Finally, Landau quantization is important for black hole
physics because of quantization of area and noncommutat-
ing coordinates.

B. Electron in two dimensions in a magnetic field

Before we start out discussing Landau quantization of a
black hole we need to define the conventional Landau
quantization proper. For the convenience of the reader we
repeat the relevant material from [11] without proofs, thus
making our exposition self-contained. As is well known
from quantum mechanics, a magnetic field quantizes the
energy of an electron confined in two dimensions. This is
the basis of the conventional Landau quantization. So we
restrict our attention to the motion of a single spinless
electron confined to the xy plane in a perpendicular mag-

netic field ~B ¼ B~z. In classical mechanics, the centrifugal
force is balanced by the Lorentz force

mev
2

r
¼ e

c
vB; (19)

where all quantities have the standard meaning, so that a

magnetic field ~B forces an electron to move on a circular
orbit at the cyclotron frequency in the xy plane

!c ¼ v

Rc

; (20)

where Rc is the cyclotron radius, Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEk

p
=ðeBÞ, and

Ek is the kinetic energy of the electron. For completeness

we also define the Larmor frequency

!L ¼ v

2Rc

: (21)

Next, introducing the angular momentum Lz ¼ mvr we
obtain from (19)

mev
2

2
¼ !LLz: (22)

In a quantum mechanical treatment, Lz can take only
discrete values m@, so that

mev
2

2
¼ !L@m: (23)

The mean potential energy is just as large as the mean
kinetic energy, and the one-particle energy simply follows
as the sum of both:

E ¼ !c@m: (24)

In the exact calculation, however, the zero-point energy
also appears. The restriction to positive components Lz >
0 is a result of the chirality built into the problem by the
magnetic field (as will be shown later, in the black hole
case this property is caused by the Euclideanization of the
black hole metric). The energy levels (23) are degenerate;
it appears that the degeneracy is proportional to the area of
the system. The macroscopically large degeneracy corre-
sponds to the fact that the center of a classical circular orbit
can be located anywhere in the xy plane.
In quantum mechanics, the Hamiltonian describing the

cyclotron motion of a single electron is

H ¼ 1

2m

�
~pþ e

c
~A

�
2
: (25)

Here ~p ¼ ðpx; pyÞ is the momentum operator and ~Aðx; yÞ is
the vector potential. For the ‘‘symmetric gauge,’’ ~A ¼
Bð�y; xÞ=2, the Hamiltonian (25) can be written as

H ¼ p2
x

2me

þme!
2
Lx

2

2
þ p2

y

2me

þme!
2
Ly

2

2
þ!LLz: (26)

Note that the first two terms in H form the Hamiltonian of
an isotropic two-dimensional oscillator. In the polar coor-
dinates defined by x ¼ r cos’ and y ¼ r sin’ the
Hamiltonian (26) reads

H ¼ � @
2

2me

�
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@’2

�
þme!

2
Lr

2

2

�!Li@
@

@’
: (27)

It has eigenvalues

E ¼ @!Lð2nr þ 1þmþ jmjÞ; (28)

where nr is the radial quantum number, nr ¼ 0; 1; 2; . . . ,
and m is the angular momentum quantum number,

KOSTIANTYN ROPOTENKO PHYSICAL REVIEW D 82, 044037 (2010)

044037-4



m ¼ 0;�1;�2; . . . . The energy levels are labeled by the
principal quantum number n, n ¼ nr þ ðmþ jmjÞ=2, so
that

E ¼ @!c

�
nþ 1

2

�
; n ¼ 0; 1; 2; . . . : (29)

These levels are called Landau levels. The lowest energy
level has nr ¼ 0, m ¼ 0;�1;�2; . . . , and energy E ¼
@!c=2. The first excited level has nr ¼ 1 and m ¼
0;�1;�2; . . . , or nr ¼ 0 and m ¼ 1, etc. The eigenfunc-
tions can be expressed in terms of the associated Laguerre
polynomials. Relatively simple are the eigenfunctions for
the lowest Landau level,

c 0;m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�jmj!p

l0

�
r2

2l20

�jmj=2
eim’e�r2=4l20 ; (30)

where l0 is the characteristic length of the theory, the so-
called magnetic length,

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@

ðme!cÞ

s
: (31)

It follows that

hc 0;mjr2jc 0;mi ¼ 2ðmþ 1Þl20 (32)

and

hc 0;mjLzjc 0;mi ¼ m: (33)

For increasing m the wave function is localized along
circles of larger and larger radii. The degree of degeneracy
can be determined from the requirement that the radius for
the largest m should be inside our system, for example, a
disk of radius R,

2l20ðmþ 1Þ ¼ R2: (34)

Expressed in terms of the area A ¼ �R2, this gives

mþ 1 ¼ A

2�l20
: (35)

This is also true for higher Landau levels. We now return to
the expression for the energy (28). Because of the small-
ness of @, the energy can only be of macroscopic magni-
tude for reasonable B, if (2nr þ 1þmþ jmj) is very
large. So we have two cases: (i) m< 0 and (ii) m> 0. It
appears that in case (i) nr is large so the wave functions do
not satisfy some natural conditions. There is no such
problem in case (ii). If m> 0, the factor is (2nr þ 1þ
2m), and it can be large, with nr small, provided that m is
large. The energy now is

E ¼ !c@m; (36)

in agreement with the classical result (24). Note that Lz is
positive, as expected. Note also that for large m the degree
of degeneracy is

m ¼ A

2�l20
: (37)

This also means that the area of electron orbit is quantized
(as will be shown later, the degree of degeneracy of a black
hole is related to the quantization of the black hole area in a
similar way).

C. Black hole in two-dimensional Euclidean space

It appears that quantization of a black hole is nothing but
the Landau quantization. The fact is that kinematics of a
black hole in two-dimensional Euclidean Rindler space is
similar to that of an electron in two dimensions in a
magnetic field. So we start with Rindler space. It is well
established [3] that in the near-horizon approximation the
metric of an arbitrary black hole can be reduced to the
Rindler form. In this approximation the first law of black
hole thermodynamics for a Schwarzschild black hole takes
the form [12]

dER ¼ TRdSbh; (38)

where ER is the Rindler energy, ER ¼ 2GM2, TR is the
Rindler temperature, TR ¼ 1=ð2�Þ, and Sbh is the
Bekenstein-Hawking entropy. These quantities are related
by

ER ¼ TRSbh: (39)

In [5] quantization of the black hole area [1] and value
�A ¼ 8�l2P were derived from the quantization of the
angular momentum associated with the Euclidean
Rindler space of a black hole. In transforming from
Schwarzschild to Euclidean Rindler coordinates the
Schwarzschild metric becomes

ds2E � ðk�Þ2dt2 þ d�2 þ 1

4k2
d�2; (40)

where � is the proper distance from the horizon and the
constant k coincides with the surface gravity of a
Schwarzschild black hole, k ¼ 1=4GM. This metric is
the product of the metric on a two-sphere with radius
2GM (the last term) and the Euclidean metric

ds2E ¼ �2dðktÞ2 þ d�2: (41)

The metric (41) has a coordinate singularity at � ¼ 0
(corresponding to the gravitational radius Rg ¼ 2GM).

Regularity is obtained if kt is interpreted as an angular
coordinate with periodicity 2�

! ¼ kt ¼ t

4GM
: (42)

(t itself has then periodicity 8�GM which, when set equal
to @=TH, gives the Hawking temperature TH). This period-
icity plays the same role in quantization of a black hole as a
magnetic field in the conventional Landau quantization. On
the other hand, according to quantum mechanics the angle
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(42) is conjugate to the zth component of the angular
momentum. Therefore, as was suggested in [5], the
Rindler energy ER should be reinterpreted as the zth com-
ponent of an angular momentum operator i@@=@! with
eigenvalue

Lz ¼ 2GM2 (43)

(that is why we use the different notations, ER and Lz, for
the same value 2GM2). Since Lz ¼ m@, m ¼ 0;�1;�2;
. . . , the value 2GM2 is now quantized. The negative inte-
gers m correspond to the region r < Rg. But the Euclidean

Rindler spacetime has no region corresponding to the
region r < Rg in the Lorentzian spacetime, so the negative

integers can be ruled out. In [5], quantization of Lz was
interpreted as quantization of the black hole area,

A

8�l2p
¼ m; m ¼ 0; 1; 2; . . . : (44)

In [5] it was shown that this conclusion is also valid for a
generic Kerr-Newman black hole. A refined version of this
approach extended to generic theories of gravity was pre-
sented by Medved [13]. The angular momentum (43) can
be also written in the usual classical form

Lz ¼ Mvr (45)

and associated with some intrinsic motion if we identifyM
with the mass of a body which moves in a circle of the
radius r ¼ Rg with the linear velocity v � c ¼ 1. This

does not mean however that our system (i.e., a black
hole) represents a rigid rotator, rather, as will be shown
below, it represents a harmonic oscillator. Since a black
hole as a two-sphere has circumference 2�Rg the period of

such a ‘‘motion’’ is 2�Rg and the angular frequency is

1=Rg; by analogy with (20) we shall call this frequency the

cyclotron frequency and it is denoted by !c,

!c ¼ 1

Rg

: (46)

Since the Rindler time ! is related to the Schwarzschild
time t by (42), a field quantum with Rindler frequency �R

is seen by a distant Schwarzschild observer to have a red-
shifted frequency � ¼ �R=ð4GMÞ. From this it follows
[12] that the temperature as seen by the distant observer
is just the Hawking temperature TH ¼ TR � 1=ð4GMÞ. By
analogy with (21) we shall call the quantity 1=ð4GMÞ the
Larmor frequency and denote it by !L,

!L ¼ 1

2Rg

(47)

(it is just half of the cyclotron frequency, !L ¼ !c=2). We
now return to the expression for the Rindler energy (39).
Taking into account (43) and (47), the expression (39) can
be rewritten as

!LLz ¼ THSbh (48)

(the entropy Sbh is an invariant and is not red-shifted).
Since M ¼ 2THSbh and Lz ¼ m@, we can write

M ¼ 2!L@m; (49)

or equivalently

M ¼ !c@m: (50)

D. Landau levels of a black hole

Continuing our analogy with Landau quantization, we
may expect that in the more general quantum mechanical
case the Hamiltonian of a black hole has a form similar to
(26), except that now it is defined in the two-dimensional
Euclidean plane (41) and all quantities relating to the
electron are replaced by the corresponding quantities relat-
ing to the black hole,

H ¼ P2
x

2M�
þM�!2

Lx
2

2
þ P2

y

2M�
þM�!2

Ly
2

2
þ!LLz; (51)

or in polar coordinates ��!,

H ¼ � @
2

2M�

�
@2

@�2
þ 1

�

@

@�
þ 1

�2

@2

@!2

�
þM�!2

L�
2

2

þ!LLz: (52)

Here!L is the Larmor frequency of the black hole (47) and
Lz is the angular momentum operator introduced near (43).
Since the total energy of an electron in a magnetic field is
twice the kinetic energy me=2, we replace the electron
mass by M� ¼ M=2, M being the mass of black hole.
Accordingly, the magnetic length of the electron is re-
placed by the characteristic length of black hole l�

l0 ! l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@

M�!c

s
: (53)

It is important to emphasize that in agreement with non-
additivity of a black hole there are no particular �mi in
(51), only the totalM. The Hamiltonian (51) can be postu-
lated from the very beginning. From (51) it follows that a
black hole is a two-dimensional isotropic oscillator with an
additional interaction !LLz, like an electron in a magnetic
field (26). Since in the black hole case Lz 	 0, the eigen-
values of the Hamiltonian are

E ¼ @!Lð2nr þ 1þ 2mÞ; (54)

where nr is the radial quantum number, nr ¼ 0; 1; 2; . . . ,
and m is the angular momentum quantum number, m ¼
0; 1; 2; . . . . Analogously to (29),

E ¼ @!c

�
nþ 1

2

�
; n ¼ 0; 1; 2; . . . ; (55)

where n ¼ nr þm is the principal quantum number. By
analogy with the energy levels of an electron we call (55)
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the Landau levels of a black hole. The lowest level has
nr ¼ 0 and m ¼ 0. It may seem strange that there is an
energy E0 ¼ @!c=2 in a state with m ¼ 0 (M ¼ 0). But
@!c ! 1 when M ¼ 0, so a state with the zero-point
energy in the absence of a black hole has no real physical
meaning. The energy difference between the subsequent
Landau levels is @!c. This gap decreases with increasing
M and is equal in order of magnitude to TH. It will be
discussed in detail later. In the semiclassical limit m 
 1
we obtain from (54)

E ¼ @!cm; (56)

which is the same as (50).

E. Degree of degeneracy of Landau levels

We know that a black hole has the entropy so that each
Landau level should be degenerate. But where does this
degeneration come from? As mentioned above, the com-
plete Euclidean Schwarzschild space (40) has the structure
R2 � S2. The fact is that the energy of a black hole does not
depend on a point of the two-sphere at which the Euclidean
space (41) can be attached. Since we associate the
Euclidean space with internal cyclotron motion, we can
also say that the degeneracy corresponds to the fact that the
center of the motion can be located anywhere on the two-
sphere (in other words, all axes of rotation are physically
equivalent). If the accuracy with which this point can be
determined coincides with the size of the area quantum
�A ¼ 8�l2P, then the degeneracy factor is given by �� ¼
A=ð8�l2PÞ. This is nothing but the angular momentum
number (44). As is well known, the energy levels of a
system whose angular momentum is conserved are always
degenerate. It is clear that Lz is conserved. Since in the
black hole case Lz can take only positive values and zero,

�� ¼ mþ 1: (57)

For a typical black hole m 
 1 so

�� ¼ m: (58)

On the other hand, Lz is associated with a rotation in the
Euclidean Rindler space through an angle !. In the semi-
classical description for any rotational degrees of freedom
the number of accessible states equals the total accessible
phase-space volume divided by the volume of one state
2�@:,

�� ¼
R
d!dLz

2�@
: (59)

Taking into account (44) and the fact that the angular
orientation is unconstrained, so that the integral over d!
gives 2�, we again obtain �� ¼ m. Note that the black
hole is degenerate with respect to Lz exactly as the electron
in a magnetic field. So we can determine the degree of
degeneracy of a black hole from the corresponding formu-
las for the electron, replacing all quantities relating to the

electron by the corresponding quantities related to the
black hole. From (53) it follows that for the black hole
the characteristic length is l� ¼ 2lP. Substituting this value
in (37) instead of l0, we obtain �� ¼ A=ð8�l2PÞ, as
expected.

F. Noncommutative geometry

Coordinate noncommutativity is one of the most fasci-
nating effects of the Landau quantization. It appears [14]
that in the limit of very large magnetic field B the energy
difference between the subsequent Landau levels @!c !
1 so that an electron is restricted to the lowest Landau
level. As a result, the two coordinates of the xy plane obey
the same commutation relations as the momentum px and
the position x in quantum mechanics,

½x; y� ¼ il20: (60)

Thus, the two-dimensional coordinate space becomes the
phase space for the system. As mentioned above, the area
of one state in phase space is 4px 4 x ¼ 2�@, so that

�x�y ¼ 2�l20 (61)

(here l20 plays the role of @). Therefore the physical plane xy
can be thought of as divided into the patches of area 2�l20,
where the center of the motion can be localized. Note that
the phenomenon of the noncommuting plane is not specific
to the lowest Landau level but can be obtained by project-
ing to an arbitrary finite number of Landau levels [15].
Since the large B limit corresponds to small me, we can
obtain a similar relation for a black hole settingM ! 0 and
replacing l0 by l�. As a result, we get

�x�y ¼ 8�l2P: (62)

We can also obtain a similar relation for the r and t
coordinates. Since Lz is conjugate to the angle (42), we
have �

Lz;
t

4GM

�
¼ i@ (63)

or

½Rg; t� ¼ i@4G: (64)

From this it follows that

�r�t ¼ 8�l2P; (65)

as required.

IV. THE BLACK HOLE ENTROPY

A. Definition

Now we can define the entropy of a black hole. The
entropy plays a particularly fundamental role when the
microcanonical ensemble is used. According to the stan-
dard formula for the entropy we would have to take the
logarithm of ��. But in this case the generalized second
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law of black hole thermodynamics would be violated. The
argument involves a well-known example with the colli-
sion of black holes: two identical black holes collide,
merge, radiating gravitational wave energy, and form a
third black hole. According to (5), the initial entropy of
the system is

Si ¼ 2 ln��i ¼ 2 ln

�
A

8�l2P

�
: (66)

On the one hand, the final entropy is bounded from above
by

Sf ¼ ln��f ¼ ln

�
4A

8�l2P

�
: (67)

On the other hand, by virtue of the generalized second law
it must be greater than initial entropy. So we have

2 ln

�
A

8�l2P

�
< S< ln

�
4A

8�l2P

�
: (68)

As is easily seen, these inequalities are satisfied only for
A < 32�l2P. This means that the standard interpretation of
the entropy in terms of the logarithm of �� violates the
generalized second law. Moreover, since m takes not only
positive integral values but also zero, the entropy as the
logarithm of �� makes no sense at all. Thus we conclude
that the statistical interpretation of the Bekenstein-
Hawking entropy is true only if log is deleted from the
Boltzmann formula (5), that is,

Sbh ¼ 2� ��� ¼ 2�m: (69)

This is nothing but the angular momentum quantization
condition on the phase of a wave function: if the eigen-
function of Lz is to be single-valued, it must be periodic in
phase, with period 2�. Note that factor 2� was already
noticed in the literature in a topological context [16]. In
particular Bunster (Teitelboim) and Carlip noted that the
overall factor in front of the area, usually quoted as one
fourth in units where Newton’s constant is unity, is really
the Euler class of the two-dimensional disk. A number of
proposals were proposed to quantize the entropy.
Prominent among others, besides the classical works of
Bekenstein [1], are those of Barvinsky and Kunstatter [17];
Padmanabhan and Patel [18]; Romero, Santiago, and
Vergara [19]; and also Dolan [20]. It is important to notice
here the following. Although all these researchers obtained
the required spectrum Sbh ¼ 2�m, there is an important
difference between their result and ours: in their spectrum
m is simply a non-negative integer; in ours, it is the
statistical weight of the black hole �� ¼ m.

B. The nature of the degrees of freedom

As appears from the above, a Schwarzschild black hole
is completely described (at least in the semiclassical ap-
proximation) by one quantum number—the angular mo-
mentum number m. So, by definition, the black hole has

one degree of freedom. At first sight it may seem that the
horizon surface splits into m elementary patches of area
�A ¼ 8�l2P. This is not the case; the number m does not
mean that the horizon is really divided into m elementary
figures with specific shape and localization, as a globe with
quadrangles formed by parallels of latitude and meridians
of longitude. According to nonadditivity of a black hole, a
black hole cannot be thought as made up of any indepen-
dent constituents; the black hole is an indivisible funda-
mental object, like the electron. On the other hand,
although the black hole energy, like the energy of the
electron motion, is the sum of m quanta with energy
@!c, this does not mean that a black hole (or an electron)
consists of m ‘‘photons.’’ Thus the number m is not the
number of black hole constituents. Instead, it is the number
of distinguishable ways to distribute a patch of area 8�l2P
over the horizon. This is its physical meaning. But the
number m can have a deeper nature. The questions then
arising, however, have as yet hardly been studied at all.

C. Applications: mean separation between energy levels
of black hole and Poincaré recurrence time

The most distinctive feature of our interpretation of
black hole entropy is that the statistical weight ��� Sbh
in contrast to ��� expðSbhÞ of the usual interpretation.
Here we consider the cases where the difference between
the old and new interpretations of black hole entropy can
manifest itself most clearly. We begin with the energy
spectrum. According to (55) the energy spacing between
the subsequent Landau levels is

�E ¼ @!c: (70)

This agrees with the characteristic value of Hawking ra-
diation �TH. This value however does not agree with
estimation obtained from the usual definition of entropy.
The entropy of an ordinary system (5), by definition, is the
logarithm of the number of states �� with energy between
E and Eþ �E. The width �E is some energy interval
characteristic of the limitation in our ability to specify
absolutely precisely the energy of a macroscopic system.
Dividing �E by the number of states expðSÞ we obtain the
mean separation between energy levels of the system [4],

h�Ei ¼ �E expð�SÞ: (71)

The interval �E is equal in order of magnitude to the mean
canonical-ensemble fluctuation of energy of a system.
However a Schwarzschild black hole has the negative
specific heat Cv, Cv ¼ �8�GM2, so that the energy fluc-
tuations calculated in the canonical ensemble have for-
mally negative variance, hð�EÞ2i ¼ CvT

2
H ��m2

P, where
TH is the Hawking temperature. The situation is quite
different if a black hole is placed in a reservoir of radiation
and the total energy of the system is fixed [21]. In this case
a stable equilibrium configuration can exist if the radiation
and black hole temperatures coincide, Trad ¼ TH � T, and
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Erad <M=4, where Erad is the energy of radiation. The
latter condition can be reformulated as the restriction on
the volume of reservoir V, 4aVT5 < 1, where a is the
radiation constant. According to this condition Pavon and
Rubı̈ found [22] that the mean square fluctuation of the
black hole energy (mass) is given by

hð�EÞ2i ¼ ð1=8�ÞT2Z; (72)

Z being the quantity 4aVT3=ð1� 4aVT5Þ, G ¼ c ¼
@ ¼ 1, and the Boltzmann constant kB ¼ ð8�Þ�1. It is clear
that (restoring G, c, @, and kB)

hð�EÞ2i � m4
P

M2
(73)

and

hð�EÞi �m2
P

M
: (74)

In the quantum mechanical description, the accuracy with
which the energy of a black hole can be defined by a distant
observer is limited by the time-energy uncertainty relation
as well as by the decrease of the mass of the black hole due
to transition from a higher energy level to a lower one. The
lifetime of a state En is proportional to the inverse of the
imaginary part of the effective action [23]; less formally, it
is the time needed to emit a single Hawking quantum and
this is proportional to the gravitational radius Rg. So

�Eq � 1=Rg, where I have added the subscript q to refer

to the quantum uncertainty. On the other hand, �Eq � TH

due to transition from the state n to the state n� 1. As is
easily seen, �Eq is of the same order of magnitude as (74).

So we obtain the mean separation between energy levels
for a black hole

h�Ei �m2
P

M
expð�SbhÞ: (75)

This value is however exponentially smaller than (70).
Thus a problem arises. It has not yet received attention in
the literature. The point is that the energy interval �E
contains only a single state. But in this case statistics is
not applicable; by definition the statistical treatment is
possible only if �E contains many quantum states. This
means that Eq. (75) is not applicable to a black hole
(contrary to what is assumed in many works [24]).
Nevertheless we may attempt to define h�Ei with the
help of the new interpretation of black hole entropy.
Namely, taking into account the relation Sbh ��� ¼ m,
we get

h�Ei � �E

�m
� dM

dSbh
¼ TH; (76)

this agrees with (70), as it should. Thus the first law of
thermodynamics defines the energy spacing of a black
hole.

One further remark is required concerning the equipar-
tition theorem; it is closely connected with energy spacing
of a black hole. Recently Padmanabhan [25] and Verlinde
[26] set up very interesting hypotheses concerning the
nature of gravity. One of the crucial ingredients of their
hypotheses is the claim that the horizon degrees of free-
dom/bits satisfy the equipartition theorem. As is well
known [4], the theorem is valid only if the thermal energy
kBTH is considerably larger than the spacing between
energy levels of a system. As is easily seen, if the energy
spacing of black hole levels were exponentially small in
the black hole entropy as (75), the theorem would be valid,
since in this case kBTH 
 �E. But in fact the energy
spacing of black hole levels is the same order of magnitude
as kBTH, �E� kBTH. Therefore the equipartition theorem
is not valid for the black holes. On the other hand, we have
Eq. (56) which seems to support the assumption of
Padmanabhan and Verlinde, if we identify m with the
number of bits. How can that be? The point is that a black
hole has no independent constituents or bits. That is why
the classical equipartition theorem is not applied to a black
hole. The numberm in (56) is not the number of bits but the
number of ways to distribute a patch of area 8�l2P over the
horizon. Thus Padmanabhan and Verlinde are right only in
a sense that we can extract the frequency !c (rather than
the temperature) from (56).
As mentioned above, a description of a black hole via a

thermal ensemble is inappropriate. From the point of view
of statistics this could be explained as follows. According
to the canonical distribution, the probability pi of a system
being in a state of energy Ei is proportional to the
Boltzmann factor,

pi ���i exp

�
�Ei

T

�
; (77)

where T is the temperature of the system, T ¼ Theat bath.
Assuming the usual interpretation of entropy (5), the sta-
tistical weight of a black hole should grow with M as

expð4�GM2Þ: (78)

In that case, the total probability diverges. However, in the
case where the entropy is given by (7), the statistical weight
grows as

2GM2; (79)

and the probability can converge. So, it seems that the
usual value of the statistical weight (78) better explains
the breakdown of the canonical ensemble for black holes
than suggested (79). But this is not the case. First, it is clear
that an indefinitely large heat bath is gravitationally un-
stable. On the other hand, there is always a size of bath at
which the interaction energy between the members of
ensemble is not negligible. In both cases, the canonical
distribution is not applicable. Secondly, a black hole pos-
sesses a very special property which singles it out, namely,
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its size and temperature are not independent parameters.
As a result, the temperature of a black hole does not remain
constant at the different Ei so that TH � Theat bath, contrary
to the definition of the canonical ensemble. This is irre-
spective of the form of the statistical weight. Note that the
ordinary self-gravitating systems, for example stars and
galaxies, also have negative heat capacity. And although
their statistical weights grow not so fast as (78), they
cannot be in a thermal equilibrium with a heat bath [27].
Thus the apparent divergence of canonical distribution, in
the case where the statistical weight grows as (78), cannot
be an evidence in support of the usual interpretation of
black hole entropy.

One more case, where the old and new interpretations of
black hole entropy give different answers—the Poincaré
recurrence time. According to the Poincaré recurrence
theorem [28], any state of an isolated finite system con-
tinuously returns arbitrarily close to its initial value in a
finite amount of time (the Poincaré recurrence time tr). For
an ordinary system this time is exponentially large in the
thermodynamical entropy of the system:

tr � t0 expðSÞ; (80)

where t0 is the time required for a fluctuation, once it
occurs, to again degrade. To apply the theorem to the black
holes one has to place a black hole in a finite reservoir with
a fixed total energy. We shall assume that all requirements
of the Poincaré recurrence theorem are satisfied and a black
hole is in equilibrium with its own radiation in an appro-
priate reservoir. We also assume that the total entropy is
dominated by the entropy of a single black hole. In this
case the Poincaré recurrence time for a black hole is given
by

tr � t0Sbh: (81)

Then assuming that for a black hole t0 is not smaller than
its lifetime, �tPðM=mPÞ3, we obtain

tr � tP

�
M

mP

�
5
: (82)

This time is considerably smaller than (80). There is how-
ever an obvious explanation for this behavior: due to the
long-range attractive character of gravitational forces, mat-
ter is very unstable with respect to the clumping.

V. THE NATURE OF THE AREA SCALING S / A

This section has a more speculative character and is not
related with previous one directly. Early in counting the
number of degrees of freedom responsible for black hole
entropy we assumed that they all reside on the horizon. In
this case the area scaling S / A is natural. There is however
a hypothesis that the degrees of freedom are distributed in a
spatial volume. But in this case most of them are not
involved in black hole thermodynamics. An ordinary quan-
tum field theory underlying thermodynamics cannot ex-

plain this fact. In [29] it is noted that, in a fundamental
fermion theory with a cutoff at the Planck scale, the total
number of independent quantum states in a given volume V
of space is ��� kV , where k is the number of state of a
single fermion. Note that if there are any fundamental
bosons, the number of possible states should be infinite.
So the entropy is proportional to the volume instead of
being proportional to the area. An explanation is that most
of the states of field theory are not observable since their
energy is so large that they are confined inside their own
gravitational radius. In this way gravitation reduces the
number of physical degrees of freedom so that the number
of states grows exponentially with the area instead of the
volume. It is then conjectured that all degrees of freedom
are resided on the surface of volume. This is called the
holographic hypothesis.
We want to suggest an alternative mechanism for the

area scaling S / A. Our proposal is based on the analogy
with electrons in metal [30]. As is well known, according
to the principle of equipartition of energy, the conduction
electrons in a metal viewed as a classical electron gas
should make a contribution 3N=2 (N is the number of
electrons) to the heat capacity of the metal. In reality the
electronic contribution to the heat capacity at room tem-
perature is only of the order of 1 percent of the classical
value. This means that only a small fraction of electrons
participates in thermal equilibrium, not the total number of
free electrons. The observation is completely unexplained
by classical theory, but is in good agreement with quantum
statistics. It turns out that the difficulty disappears if it is
taken into account that an electron gas possesses the prop-
erties of a highly degenerate Fermi gas. We now proceed to
explain the area scaling S / A basing our considerations on
the analogy with electrons in metal. First we assume that at
the very fundamental level of matter there exist the funda-
mental fermions. Then suppose that N fundamental fermi-
ons with spin 1=2 are uniformly distributed in a spatial
region of volume �R3

g with spacing �lP, so that N �
ðRg=lPÞ3. At T ¼ 0 the first N=2 states up to the energy

Emax will be ‘‘completely’’ filled, with two fermions with
opposite spins per state (in accordance with the Pauli
principle), while all states with E> Emax will be empty
(the limiting energy Emax is generally referred to as the
Fermi energy of the system and is denoted by the symbol
"F). It is obvious that there is one and only one way of
achieving this arrangement with indistinguishable parti-
cles. Therefore S ¼ 0. Remember that according to
Dirac’s prequantum field theory picture the vacuum con-
sists of states of positive and negative energies, with the
negative energy states completely filled and states of posi-
tive energy empty. Note that this picture applies only to
fermions. In the spirit of Dirac’s picture we assume that all
of our fundamental fermions are also unobservable (per-
haps they have negative energies due to the effects of
gravitation). Suppose now that the energy levels are uni-
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formly distributed so that the energy difference between
neighboring levels is �E ¼ 2"F=N. If one goes from the
temperature T ¼ 0 to a temperature T > 0 slightly above
zero, then some of the fermions will be thermally excited
from states just below the Fermi energy to states just above
the Fermi energy. Then the number of fermions close to the
Fermi surface which increase their energy by an amount
�kBT is given approximately by

�N � kBT

�E
� N

kBT

"F
: (83)

Since the temperature of a black hole T � 1=Rg, we have

�N �
�
Rg

lP

�
3 1

"FRg

� ð"�1
F l�3

P ÞR2
g / A: (84)

This means that the volume remains uninfluenced by the

rise in temperature. That is why the area, not volume, is
relevant in black hole thermodynamics. Since each of the
excited fermions receives an additional energy of �kBT,
the internal energy of a black hole will be

E� kBT � �N � ð"�1
F l�3

P ÞRg: (85)

This is just the black hole mass if we identify G�1 �
"�1
F l�3

P or "F �mP. So the heat capacity CV is given by

CV ¼
�
@E

@T

�
V
��ð"�1

F l�3
P ÞR2

g: (86)

If we now deduce the entropy from the heat capacity,CV ¼
Tð@S=@TÞ, we get

S ¼ jCV j ��N / A; (87)

which is what had to be proved.
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