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After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent

derivation of Newton’s law in terms of entropic force proposed by Verlinde. By reviewing some points of

the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling

deviations to the Newton’s law. More specifically, we study: (1) noncommutative geometry deviations and

(2) ungraviton corrections. As a special result in the noncommutative case, we find that the non-

commutative character of the manifold would be equivalent to the temperature of a thermodynamic

system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms

of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde’s

derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptoti-

cally safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus

such modifications.
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I. INTRODUCTION: EMERGENT GRAVITY

Entropy is one of the most intriguing concept in physics,
which intersects the interest of researchers working in
different sectors (see, for instance, [1]). Conventionally,
entropy is defined as a measure of the loss of information
about the microscopic degrees of freedom of a physical
system, when describing it in terms of macroscopic varia-
bles. As a typical example to explain the concept of en-
tropy, one deals with a gas or more in general with a fluid.
At a microscopic level, the gas consists of a vast number of
freely moving atoms or molecules. Microscopic degrees of
freedom are described by the microstate of the system and
refer to the positions and momenta of all the atoms. In
principle, all the physical properties of the system can be
obtained from the microstate. However, provided the con-
dition of thermodynamic equilibrium, the system can be
adequately described by macroscopic quantities, such as
volume, pressure, temperature, and so forth, which define
the system macrostate. Kinetic theory provides an expla-
nation about the connection between temperature and the
molecular/atomic structure of matter. This connection af-
fects also the concept of entropy. According to Boltzmann,
entropy is

S ¼ kB lnN; (1)

where kB is Boltzmann’s constant and N is the number of
microstates compatible with the given macrostate.

Entropy arises in many different contexts, but, in par-
ticular, it can be seen as a consequence of the gravitational
interaction. In 1975 Hawking showed, in terms of quantum
particle pair production, the possibility for a black hole to
evaporate, i.e., the existence of a thermal flux of radiation

emitted from a black hole with a black body spectrum at
temperature [2]

T ¼ @c�

2�kB
; (2)

where � is the black hole surface gravity. As a consequence
black hole entropy can be defined on the grounds of the
concept of black hole evaporation. However the descrip-
tion of gravity in terms of general relativity, even if sat-
isfactory in most aspects, is far from being complete. As
far as the black hole emits radiation, it loses energy and
shrinks. In such a way, the surface gravity � increases and
the black hole becomes hotter and hotter. In the end the
evaporation becomes a runaway phenomenon and the
black hole background geometry develops a coordinate
singularity. Therefore there are well-defined situations in
which general relativity breaks down. In other words, in
every situation in which an intrinsic microscopic scale, e.g.
the Planck scale, is probed by a system, general relativity
turns out to be an inadequate theory. This might suggest an
analogy between the classical spacetime g��ðx; tÞ and

macroscopic quantities of a gas, since they both lose their
meaning in the microscopic description. The classical
spacetime g��ðx; tÞ could be nothing but an emergent,

low energy, large scale phenomenon of the spacetime
microstructure, like gas macroscopic variables emerging
from the molecular dynamics. As a consequence we could
reverse our line of reasoning, saying that the gravitational
interaction descends from spacetime thermodynamics (for
instance, see [3]). Following [4,5] we see that a metric

ds2 ¼ �fðrÞc2dt2 þ f�1ðrÞdr2 þ r2d�2 (3)

is naturally associated to a temperature. If the function fðrÞ
admits a simple zero at r ¼ rH, we can expand fðrÞ �
f0ðrHÞðr� rhÞ and cast the r� t sector of (3) in the form*nicolini@th.physik.uni-frankfurt.de

PHYSICAL REVIEW D 82, 044030 (2010)

1550-7998=2010=82(4)=044030(8) 044030-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.044030


ds22d ¼ �ð�xÞ2dt2 þ dx2; (4)

where the surface gravity is � ¼ ðc2=2Þf0ðrHÞ. Equa-
tion (4) is nothing but a Rindler metric. The Euclidean
continuation of the time allows us to identify a temperature
of the form (2). Entropy naturally emerges from the ther-
modynamic relation

kBTdS ¼ dUþ PdV; (5)

where dU ¼ ð1=2GÞc4drH, PdV ¼ Pdð4�r3H=3Þ, and
reads

dS ¼ c3

G@
d

�
1

4
4�r2H

�
: (6)

We note that, given the above definitions for the thermody-
namic quantities, we can derive from (5) the Einstein
equation evaluated at the horizon r ¼ rH for the line
element in (3), i.e.,

ð1� fÞ � rf0 ¼ � 8�G

c4
Tr
rr

2; (7)

with r ¼ rH and P ¼ Tr
r . If, as it seems, gravity is an

emergent phenomenon, we cannot forget that entropy enc-
odes the nature of microscopic degrees of freedom of
spacetime. Therefore, one might think to use entropy to
link general relativity with the statistical description of the
yet unknown spacetime microstructure. On the other hand,
all the above reasoning heavily depends on the presence of
horizons. Against this background, in a recent paper,
Verlinde overcame this stint [6].

II. ENTROPIC NEWTON’S LAW

Verlinde’s contribution attracted considerable media ex-
posure [7] and, though the paper is not yet published, he
triggered the interest about this topic with immediate
follow-up work in cosmology [8], black hole physics [9],
loop quantum gravity [10], and other fields [11].

Verlinde’s arguments are based on the fact that gravity is
expected to be universal and independent of the details of
the underlying spacetime microstructure. Further, he made
new considerations about holography. As previously
shown in [12], generally covariant actions can be expressed
in the form

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
R ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Lbulk þ Lsur�: (8)

The surface term Lsur contains the information stored in
horizons. However, the gravitational action shows holog-
raphy in the sense that there is a relation between Lbulk and
Lsur, i.e.,

ffiffiffiffiffiffiffi�g
p

Lsur ¼ �@�

�
g��

@
ffiffiffiffiffiffiffi�g

p
Lbulk

@ð@�g��Þ
�
; (9)

which permits us to show that the same information is
encoded in both the bulk and surface terms. For this reason,

the horizon entropy can be calculated by evaluating the
surface term. As a result one finds an entropy proportional
to the horizon area as in (6), rather than to the volume
inside the horizon, as one would expect in case of non-
gravitational entropies. Against this background, Verlinde
assumes that holography in the presence of horizon is just a
specific example of a much more general concept, which
affects Newton’s law of gravitation too. For instance in the
case of two masses, one test mass m and a source mass M,
we can consider a surface � centered around M and lying
between the two masses. We also assume m to be at a
distance from � smaller with respect to its reduced
Compton wave length �m ¼ @=ðmcÞ. Given this point,
Verlinde reversed the logic according to which the laws
of gravity led to holography, assuming the following start-
ing points:
(1) in the vicinity of the surface �, the change of

surface entropy is proportional to �x, the change
of the radial distance of the massm from the surface,
i.e.,

�S� ¼ 2�kB
�x

�m

(10)

up to subleading termsOð�x2=�2
mÞ. The proportion-

ality constant is chosen to match F ¼ ma, when the
Unruh temperature for accelerated observers is
considered;

(2) the energy of the surface is identified with

U� ¼ Mc2; (11)

the rest mass of the source;
(3) on the surface �, N bits of information are stored,

i.e.,

N ¼ A�

‘2P
; (12)

where A� is the area of � and ‘P is the Planck
length;

(4) the surface � is in thermal equilibrium at the tem-
perature T, all bytes are equally likely and the
energy of � is equipartitioned among them i.e.,

U� ¼ 1
2NkBT; (13)

(5) a force F arises from the generic form of the ther-
modynamic equation of state

F�x ¼ T�S�: (14)

As a result, one can derive from the above assumptions the
Newton’s law F ¼ GMm=r2.
Some comments are in order. To obtain an entropic

force, we just need to find a temperature. Since, according
to Unurh, temperatures are related to accelerations, a force
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descends. The novelty is that to have a temperature,
Verlinde never mentions horizons. He just assumes that
the surface � is an information storage device, i.e., an
holographic surface. There is no assumption about the
existence of the gravitational force. Gravity emerges
through the information bit unit, namely ‘2P. This lets us
define the gravitational constant as G � c3‘2P=@.

In support of these arguments, there is the expected
universal character of gravity. If the gravitational force is
entropic in the presence of horizons, the universality would
let us interpret gravity as an entropic force even in the
absence of horizons. More specifically the Newton’s po-
tential � enters the line element of black hole solutions.
Therefore if gravity is entropic, this would be independent
of the specific value � ¼ �c2=2 for which a horizon
occurs. Furthermore, by thinking about accelerated observ-
ers, one can have holographic screens anywhere in space.
On the other hand Verlinde’s work reception includes
several criticisms too. The basic assumptions seem a way
to justify dimensional manipulations, from which the en-
tropic force equals the Newton’s force as a mere coinci-
dence. For instance in the derivation, one sets the area of
the surface equal to 4�r2, where r is later identified with
the radial distance of the massm from the sourceM. Rather
than embarking in further analyses about the robustness of
the derivation, we prefer to study another matter. Since in
Verlinde’s derivation very little is devoted to possible
improved versions of the entropy of the holographic sur-
face, we intend to take into account effects due to quantum
gravity/microscopic scale effects for the following pur-
poses:

(a) to extend the validity of the Verlinde’s procedure
taking into account improved forms of the entropy
(universality);

(b) to derive deviations to Newton’s law emerging from
such improved forms of entropy and check if they
correctly reproduce known deviations determined
via non entropic arguments (theoretical check);

(c) to open the possibility of a comparison with experi-
mental tests of Newton’s law, which have already
been performed [13] and, more importantly, might
be performed in the future [14] (experimental
check).

In the following sections we will consider two cases in
which there are modified forms of holographic entropies,
i.e. noncommutative gravity and ungravity. The point (c)
will become more interesting in the last section. When
deviations are not known a priori by means of other
approaches, we might think to exploit Verlinde’s procedure
starting from a generic form of the entropy in view of a
forthcoming experimental check. Conversely we could
start from already established Newton’s law deviations to
determine the form of the entropy and pick up the correct
microscopic/quantum theory of gravity.

III. MICROSCOPIC DESCRIPTION OF GRAVITY

As mentioned above, entropy connects the standard
description of gravity with the underlying microstructure
of a quantum spacetime. Therefore if we can determine an
appropriate form of the entropy, even in terms of some
effective microscopic degrees of freedom, we can expect to
provide the correct description of the underlying micro-
structure. With this in mind, we consider

�S� ¼ kB�A

�
c3

4@G
þ @s

@A

�
(15)

as a generic change of entropy modification. Here sðAÞ, a
function of the area, encodes deviations. Without losing in
generality, but having in mind noncommutative geometry
as a specific tool for the description of the microscopic
structure of a quantum manifold, we start a revision of
Verlinde’s assumptions. Noncommutative geometry enco-
des spacetime microscopic degrees of freedom by means of
a new uncertainty relation among coordinates

�x��x� � 	: (16)

The parameter 	 has the dimension of a length squared and
emerges as a natural ultraviolet cutoff from the geometry
when coordinate operators fail to commute

½x�; x�� ¼ i��� (17)

with 	 ¼ j���j. In other words, the spacetime turns out to
be endowed with an effective minimal length beyond
which no further coordinate resolution is possible. This a
feature of the phenomenology of any approach to quantum
gravity and it can be found not only in noncommutative
geometry (for reviews see [15]), but also in the framework
of loop quantum gravity, generalized uncertainty principle,
asymptotically safe gravity, etc. The scale at which the
minimal length emerges is not specified a priori, and it is

kept generic saying that at the most
ffiffiffi
	

p
< 10�16 cm,

namely, smaller than the typical scale of the standard
model of particle physics. Along this line of reasoning,
we have to revise at least two of Verlinde’s assumptions in

order to introduce the noncommutative scale
ffiffiffi
	

p
. For gen-

erality we keep
ffiffiffi
	

p
� ‘P. The scheme now has two new

points:
(1 bis) Because of the presence of an uncertainty on
�, there exists a fundamental unit �S	, which is
perceived at the displacement �xmin / �m. Therefore
the change of entropy is

�S� ¼ �S	

�
�x

�xmin

�
; (18)

where for later convenience we set �xmin ¼ �2

8� �m.

(3 bis) On the surface �, the fundamental unit of
surface is determined by the microscopic theory and
coincides with 	. Therefore the number of bits reads
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N ¼ A�

	
: (19)

As we shall see below the introduction of the parameter �
let us keep the noncommutative and the Planck scale
distinct. From the above new assumptions and from

�S	 ¼ kB	

�
c3

4@G
þ @s

@A

�
; (20)

one obtains the temperature

T ¼ M

r2
	c2

2�kB
; (21)

and

F ¼ Mm

r2

�
4c3	2

@�2

��
c3

4@G
þ @s

@A

�
: (22)

Equation (21) shows that the temperature is proportional to
	. This let us interpret the temperature as a macroscopic
effect of quantum mechanical fluctuations of the noncom-
mutative manifold. Furthermore, this implies that, for the
third law of thermodynamics, it is impossible to reach the
limit 	 ! 0 for the commutator in (17). In other words, the
description of spacetime in terms of a smooth differential
manifold would be equivalent to a thermodynamical sys-
tem at the absolute zero. We can therefore conclude that
the spacetime can never escape its noncommutative/ther-
mal state (except the asymptotic limit r ! 1).

Equation (22) is the entropic force, which coincides with
Newton’s law to first order if 	 ¼ �‘2P. As a result the
modified Newton’s law reads

F ¼ GMm

r2

�
1þ 4‘2P

@s

@A

�
: (23)

Up to now we have not yet invoked a specific form of the
entropy coming from noncommutative geometry. We sim-
ply showed the consequences of the occurrence of non-
commutative effects at a scale different from the Planck
scale.

A. Noncommutative geometry corrections to Newton’s
law

We face now the problem of implementing a specific
form for the area/entropy relation in noncommutative ge-
ometry. To this purpose we consider just a particular ap-
proach to noncommutative geometry in which a minimal
length is implemented in spacetime by averaging coordi-
nate operator fluctuations [16]. This way of implementing
a minimal length could sound ‘‘minimalistic,’’ since most
of the noncommutative character of the manifold is ac-
tually lost or ‘‘averaged out.’’ However, this approach turns
out to be very useful for obtaining in a transparent way
primary effects emerging from noncommutative geometry
(for other formulations of noncommutative geometry see,
for instance, [17]). In addition, since our analysis is de-

voted to quantummechanical corrections to a classical law,
we do not need anything more than such primary effects.
We recall now that averaging noncommutative coordinate
operators leads to an effective delocalization of any point-
like source. As a result new regular black hole solutions
have been derived solving Einstein equations with a modi-
fied, i.e. delocalized, source term [18]. A lot of work has
been devoted to the understanding of the role of these black
holes in the context of TeV gravity at the LHC [19].
Furthermore, the new black hole thermodynamics was
found to be modified with respect to the conventional
scenario: In place of a runaway terminal phase of evapo-
ration, these new black holes cool down to a zero tempera-
ture black hole remnant configuration, entirely governed
by microscopic fluctuations of the manifold, encoded in the
parameter 	 [20]. More specifically for the Schwarzschild
case the Hawking temperature reads

TH ¼ @c

4�kBrH

�
1� r3H

4	3=2
e�r2H=4	


ð3=2; r2H=4	Þ
�
; (24)

where


ð3=2; r2H=4	Þ ¼
Z r2H=4	

0
dtt1=2e�t (25)

is the incomplete lower Euler function, while �ð3=2Þ ¼ffiffiffiffi
�

p
=2. We notice that the effects of noncommutative fluc-

tuations are relevant at small scales with respect to
ffiffiffi
	

p
,

while at large scales the temperature asymptotically ap-
proaches the conventional Hawking result. The entropy of
the system can be calculated via

dS ¼ 1

TH

dUðrHÞ; (26)

where the thermodynamic energy is nothing but the mass
of the black hole as a function of the event horizon, namely,

UðrHÞ ¼ rH
c4

2G

�
�ð3=2Þ


ð3=2; r2H=4	Þ
�
; (27)

where �ð3=2Þ ¼ ffiffiffiffi
�

p
=2. From the above relations one ob-

tains

dS ¼ dð4�r2HÞ
kBc3

4@G

�
�ð3=2Þ


ð3=2; r2H=4	Þ
�
: (28)

We notice that the noncommutative geometry corrections
do not affect the general form of the entropy, apart from a
multiplicative term in round brackets. Such a term reduces
to 1 in the classical theory. Therefore, following Verlinde’s
arguments, we just need to multiply the classical value
�S� to obtain the noncommutative geometry corrected
entropy for any holographic surface �. As a result, by
means of (15) and (23), we find in a transparent way and
without approximations
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F ¼ GMm

r2

�
1þ �ð3=2; r2=ð4�	ÞÞ


ð3=2; r2=ð4�	ÞÞ
�
; (29)

where �ð3=2; r2=ð4�	ÞÞ is the incomplete upper Euler
function. If we consider only primary corrections in the

limit r � ffiffiffi
	

p
we have

F ’ GMm

r2

�
1þ re�r2=ð4�‘2PÞffiffiffiffiffiffiffiffi

��
p

‘P
þ r2e�r2=ð2�‘2PÞ

2�
ffiffiffiffi
�

p
‘2P

�
: (30)

We stress that the above result has been obtained from the
mere thermodynamical properties of the black hole, prop-
erties that we simply have extended to a generic holo-
graphic screen in the spirit of Verlinde’s procedure.

B. Ungraviton corrections to Newton’s law

Ungravity is the gravitational force, due to the exchange
of ungravitons. Unparticles are conjectured particles which
extend the concept of the neutrino. Indeed like neutrinos
unparticles are supposed to be weakly interacting with
standard model particles. Furthermore, like neutrinos, un-
particles are described by conformal invariant fields. The
novelty, and the difference with respect to neutrinos, is that
unparticles are supposed to be massive. To preserve the
conformal invariance, an unfield must be endowed with a
continuous mass spectrum, labeled by a scaling parameter
dU [21]. In general dU is a generic real number, but it is
often chosen 1< dU < 2. The case dU ¼ 1 corresponds to
the absence of effects from unparticle physics. Recently
unparticle physics has been applied to gravity. By effec-
tively modifying the Einstein-Hilbert action with an un-
particle term, the un-Schwarzschild black hole has been
derived as an extension of the Schwarzschild geometry
when gravity is mediated by ungravitons, rather than by
gravitons [22]. The presence of the scaling parameter dU
forces a fractalization of the event horizon of the un-
Schwarzschild black hole. As a result the horizon dimen-
sion is 2dU. This fact has been confirmed by recent studies
about the spectral properties of a quantum spacetime [23].
In particular a new kind of spectral dimension has been
proposed, i.e. the unspectral dimension, stemming from the
diffusion of a unfield. As a result, it has been shown that
unparticles play a crucial role in determining the actual
dimension perceived by a random walker in the trans-
Planckian regime. The thermodynamic properties of the
un-Schwarzschild black hole have been determined too. In
particular the Hawking temperature reads

T ¼ @c

4�kBrH

�
1þ 2ð2dU � 1Þ�U

1þ �Uð RrHÞ2dU�2

�
R

rH

�
2dU�2

�
; (31)

where

�U ¼ 2

�2dU�1

�ðdU � 1=2Þ�ðdU þ 1=2Þ
�ð2dUÞ ; (32)

and

R ¼ 1

�U

�
MP

MU

�
1=ðdU�1Þ

: (33)

Here MU is the ungravity coupling constant, while �U is
the critical energy scale below which scale invariant prop-
erties of unparticles would emerge. The thermodynamic
energy of the system, namely, the black hole mass as a
function of the horizon reads

UðrHÞ ¼ rH
c4

2G

�
1

1þ �Uð RrHÞ2dU�2

�
: (34)

From the above relations one obtains

dS ¼ dð4�r2HÞ
kBc

3

4@G

�
1

1þ �Uð RrHÞ2dU�2

�
: (35)

Once integrated, this relation leads, in the ungravity domi-
nated phase, to the aforementioned complete fractalization
of the horizon, i.e.,

S ¼ kBc
3

@G

�R2�2dU

dU�U

r2dUH : (36)

Since we have not made any assumption about the non-
commutative nature of spacetime we can keep Verlinde’s
original assumptions or equivalently � ¼ 1. We notice that
(35) is equivalent to the conventional form of the entropy,
apart a multiplicative factor which encodes ungraviton
corrections. Therefore, by extending this relation to any
arbitrary holographic screen, we find that the entropic
unforce reads

F ¼ GMm

r2

�
1� �Uð RrHÞ2dU�2

1þ �Uð RrHÞ2dU�2

�
(37)

that, in the ‘‘weak unfield limit’’, becomes

F ’ GMm

r2

�
1� �U

�
R

rH

�
2dU�2 þ

�
�U

�
R

rH

�
2dU�2

�
2
�
:

(38)

IV. FINAL REMARKS

Verlinde has extended the validity of the holographic
principle to a generic screen. We have used this extension
to derive the corrections to Newton’s law in both non-
commutative gravity and ungravity. In particular, we
have also given a new thermodynamical picture of non-
commutativity. A noncommutative manifold is equivalent
to a thermodynamic system, whose temperature is propor-
tional to the noncommutative parameter 	. The commuta-
tive limit is therefore forbidden by thermodynamics
arguments, since it would correspond to a zero temperature
state, which can be reached only asymptotically. As a
theoretical check for the consistency of the procedure,
we have to compare our results with the already known
Newton’s law deviation emerging both from noncomuta-
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tive geometry [24,25] and ungravity [22]. Within some
approximations, the deviations coincide with our results.
This by itself sheds light about the Verlinde’s derivation,
making his procedure more robust, not confined to the
mere case of classical physics and not interpretable as a
smart dimensional manipulation. In particular we support
the Verlinde’s crucial assumption about the existence of an
entropy associated to a surface even in the absence of
horizons. This conclusion is in agreement to what found
in the framework of loop quantum gravity, where the
Verlinde’s approach again matches known results [10]. In
addition, with the eventual experimental proof of one of the
deviations considered, we would have the double result of
confirming the noncommutative/ungravity nature of the
corrections as well as the entropic interpretation of these
effects. Anyway, there is something more.

We have followed the scheme ‘‘modified theory of
gravity’’ ! ‘‘modified black hole entropy’’ ! ‘‘modified
holographic surface entropy’’ ! ‘‘Newton’s law correc-
tions.’’ We have seen that at the very end both noncommu-
tative geometry and ungravity corrections to Newton’s law
emerge from a modified form of the gravitational constant
G. Indeed in both (28) and (35), the constant G is accom-
panied by a multiplicative factor which resumes the effects
of the theory under investigation. The same factor even-
tually provides the Newton’s law deviations. We intend to
show that this is not a specific property of the cases we
considered. With hindsight we could suppose to extend our
procedure to a more generic situation. We start from a
black hole metric like in (3) and we assume that

fðrÞ ¼ 1� 2M

rn�2c2
GðrÞ; (39)

where n is the number of spatial dimensions and G incor-
porates some effects, like noncommutativity, ungravity,
asymptotically safe gravity, extra dimensions, electrostatic
energy, etc. The only requirement is that in the limit for
which the theory approaches the classical, neutral case one
must recover G ! GðnÞ, where GðnÞ is the gravitational

constant in nþ 1 dimensions. Suppose we now study the
energy U ¼ c2M which satisfies the law of thermodynam-
ics

dUðrHÞ ¼ TdSþ�ðrHÞdq; (40)

where �ðrHÞ is the electrostatic potential on the event
horizon. The thermodynamic energy is in general a func-
tion of both rH and q and reads

dU ¼ @U

@rH
drH þ @U

@q
dq: (41)

From the above expressions we get

dS ¼ 1

T

@U

@rH
drH: (42)

Therefore, for (39) we have that

UðrHÞ ¼ rn�2
H c4

2G
; (43)

and

@U

@rH
¼ rn�3

H c4

2G

�
ðn� 2Þ � rH

G0

G

�
: (44)

On the other hand the temperature reads

T ¼ @c

4�kBrH

�
ðn� 2Þ � rH

G0

G

�
; (45)

and therefore we obtain a general expression for the en-
tropy as

dS ¼ ð8�ÞkBc3rn�2
H

4@G
drH: (46)

We notice that the function G enters naturally as a correc-
tion of the entropy too. The above formula can be written
as

dS ¼ 1

ðn� 1Þ
�ðn2Þ

�ðn=2Þ�1

kB
G

dAðn�1Þ; (47)

which is formally the conventional entropy apart fromG in
place of GðnÞ. Here we have used the natural units @ ¼ c ¼
1 and Aðn�1Þ is the ðn� 1Þ-sphere surface area, namely,

Aðn�1Þ ¼ n
�n=2

�ðn2 þ 1Þ r
n�1: (48)

Given this point, if we believe in Verlinde’s arguments
about the extension of this form of entropy to any holo-
graphic surface, we have just to replace the GðnÞ with G.

Before proceeding, we have to take into account that, like
for the noncommutative geometry case, the effects en-
closed inG occur at an energy scaleM, which is in general
different from the fundamental scale M?, i.e., GðnÞ ¼
M1�n

? . Therefore we will have � � 1 and the fundamental
unit of entropy reads

dSM ¼ kBM1�n

�
1

M1�n
?

�ðn2Þ
ðn� 1Þ�ðn=2Þ�1

þ @s

@Aðn�1Þ

�
:

(49)

At the scale M, the fundamental unit of surface also
changes and it is M1�n. Then the number of bits reads

N ¼ Aðn�1Þ
M1�n

: (50)

As a result we find that the entropic force is

F ¼ GðnÞMm

rn�1

�
1� �GðnÞ

G

�
; (51)

where �GðnÞ ¼ G �GðnÞ accounts for deviations from the

classical case. Here we have chosen
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�2 ¼ 8

�n�2

�2ðn2Þ
ðn� 1Þ

�
M
M?

�
2�2n

(52)

to match the Newton’s law to the first order. Now we can
use the above general result for some purposes. First, it is
no longer necessary to repeat the above lengthy calcula-
tions every time. For every form of G, we can derive
Newton’s law by entropic arguments automatically.
Second, if for some reasons we just know the form of G
or the form of entropy but we ignore or we cannot perform
the weak field limit, we could use the generality of the
above formula to get deviations to Newton’s law; con-
versely, if we start from known (or future) experimental
observations of Newton’s law deviations we can go back
and pick the correct form of the entropy as well as G. This,

in principle, would let us get information about the correct
formulation of quantum gravity. For these reasons, we
strongly believe that the relation between entropy and
Newton’s law will deserve further investigations.

ACKNOWLEDGMENTS

P.N. is supported by the Helmholtz International Center
for FAIR within the framework of the LOEWE program
(Landesoffensive zur Entwicklung Wissenschaftlich-
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