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In a general time-dependent (3þ 1)-dimensional spherically symmetric spacetime, the so-called

Kodama vector is a naturally defined geometric quantity that is timelike outside the evolving horizon

and so defines a preferred class of fiducial observers. However the Kodama vector does not by itself define

any preferred notion of time. We first extract as much information as possible by invoking the ‘‘warped

product’’ structure of spherically symmetric spacetime to study the Kodama vector, and the associated

Kodama energy flux, in a coordinate-independent manner. Using this formalism we construct a general

class of conservation laws, generalizing Kodama’s energy flux. We then demonstrate that a preferred time

coordinate—which we shall call Kodama time—can be introduced by taking the additional step of

applying the Clebsch decomposition theorem to the Kodama vector. We thus construct a geometrically

preferred coordinate system for any time-dependent spherically symmetric spacetime, and explore its

properties. We study the geometrically preferred fiducial observers, and demonstrate that it is possible to

define and calculate a generalized notion of surface gravity that is valid throughout the entire evolving

spacetime. Furthermore, by building and suitably normalizing a set of radial null geodesics, we can show

that this generalized surface gravity passes several consistency tests and has a physically appropriate static

limit.
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I. INTRODUCTION

Black holes are an iconic part of Einstein’s general
relativity. While we have a very detailed understanding
of static and stationary black holes (the Schwarzschild,
Reissner-Nordström, Kerr, and Kerr-Newman black holes),
the situation with regard to evolving black holes (evolving
either due to accretion or Hawking radiation or both) is
much more opaque. In particular, the rather limited number
of currently known exact evolving solutions
(Oppenheimer-Snyder collapse, the Vaidya solution)
makes it much more difficult to fully describe an evolving
black hole in any analytic detail. A fundamental feature of
the geometry of an evolving time-dependent spacetime is
the lack of any (asymptotically timelike) Killing vector
field, which seems to leave us without a preferred time
coordinate with which to study the problem.

In 1980 Kodama made significant progress in this regard
when he constructed a geometrically natural divergence-
free preferred vector field that is guaranteed to exist in any
time-dependent spherically symmetric spacetime [1]. This
so-called ‘‘Kodama vector’’ defines a natural timelike di-
rection in the region exterior to the black hole, and addi-
tionally induces an unexpected conserved current, but does
not (in and of itself) define any naturally preferred time
coordinate. By considering the ‘‘warped product’’ form of
the spacetime metric for any spherically symmetric ge-
ometry we are able to investigate the Kodama vector (and
the associated Kodama energy flux) in a coordinate-

independent manner. In particular we can use this formal-
ism to easily generate a generalized Kodama flux.
By furthermore taking the extra step of invoking the

Clebsch decomposition [2–4] on the (1þ 1)-dimensional
radial-temporal plane, we shall demonstrate that the
Kodama vector field can indeed be used to construct a
preferred time coordinate, and more importantly a pre-
ferred coordinate system. The absence of any (asymptoti-
cally timelike) Killing vector in evolving spacetimes has
made it difficult to achieve any consensus about best way
to define such fundamental quantities as the surface grav-
ity. Over the years, several different attempts have been
made to extend the concept of surface gravity from static
(and stationary) to time-dependent spacetimes. For in-
stance, Hayward [5] uses the Kodama vector itself as a
substitute for the Killing vector, since it certainly provides
a preferred direction and it is parallel to the Killing vector
in the static case (as well as at spatial infinity if one
assumes the evolving spacetime is asymptotically flat).
Others (see [6,7] and references therein) have appealed to
the freedom of normalization of the null geodesics to
ensure their definitions reduce to known results in the static
case [8].
The layout of the current article is as follows. In Sec. II

we briefly summarize key properties of warped product
spacetimes. In Sec. III we present a quick review of the
Kodama vector and Kodama’s unexpected conservation
law, and then significantly generalize Kodama’s energy
flux in Sec. IV. Next, in Sec. V, a Clebsch decomposition
of the Kodama vector is made—in order to build a natural
geometrically preferred coordinate system for any spheri-
cally symmetric time-dependent spacetime. In Secs. VI
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and VII we explore the Riemann and Einstein tensors in
this geometrically preferred coordinate system, being care-
ful to connect the discussion back to the general warped
product formalism of Sec. II. Furthermore, in Sec. VIII we
review Kodama’s conservation law in these preferred co-
ordinates. In Sec. IX we calculate the Brown-York quasi-
local mass and in Sec. X present our extended definition of
surface gravity. Section XI deals with the naturally induced
notions of apparent and trapping horizon. Lastly, we add a
brief discussion.

II. WARPED PRODUCT SPACETIMES

Any (possibly time-dependent) spherically symmetric
metric can be written in the form

ds2 ¼ gabdx
adxb

¼ BgijðxÞdxidxj þ rðxÞ2fd�2 þ sin2�d�2g
¼ BgijðxÞdxidxj þ rðxÞ2 Fg��dx�dx�: (1)

Here the two coordinates xi run over the radial-temporal
plane, while the two coordinates x� (� and �) run over the
surfaces of spherical symmetry. The discussion can be
generalized to (dþ 1) dimensions with (d� 1)-
dimensional spherical symmetry, but for now we are just
working in (3þ 1) dimensions. (For higher-dimensional
generalizations in a Gauss-Bonnet context see [9,10].)
Independent of the total dimensionality, Bgij is a (1þ 1)-

dimensional Lorentzian metric.
Geometrically this is called a ‘‘warped product’’ mani-

fold, with the radial-temporal plane being referred to as the
‘‘base space,’’ the surfaces of spherical symmetry being
referred to as the ‘‘fibers,’’ and the function rðxÞ which
depends only on the base space coordinates being referred
to as the ‘‘warp factor.’’ It is a standard computation to
show that (up to the usual permutation symmetries for the
indices) the only nonzero components of the Riemann
tensor (in any warped product spacetime) are

Rijkl ¼ BRijkl; (2)

Ri�j� ¼ �rfrirjrgFg��; (3)

R���� ¼ r2fFR���� � jrrj2ðFg��Fg�� � Fg��
Fg��Þg:

(4)

An abstract computation along these lines can be found in
O’Neill [11] while more explicit computations can be
found in [12–14]. Note that the covariant derivatives ap-
pearing above are covariant derivatives in the base space.
But because rðxÞ depends only on the (1þ 1)-dimensional
base space coordinates, and because of the specific form of
the warped product metric, these derivatives can be ‘‘boot-
strapped’’ to covariant derivatives in the total warped
product spacetime.

In the specific situation we are interested in the base
space is two-dimensional, so in terms of the Ricci scalar of
the radial-temporal plane we have the specific simplifica-
tion

BRijkl ¼
BR

2
ðBgikBgjl � Bgil

BgjkÞ: (5)

Furthermore the fiber is a constant curvature sphere of
radius unity, so

FR���� ¼ ðFg��Fg�� � Fg��
Fg��Þ: (6)

Thus we now have on purely geometrical grounds

Rijkl ¼
BR

2
ðBgikBgjl � Bgil

BgjkÞ; (7)

Ri�j� ¼ �rfrirjrgFg��; (8)

R���� ¼ r2f1� jrrj2gðFg��Fg�� � Fg��
Fg��Þ: (9)

It is also common in spherical symmetry to define the
Hawking-Israel/Hernandez-Misner/Misner-Sharp quasilo-
cal mass [15,16] by

1� 2m

r
¼ jrrj2; (10)

where both mðxiÞ and rðxiÞ are scalar functions on the base
space. We now have

Rijkl ¼
BR

2
ðBgikBgjl � Bgil

BgjkÞ; (11)

Ri�j� ¼ �rfrirjrgFg��; (12)

R���� ¼ 2mrðFg��Fg�� � Fg��
Fg��Þ: (13)

It is often useful to go to an orthonormal basis, in which
case

Rî ĵ k̂ l̂ ¼
BR

2
ð�î k̂�ĵ l̂ � �î l̂�ĵ k̂Þ; (14)

Rî �̂ ĵ �̂ ¼ �frîrĵrg
r

��̂ �̂; (15)

R�̂ �̂ �̂ �̂ ¼ 2m

r3
ð��̂ �̂��̂ �̂ � ��̂ �̂��̂ �̂Þ: (16)

For the Ricci tensor we have

Rij ¼
BR

2
Bgij � 2

frirjrg
r

; (17)

Ri� ¼ 0; (18)

R�� ¼
�
2m

r
� rr2r

�
Fg��; (19)
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and for the Ricci scalar

R ¼ BR� 4
r2r

r
þ 4m

r3
; (20)

where the Laplacians above are in the (1þ 1)-dimensional
sense on the base space. The Einstein tensor takes the form

Gij ¼ � 2frirjrg
r

þ
�
2r2r

r
� 2m

r3

�
Bgij; (21)

Gi� ¼ 0; (22)

G�� ¼
�
�

BRr2

2
þ rr2r

�
Fg��: (23)

These are all purely geometrical statements—while one
has chosen coordinates xa ¼ ðxi; x�Þ to make the warped
product structure manifest, these results are completely
independent of one’s choice of coordinates xi on the
radial-temporal plane (the base space), and for that matter
are completely independent of one’s choice of coordinates
x� on the spherically symmetric fibers.

III. THE KODAMA MIRACLE

It is well known that in a time-dependent spacetime,
there is no (asymptotically timelike) Killing vector to
define a preferred time coordinate. The calculation of
important quantities such as the four-acceleration and the
surface gravity become much more ambiguous.
Additionally, there is no general consensus on the ‘‘best’’
form of the metric, nor on the best choice of the coordinate
system.

An interesting insight on this problem is given by
Kodama [1], who proved the existence of a divergence-
free vector field for any time-dependent spherically sym-
metric metric. The Kodama vector, ka, lies in the (1þ 1)-
dimensional radial-temporal plane, so that ka ¼ ðki; 0; 0Þ.
More precisely

ka ¼ �ab? rbr; (24)

where the tensor �ab? is the (1þ 1)-dimensional Levi-

Civita tensor in the radial-temporal plane, denoted �ij?,
canonically embedded into (3þ 1) dimensions according
to the prescription

�ab? ¼ �ij? 0
0 0

" #
: (25)

It is straightforward to check that karar ¼ 0. Furthermore,
if we define a positive semidefinite norm by jjkjj2 ¼
jgðk; kÞj ¼ jg�1ðk[; k[Þj, then jjkjj ¼ jjrrjj. (We shall
use the superscripted symbol [ to denote the process of
turning a vector into a covector by ‘‘lowering the index,’’
and use the superscripted symbol ] to denote the inverse
process of turning a covector into a vector by ‘‘raising the
index.’’) By appropriate choice of orientation on the radial-

temporal plane one can choose ka to be (asymptotically)
future-pointing. It can also be defined by the more abstract
statement

k ¼ ð�2drÞ]; (26)

where by this one means ‘‘calculate the one-form dr, apply
the (1þ 1)-dimensional radial-temporal Hodge star opera-
tion, and use the metric to convert the resulting one-form to
a contravariant vector.’’ At this point it is necessary to
emphasize, as originally pointed out by Kodama himself,
that the Kodama vector does not in general reduce to the
Killing vector in a static spacetime; all that one can say in
general is that in static spacetimes it is parallel to the
Killing vector. In regions where the Kodama vector is
timelike (and we shall [informally at this stage] refer to
this as the black hole exterior region, i.e., the domain of
outer communication) the Kodama vector defines a pre-
ferred class of fiducial observers (FIDOs) [17] specified by
the unit timelike four-vector

V ¼ k

jjkjj : (27)

Although the Kodama vector provides a preferred ‘‘time
direction,’’ and simplifies the evolution equations of a
dynamical spherically symmetric system [18,19], it does
not at this stage define a preferred ‘‘time coordinate.’’ We
shall subsequently use the Kodama vector plus the Clebsch
decomposition theorem to construct a geometrically natu-
ral preferred time coordinate.
To prove that the Kodama vector is divergence free the

best strategy (with hindsight) is to consider the quantity

rað�ab? =r2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4
p @að ffiffiffiffiffiffiffiffiffiffi�g4

p
�ab? =r2Þ

¼ 1

r2
ffiffiffiffiffiffiffiffiffiffi�g2

p @a

� ffiffiffiffiffiffiffiffiffiffi�g2
p �ij? 0

0 0

" #�

¼
�

1

r2
ffiffiffiffiffiffiffiffiffiffi�g2

p @i

� ffiffiffiffiffiffiffiffiffiffi�g2
p

�ij?

�
; 0; 0

�

¼ 1

r2

�
Bri�

ij
?; 0; 0

�
¼ 0: (28)

Note that the last covariant derivative is a base space
covariant derivative which vanishes since the (1þ 1)-
dimensional Levi-Civiata tensor is covariantly constant
with respect to the (1þ 1)-dimensional covariant deriva-
tive. But this (3þ 1)-dimensional result, rað�ab? =r2Þ ¼ 0
can easily be rearranged to give

ka ¼ r

2
rb�

ab
? ; (29)

which now implies

rak
a ¼ 0; (30)

so the Kodama vector itself is conserved. In addition,
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Kodama also proved that in time-dependent spherically
symmetric spacetimes there is another (somewhat unex-
pected) conserved current. In terms of the Einstein tensor
and the Kodama vector we have Ja ¼ Gabkb, with

raJ
a ¼ raðGabkbÞ ¼ 0: (31)

This is a purely geometrical statement, ultimately due to
the warped product form of the metric—it is not related to
the Bianchi identities. Let us specifically compute

Ja ¼ Gabkb ¼ ðGijkj; 0; 0Þ: (32)

Now working on the radial-temporal base space we have

Gijk
j ¼ �2

rirjr

r
�jk?rkrþ

�
2r2r

r
� 2m

r3

�
ki: (33)

But using the fact that in (1þ 1) dimensions

r½ir�?jk� ¼ 0; (34)

we have

rirjr�
jk
?rkr ¼ rjrir�?jkrkr ¼ rjfrir�?jkgrkr

¼ rjf�rjr�?ki �rkr�?ijgrkr

¼ þr2rki � 1

2
�?ijrjfjrrj2g: (35)

Combining these results

Gijk
j ¼ þ 1

r
�?ijrjfjrrj2g � 2m

r3
ki: (36)

But in view of the definition of the Hawking-Israel/
Hernandez-Misner/Misner-Sharp quasilocal mass [15,16]
we then have

Gijk
j ¼ � 1

r
�?ijrjf2m=rg � 2m

r3
ki: (37)

That is

Gijk
j ¼ � 2

r2
�?ijrjm: (38)

This computation has been performed using the (1þ 1)-
dimensional covariant derivative in the radial-temporal
base space, but at this stage we can safely use the symme-
tries of the situation to lift this equality to the full space-
time

Ja ¼ Gabkb ¼ � 2

r2
�ab? rbm: (39)

This is a purely geometrical statement—fundamentally
connected with the warped product nature of the space-
time—that underlies the unexpected conservation of the
Kodama current. In view of the fact that we have already
proven rað�ab? =r2Þ ¼ 0 we finally see

raJ
a ¼ � 2

r2
�ab? rarbm ¼ 0: (40)

Thus conservation of the Kodama flux is a subtle result
deeply connected with the warped product nature of the
spacetime. We have presented this derivation in some de-
tail because it is now possible to rapidly generalize the
result in a significant manner.

IV. GENERALIZED KODAMA FLUX

Consider an arbitrary function �ðm; rÞ of the two quan-
tities mðxiÞ and rðxiÞ. Now construct the current

Ja� ¼ f@m�ðm; rÞGab � 2@r�ðm; rÞgabgkb: (41)

This current is conserved in any spherically symmetric
spacetime. To prove this note that by the definition of the
Kodama vector and the geometrical identity proved above
we have

Ja� ¼ �2
�ab?
r2

f@m�ðm; rÞrbmþ @r�ðm; rÞrbrg

¼ �2
�ab?
r2

rb�ðm; rÞ: (42)

Conservation of this four-vector is then obvious from the
last expression. Note, in particular, that by the above argu-
ment any flux of the form

Ja12 ¼ ff1ðmÞGab þ f2ðrÞgabgkb (43)

[for arbitrary f1ðmÞ and f2ðrÞ] will automatically be
conserved.
Formally, there is an even more general conserved cur-

rent one can write down: For any arbitrary scalar function
�ðxiÞ defined on the radial-temporal base space the quan-
tity

Ja� ¼ �ab?
r2

rb�; (44)

is conserved. Though this result is more general, it is
somewhat less geometrical, and does not have the same
flavor as the above. If (and only if) the functions rðxiÞ and
mðxiÞ are functionally independent (so that one can use m
and r as coordinates on the radial-temporal base space)
then these two notions (J� and J�) can be made to coin-
cide. In particular, � ! �2mðr; tÞ gives us Kodama’s
conserved flux Ja, while � ! 1

3 r
3 is just the statement

that the Kodama vector itself is conserved, rak
a ¼ 0. (For

related comments in a higher-dimensional Gauss-Bonnet
context see [9,10].)

V. KODAMATIME

The Kodama vector has been used before in several
aspects of the time-dependent gravitational collapse prob-
lem. However it has not been used to obtain a preferred
time coordinate, nor a preferred coordinate system for the
metric of a dynamic spacetime. Fortunately, in (1þ 1)
dimensions it is possible to use the lesser known but classic
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Clebsch decomposition theorem, a result complementary
to the more usual Helmholtz decomposition theorem, (see
for instance [2–4]) to assert that there are two unique
scalars � and � such that the Kodama covector k[ takes
the form

k[ ¼ �d�: (45)

Now in the ‘‘normal’’ exterior region where dr is spacelike
(i.e., in the domain of outer communication), the Kodama
vector and covector are both timelike, so in this region the
one-form d� is guaranteed to be timelike. This very
strongly suggests that � should be adopted as a preferred
‘‘time coordinate.’’ In fact, relabeling the scalar � as a
coordinate � ! t, and relabeling the integrating factor as
� ! F, we write

k[ ¼ Fdt: (46)

This naturally induces a geometrically preferred time co-
ordinate t—which we shall refer to as the Kodama time.
Using this time coordinate is at least as natural as using r
for the radial coordinate. (This key step, though mathe-
matically elementary, goes well beyond anything in
Kodama’s original paper [1], or the various papers that
have subsequently sought to use Kodama’s formalism.)
As we shall soon see, this choice of Kodama time coor-
dinate is the unique choice that makes integral curves of
the vector @t coincide with integral curves of the Kodama
vector. That is

k / @t: (47)

Ultimately, adopting these coordinates (no matter how
natural they appear) is of course a choice, and will be
‘‘justified’’ only insofar as they turn out to be useful.

Adopting these ðt; rÞ coordinates as preferred coordi-
nates on the radial-temporal plane, and without any loss
of generality, the metric can be written as

ds2 ¼ gttðr; tÞdt2 þ 2gtrðr; tÞdrdtþ grrðr; tÞdr2
þ r2fd�2 þ sin2�d�2g: (48)

However, since the Kodama vector k is orthogonal to dr,
then also dt is orthogonal to dr, and so the cross term in the
metric is zero. Thus in these preferred coordinates the
metric is diagonal,

ds2 ¼ gttðr; tÞdt2 þ grrðr; tÞdr2 þ r2fd�2 þ sin2�d�2g:
(49)

This relatively long argument has ultimately led us back to
one of the simplest, and arguably most obvious, forms of
the metric—a simple diagonal metric in Schwarzschild
curvature coordinates. (Of course now we can argue that
we have a geometrically natural reason for adopting this
particular set of coordinates.)

When using the Schwarzschild radial coordinate r it is
natural to choose the parametrization

grrðr; tÞ ¼
�
1� 2mðr; tÞ

r

��1
(50)

for the radial-radial part of the metric tensor. Doing so will
automatically give the quantity mðr; tÞ a natural interpre-
tation in terms of the Hawking-Israel/Hernandez-Misner/
Misner-Sharp quasilocal mass [15,16]. Since the radial-
temporal plane by definition has Lorentzian signature, this
choice then guarantees that it is possible to write the
temporal-temporal component of the metric tensor in the
form

gttðr; tÞ ¼ �e�2�ðr;tÞ
�
1� 2mðr; tÞ

r

�
: (51)

We finally have the (quite standard) result

ds2 ¼ �e�2�ðr;tÞ
�
1� 2mðr; tÞ

r

�
dt2 þ dr2

1� 2mðr; tÞ=r
þ r2fd�2 þ sin2�d�2g; (52)

where in addition we know

rar ¼ ðdrÞa ¼ ð0; 1; 0; 0Þ; (53)

and the equivalent contravariant result

ðdrÞa ¼
�
0; 1� 2mðr; tÞ

r
; 0; 0

�
: (54)

Furthermore, the components of the Kodama vector and
covector in these coordinates are

ka ¼ e�ðr;tÞð1; 0; 0; 0Þ;

ka ¼ �e��ðr;tÞ
�
1� 2mðr; tÞ

r

�
ð1; 0; 0; 0Þ:

(55)

As previously mentioned, the squared norm of the Kodama
vector is equal to that of rr:

jjkjj2 ¼ jjrrjj2 ¼
��������1� 2mðr; tÞ

r

��������: (56)

In these coordinates it is useful to define the time trans-
lation vector, T , which is not a Killing vector unless the
geometry happens to be static, as

T ¼ @t; T a ¼ ð1; 0; 0; 0Þ;

T a ¼ e�2�ðr;tÞ
�
1� 2mðr; tÞ

r

�
ð1; 0; 0; 0Þ:

(57)

The squared norm ofT is equal to the absolute value of the
temporal-temporal component of the metric, jgttj, and
proportional to the squared norm of the Kodama vector:

jjT jj2 ¼ jgttj ¼ e�2�ðr;tÞ
��������1� 2mðr; tÞ

r

��������¼ e�2�ðr;tÞjjkjj2:
(58)

That is,
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e�2�ðr;tÞ ¼ jjT jj2
jjkjj2 ; e��ðr;tÞ ¼ jjT jj

jjkjj : (59)

In the static situation it is the time translation vectorT that
will reduce to the (asymptotic) timelike Killing vector:
T ! K � k. Because the normalizations of T and k
differ, then if the Kodama vector is used simply as a
substitute for the Killing vector when attempting to calcu-
late quantities such as the surface gravity [5], one is likely
to encounter normalization issues when taking the static
limit.

Specifically, to obtain a finite value of the four-
acceleration near a possible horizon, as measured by an
observer at infinity, it is necessary to multiply by a suitably
defined normalizing factor [20,21]. In the static case this
normalizing factor is just jgttj, and coincides with the
squared norm of the Killing vector. However, in the time-
dependent case, not only does the geometry not possess a
Killing vector, but also the squared norm of the Kodama
vector does not coincide with jgttj. This leaves us with a
somewhat ambiguous situation with respect to the normal-
izing factor and the surface gravity of a time-dependent
metric tensor, and means that we will have to exercise
some care in defining the surface gravity of a time-
dependent geometry.

VI. RIEMANN TENSOR

It is now a standard exercise to calculate the various
components of the Riemann tensor (for instance, by using
MAPLE). We note that the Riemann tensor is considerably

less fearsome than one might suppose. Only one compo-
nent is in any sense ‘‘difficult.’’ Temporarily suppressing
the ðr; tÞ arguments for conciseness, and working in an
orthonormal basis we have

Rt̂ r̂ t̂ r̂ ¼ � 2m

r3
�m00

r
þ 2m0

r2
þ

�
1� 2m

r

�
½��00 þ ð�0Þ2�

þ 3ðm=rÞ0�0 � e�

r
@t

�
_me�

ð1� 2m
r Þ2

�
: (60)

In view of the warped product formalism, we know that this
rather messy quantity has a direct and simple physical/
mathematical interpretation: As may be verified by direct
computation it is simply BR=2, one half the Ricci scalar of
the (1þ 1)-dimensional radial-temporal plane.

The remaining components are much simpler:

Rt̂ �̂ t̂ �̂ ¼ Rt̂ �̂ t̂ �̂ ¼ m� rm0

r3
�

�
1� 2m

r

�
�0

r
; (61)

Rt̂ �̂ r̂ �̂ ¼ Rt̂ �̂ r̂ �̂ ¼ _me�

r2ð1� 2m=rÞ ; (62)

Rr̂ �̂ r̂ �̂ ¼ Rr̂ �̂ r̂ �̂ ¼ �m� rm0

r3
: (63)

These three quantities are easily seen to be proportional to
rirjr. (In fact they equal �frîrĵrg=r.) Finally

R�̂ �̂ �̂ �̂ ¼ 2m

r3
: (64)

Note that the particularly simple formula for R�̂ �̂ �̂ �̂ under-

lies the identification of mðr; tÞ as the Hernandez-Misner
quasilocal mass [15].

VII. EINSTEIN TENSOR

For the Einstein tensor, working in an orthonormal basis,
the single most important result is

Gt̂ t̂ ¼ 2m0ðr; tÞ
r2

: (65)

Here the primes denote differentiation with respect to r,
and the dots with respect to t. This result is utterly standard,
with the only novelty being that this formula for Gt̂ t̂

continues to hold in the time-dependent case (subject of
course to the coordinate choices made above). This result
forGt̂ t̂ is intimately related to the physical interpretation of
mðr; tÞ as the Hawking-Israel quasilocal mass.
A second important result is more subtle:

Gt̂ r̂ ¼ 2 _mðr; tÞe�ðr;tÞ

r2ð1� 2mðr;tÞ
r Þ : (66)

We shall soon see that this formula for Gt̂ r̂ is central to the
coordinate-based verification of Kodama’s unexpected
conservation law, and that it is intimately related to the
Brown-York quasilocal mass [22].
For completeness we indicate

Gr̂ r̂ ¼ � 2m0ðr; tÞ
r2

� 2�0ðr; tÞð1� 2mðr;tÞ
r Þ

r
: (67)

This result is quite standard (see for instance Eq. (2.65) of
[23]), with the only novelty being that this formula for Gr̂ r̂

continues to hold in the time-dependent case. This now
implies the useful result

Gt̂ t̂ þGr̂ r̂ ¼ � 2�0ðr; tÞð1� 2mðr;tÞ
r Þ

r
: (68)

Finally, now suppressing the ðr; tÞ arguments for con-
ciseness, we have

G�̂ �̂ ¼ G�̂�̂

¼
�
1� 2m

r

��
��00 þ�0

�
�0 � 1

r

��
� 3�0

�
m

r2
�m0

r

�

�m00

r
� e2�

ð1� 2m
r Þ2

�
€m

r
þ 4ð _mÞ2

rð1� 2m
r Þ

�
_� _m

r

�
: (69)

The first two lines here are again quite standard, and appear
also in static situations. (See for instance Eq. (2.66) of
[23].) All the time derivatives have been isolated in the
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third line. With a little more work this can be somewhat
tidied up as follows:

G�̂ �̂ ¼ G�̂�̂

¼ �m00

r
� e�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=r

p @r

�
r

�
1� 2m

r

�
3=2

e���0
�

� e�

r
@t

�
_me�

ð1� 2m
r Þ2

�
: (70)

This rather complicated expression can be verified to equal
�BR=2þr2r=r, the result we expect based on the warped
product formalism. We note that the time derivative con-
tributions to the Einstein tensor are quite isolated, and in
this geometrically preferred coordinate system occur only
in the G�̂ �̂ ¼ G�̂�̂ and Gt̂ r̂ components. This ultimately is

one of the key reasons we will find the Kodama time to be
so useful.

VIII. COORDINATE-BASED VERSION OF
KODAMA’S CONSERVATION LAW

Kodama’s conservation law can now be studied in more
explicit coordinate-based detail. First, based only on
spherical symmetry and the definition of the Kodama
vector, the unexpected conserved current Ja takes the form

Ja ¼ gabGbck
c ¼ f�k̂ak̂b þ ðd̂rÞaðd̂rÞbgGbck̂

cjjkjj; (71)

whence, since by construction jjkjj ¼ jjdrjj, we see
Ja ¼ �Gt̂ t̂k

a þGt̂ r̂ðdrÞa: (72)

But we have already explicitly calculated the quantities
Gt̂ t̂, Gt̂ r̂, k

a, and ðdrÞa. We obtain

Ja ¼ 2

�
� e�ðr;tÞm0ðr; tÞ

r2
;
e�ðr;tÞ _mðr; tÞ

r2
; 0; 0

�
: (73)

This vector is now obviously conserved since the four-
divergence is simply

raJ
a ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @a

� ffiffiffiffiffiffiffiffiffiffi�g4
p

Ja
�

¼ 2

e��ðr;tÞr2
@a½ð�m0ðr; tÞ; _mðr; tÞ; 0; 0Þa�

¼ 2

e��ðr;tÞr2
½� _m0ðr; tÞ þ _m0ðr; tÞ� ¼ 0: (74)

Equivalently we note that from this coordinate-based cal-
culation we explicitly recover

Ja ¼ Gabkb ¼ �2
�ab? rbm

r2
: (75)

This relation is somewhat miraculous in the present
coordinate-based calculation, and as we have seen has a
deeper justification in terms of the warped product form of
the spacetime geometry.

IX. BROWN-YORK QUASILOCAL MASS

With the coordinate system developed above, the notion
of quasilocal internal energy arises naturally as the Brown-
York quasilocal mass [22]. To prove this, first let us take
some imaginary spherical surface r ¼ r0, and hold r0 fixed
in time. Then the total energy inside this spherical surface
depends on the net flux across the surface. To calculate the
net flux we need the Gtr component of the Einstein tensor,
in an orthonormal basis. That is

Gt̂ r̂ðr; tÞ ¼ 2 _mðr; tÞ
r2ð1� 2mðr; tÞ=rÞ e

�ðr;tÞ; (76)

whence, via the Einstein equations 8	Gab ¼ Tab, we have
the flux density

fðr; tÞ ¼ Tt̂ r̂ðr; tÞ ¼ 1

4	

_mðr; tÞ
r2ð1� 2mðr; tÞ=rÞ e

�ðr;tÞ: (77)

Now the total net flux across the imaginary surface at r ¼
r0, in an amount of proper time 
, is

ðnet fluxÞtfinaltinitial ¼
Z

fðr0; tÞ � ðareaÞ � d


¼
Z

fðr0; tÞ � ð4	r20Þ

�
�
e��ðr0;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr0; tÞ

r0

s �
� dt: (78)

That is

ðnet fluxÞtfinaltinitial ¼
Z _mðr0; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2mðr0;tÞ
r

q dt

¼
�
�r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr0; tÞ

r0

s �
tfinal

tinitial

: (79)

Then, if initially there is no mass inside r ¼ r0, at time tfinal
we have

ðnet fluxÞtfinaltinitial ¼ r0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr0; tfinalÞ

r0

s �
: (80)

In this situation, the only meaningful definition of internal
energy at t ¼ tinitial is to setUðr0; tinitialÞ ¼ 0. Hence, at any
subsequent time t the internal energyUðr0; tÞ is equal to the
net incoming flux and so it makes sense to define

Uðr0; tÞ ¼ r0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr0; tÞ

r0

s �
: (81)

This internal energy is just the Brown-York quasilocal
mass for the spacetime geometry with metric (52); see
[22]. We can rearrange this (as pointed out in [22]) to yield

mðr0; tÞ ¼ Uðr0; tÞ �U2ðr0; tÞ
2r0

: (82)
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Here mðr0; tÞ retains its interpretation as the Hawking-
Israel (and Hernandez-Misner/Misner-Sharp [15,16]) qua-
silocal mass. The difference between the two notions of
energy is just the self interacting Newtonian gravitational
potential of a massive shell of radius r0. Both energies
coincide at spatial infinity with the Arnowitt-Deser-Misner
(ADM) mass.

X. SURFACE GRAVITY

Several attempts at calculating the surface gravity for a
time-dependent metric have been made using the Kodama
vector instead of the Killing vector [5], with results quali-
tatively similar to those in the static case; even to the extent
of deriving some form of the first law of (black hole)
thermodynamics.

A. Surface gravity from fiducial observers

The most intuitive way of calculating the surface gravity
is by working in the exterior region and considering the
four-velocity V parallel to the Kodama vector. Calculate
the four-acceleration A ¼ rVV. Then explicitly comput-
ing the magnitude of this four-acceleration we see

a ¼ jjAjj

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr;tÞ

r

q �
mðr; tÞ
r2

�m0ðr; tÞ
r

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðr; tÞ

r

s
�0ðr; tÞ: (83)

(Note that near spatial infinity we have the sensible
Newtonian result a ! m=r2.) The surface gravity can be
defined as the acceleration of an observer near the evolving
horizon, which we implicitly define by rHðtÞ ¼
2mðrHðtÞ; tÞ, as measured by another observer at infinity.
Thus, at this point it is necessary to multiply by a normal-
izing factor, often referred to as a redshift factor. In the
(asymptotically flat) static case there is no doubt that the
appropriate normalizing factor is

jjKjj ¼ jgttj1=2 ¼ e��ðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ=r

p
(84)

and that the appropriate object to consider is the near
horizon limit of

�static ¼ jjAjjjjKjj ¼ jjrKVjj

¼ e��ðrÞ
��
mðrÞ
r2

�m0ðrÞ
r

�
�

�
1� 2mðrÞ

r

�
�0ðrÞ

�
:

(85)

The location of the horizon is in the static case implicitly
defined by rH ¼ 2mðrHÞ, and this is now a true Killing
horizon and also an event horizon, at which we have the
standard result [8]

�staticjH ¼ e��ðrHÞ
�
1� 2m0ðrHÞ

2rH

�
: (86)

When bootstrapping to the dynamic case a plausible gen-
eralization (which we shall subsequently buttress by also
considering the radial null geodesics) is to replace jjKjj !
jjT jj, which at least has the virtue of maintaining the
correct static limit. Under this hypothesis the appropriate
object to consider is the near horizon limit of

�V ¼ jjAjjjjT jj ¼ jjrT Vjj

¼ e��ðr;tÞ
��
mðr; tÞ
r2

�m0ðr; tÞ
r

�

�
�
1� 2mðr; tÞ

r

�
�0ðr; tÞ

�
; (87)

which on the evolving horizon has the limit

�VjHðtÞ ¼ e��ðrHðtÞ;tÞ
�
1� 2m0ðrHðtÞ; tÞ

2rHðtÞ
�
: (88)

However, this proposed definition presents us with a po-
tential ambiguity—what is the physically most appropriate
choice for the normalizing factor? The choice of jjT jj as
normalizing factor as advocated above is certainly plau-
sible, and has the correct static limit. Furthermore it is
intimately related to the Kodama time introduced in this
article, rather than the Kodama vector k. Nevertheless, it is
useful to see if we can come up with other plausible
candidates for surface gravity in an evolving spacetime,
and see whether they agree with (or are closely related to)
the above proposal, and whether they possess the correct
static limit.

B. Surface gravity from radial null geodesics

There are other, possibly less ambiguous, ways to use-
fully define the sought-after surface gravity. More specifi-
cally, we can parametrize the strength of the gravitational
field throughout the entire spacetime geometry by using
the inaffinity properties of the radial null geodesics.
Consider (temporarily) the following null vectors:

~‘�
a ¼ �ka þrar

2
: (89)

In the exterior region (where k is timelike) these null

vectors are both outward-pointing, ~‘þ is future-pointing,

and ~‘� is past-pointing. (Note that �~‘� is then inward
pointing; these specific conventions have been chosen to
simplify the computations below as far as possible.) These
are arguably the simplest radial null vectors one could
write down using only the Kodama vector. It is easy to

check that ~‘þa ~‘a� ¼ 1
2 jjkjj2. Since we are working with

spherical symmetry, both radial null vectors must satisfy
the geodesic equation (in its nonaffine parametrized form):

~‘ b�rb
~‘a� ¼ ~�‘�

~‘a�; r‘�‘� ¼ ~�‘�
~‘�; (90)
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where ~�‘� are scalars defined everywhere throughout the

spacetime. By contracting these equations with ~‘�a , we can
explicitly compute ~�‘� , to yield

~� ‘þ ¼ ~�‘�

¼ mðr; tÞ
r2

�m0ðr; tÞ
r

� 1

2

�
1� 2mðr; tÞ

r

�
�0ðr; tÞ:

(91)

(Note that near spatial infinity we have ~�‘� ! m=r2.) At

the evolving horizon this would reduce to the tentative
definition

~�HðtÞ ¼ 1� 2m0ðrHðtÞ; tÞ
2rHðtÞ : (92)

Unfortunately this does not reduce to the known result in

the static case—there is a missing factor of e��ðrHðtÞ;tÞ !
e��ðrHÞ. This makes the above definition not suitable for
calculating the Hawking temperature. (We emphasize that
in static situations the standard Wick-rotation trick of
going to Euclidean signature, demanding the absence of
any conical singularity at rH, and interpreting the Hawking
temperature in terms of periodicity in imaginary time,
uniquely enforces Eq. (86) as the only physically accept-
able candidate for the surface gravity [8].) The source of

the difficulty is, since e��ðr;tÞ ¼ jjT jj=jjkjj, ultimately due
to the fact that jjT jj � jjkjj in general.

These considerations do suggest an improved strategy:
Since we have seen how to use the Clebsch decomposition
to deduce the natural existence of a Kodama time, in
addition to a Kodama vector, then it would seem appro-
priate to use the Kodama time as the natural (nonaffine)
parameter for these radial null curves. (That is, we now
parametrize the null curves by Kodama time, rather than
the usual Killing time used in the static case.) This is
tantamount to choosing

‘�a ¼ 1

2

�
�T a þ jjT jj

jjkjj rar

�
¼ e��ðr;tÞ ~‘�a : (93)

This time, the inner product is ‘þa ‘a� ¼ 1
2 jjT jj2. These

‘‘Kodama time normalized’’ radial null vectors are again
tangent to the radial null geodesics and so satisfy

‘b�rb‘
a� ¼ �‘�‘

a�: (94)

A brief calculation yields

�‘� ¼ e��ðr;tÞ~�‘� � ‘a�ra�; (95)

whence

�‘� ¼ e��ðr;tÞ
��
mðr; tÞ
r2

�m0ðr; tÞ
r

�

�
�
1� 2mðr; tÞ

r

�
�0ðrÞ

�
� 1

2
_�ðr; tÞ: (96)

At the evolving horizon, �‘� reduces to

�‘�jHðtÞ ¼ e��ðrHðtÞ;tÞ
�
1� 2m0ðrHðtÞ; tÞ

2rHðtÞ
�
� 1

2
_�ðrHðtÞ; tÞ:

(97)

This is not quite equal to �VjH—though it does share with

�VjH the desirable property of having the correct static

limit. An improved proposal is to average over past- and
future-pointing null geodesics and take

�null ¼ 1

2
½�‘þ þ �‘��: (98)

Then �null ¼ �V . That is: If one takes future-pointing and
past-pointing outward null geodesics, normalized to
Kodama time, and averages the resulting inaffinity parame-
ters, then one obtains the same �V that we tentatively
identified based on the four-acceleration of the FIDOs
that follow the Kodama flow.
In short: By using Kodama time in addition to the

Kodama vector we have now developed a geometrically
preferred notion of surface gravity for spherically symmet-
ric evolving spacetimes that can meaningfully be extended
throughout the entire spacetime, and in addition exhibits a
good static limit.

XI. THE EVOLVING HORIZON

With the calculations presented so far, it is not possible
to conclude too much about the evolving horizon at
rHðtÞ ¼ 2mðt; rHÞ. To relate this to a trapping horizon, in
the Hayward sense [5,6], it is necessary to compute the
expansions, �~‘� and �‘� , of the radial null vectors. Let us

use the following definitions for the expansion [7]:

�~‘� ¼ ra
~‘a� � ~�‘� ; �‘� ¼ ra‘

a� � �‘� : (99)

A brief computation yields

�~‘� ¼ 1

r

�
1� 2mðr; tÞ

r

�
;

�‘� ¼ 1

r

�
1� 2mðr; tÞ

r

�
e��ðr;tÞ:

(100)

In particular both �~‘þ and �‘þ change sign at the evolving

horizon rHðtÞ. This is sufficient to guarantee that the evolv-
ing horizon at rHðtÞ ¼ 2mðt; rHðtÞÞ is an apparent horizon.
However rHðtÞ is not a trapping horizon in the Hayward
sense [5], nor an ‘‘Ashtekar horizon’’ [24], since in addi-
tion �~‘� and �‘� also both vanish on the evolving horizon.

This is not critical for our purposes, since ultimately a
trapping horizon is not needed to have Hawking radiation
[25–27].

For completeness, we have also computed ~‘a�ra�~‘þ and

‘a�ra�‘þ . At the evolving horizon we have
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ð~‘a�ra�~‘þÞH ¼ _mðrHðtÞ; tÞ
rHðtÞ2

e�ðrHðtÞ;tÞ;

ð‘a�ra�‘þÞH ¼ _mðrHðtÞ; tÞ
rHðtÞ2

e��ðrHðtÞ;tÞ:
(101)

Thus for both normalizations we have most (but not all) of
the key properties of an outer trapping horizon at rHðtÞ
when _mðt; rHðtÞÞ> 0, i.e., when the overall mass increases
in time.

XII. DISCUSSION

We have used the warped product formalism to inves-
tigate the geometry of time-dependent spherically symmet-
ric spacetimes, developing relatively straightforward
arguments for the covariant conservation of the Kodama
vector itself and the associated Kodama flux. This con-
struction has allowed us to construct a very general class of

conserved fluxes appropriate to any spherically symmetric
spacetime.
Furthermore, we have successfully used the Kodama

vector field, plus the Clebsch decomposition, to obtain a
preferred Kodama time coordinate, and have then pro-
ceeded to construct a geometrically preferred coordinate
system for describing spherically symmetric time-
dependent spacetimes. The resulting metric is one of the
most simple forms of the metric of a spherically symmetric
spacetime—a diagonal metric in Schwarzschild curvature
coordinates. With these coordinates there are very simple
physical interpretations for both the Hawking-Israel
(Hernandez-Misner/Misner-Sharp) and Brown-York quasi-
local masses. Although the definition of surface gravity
remains somewhat ambiguous, by using the Kodama time
as an integral part of the construction, we have identified
some very good geometrically preferred candidates that are
compatible with known results in the static limit.
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[26] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Phys.

Rev. Lett. 97, 171301 (2006).
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