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We study the geodesic equation in the space-time of a Kerr black hole pierced by an infinitely thin

cosmic string and give the complete set of analytical solutions of this equation for massive and massless

particles in terms of Mino time that allows one to decouple the r and � components of the geodesic

equation. The solutions of the geodesic equation can be classified according to the particle’s energy and

angular momentum, the mass and angular momentum per mass of the black hole. We give examples of

orbits showing the influence of the cosmic string. We also discuss the perihelion shift and the Lense-

Thirring effect for bound orbits and show that the presence of a cosmic string enhances both effects.

Comparing our results with experimental data from the LAGEOS satellites we find an upper bound on the

energy per unit length of a string piercing the earth which is approximately 1016 kg=m. Our work has also

applications to the recently suggested explanation of the alignment of the polarization vector of quasars

using remnants of cosmic string decay in the form of primordial magnetic field loops.
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I. INTRODUCTION

The motion of test particles (both massive and massless)
provides the only experimentally feasible way to study the
gravitational fields of objects such as black holes.
Predictions about observable effects (lightlike deflection,
gravitational time delay, perihelion shift, and Lense-
Thirring effect) can be made and compared with observa-
tions. Geodesics in black hole space-times in four-
dimensional Schwarzschild space-time [1] and Kerr and
Kerr-Newman space-time [2] have been discussed exten-
sively. This has been extended to the cases of
Schwarzschild–de Sitter space-times [3] as well as to
spherically symmetric higher dimensional space-times
[4]. The analytical solutions of the geodesic equation in
the Kerr space-time have been presented in [2,5].
Moreover, solutions of the geodesic equation in the Kerr
space-time have been given using elliptic functions [6],
while solutions representing bound orbits parametrized in
terms of Mino time [7] have been presented in [8].
Spherical orbits in the Kerr–(anti)–de Sitter space-time
have been discussed in [6], while the general solution to
the geodesic equation in (four-dimensional) Kerr–de Sitter
[9] and even general Plebanski-Demianski space-times
without acceleration has been found [10].

In [11] a Fourier expansion has been used to compute the
fundamental frequencies for bound orbits using Mino time.
These results have direct application in the computation of
gravitational waves that are created in extreme mass ratio

inspirals, i.e. in binaries in which a stellar object moves on
a bound orbit around a supermassive black hole.
Cosmic strings have gained a lot of renewed interest

over the past years due to their possible connection to
string theory [12]. These are topological defects [13] that
could have formed in one of the numerous phase transi-
tions in the early universe due to the Kibble mechanism.
Inflationary models resulting from string theory (e.g. brane
inflation) predict the formation of cosmic string networks
at the end of inflation [14].
Different space-times containing cosmic strings have

been discussed in the past. This study has mainly been
motivated by the pioneering work of Bach and Weyl [15]
describing a pair of black holes held apart by an infinitely
thin strut. This solution has later been reinterpreted in
terms of cosmic strings describing a pair of black holes
held apart by two cosmic strings extending to infinity in
opposite directions. Consequently, a cosmic string piercing
a Schwarzschild black hole has also been discussed, both in
the thin string limit [16]—where an analytic solution can
be given—as well as using the full U(1) Abelian-Higgs
model [17,18], where only numerical solutions are avail-
able. In the latter case, these solutions have been inter-
preted to represent black hole solutions with long range
‘‘hair’’ and are thus counterexamples to the no hair con-
jecture which states that black holes are uniquely charac-
terized by their mass, charge, and angular momentum.
Interestingly, the solution found in [16] is a
Schwarzschild solution which, however, differs from the
standard spherically symmetric case by the replacement of
the angular variable � by ��, where the parameter � is
related to the deficit angle by � ¼ 2�ð1� �Þ. In this
sense, the space-time is thus not uniquely determined by
the mass, but is described by the mass and deficit angle
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parameter �. Of course, it is then easy to extend known
analytically given space-times to the conical case by mak-
ing the mentioned substitution.

In order to understand details of gravitational fields of
massive objects and to be able to predict observational
consequences, it is important to understand how test par-
ticles move in these space-times. Next to the above men-
tioned examples the complete set of solutions to the
geodesic equation in the space-time of a Schwarzschild
black hole pierced by a cosmic string has been given
recently in [19].

The geodesic equation for the motion of test particles in
the space-time of an uncharged, rotating black hole in 4
space-time dimensions (given by the Kerr solution) pierced
by an infinitely thin string aligned with the rotation axis of
the black hole has been given in [20] and spherical orbits
and the Lense-Thirring precession have been discussed.
Solutions to the geodesic equation in this space-time have
also been given in [21], but the test particle motion has
been restricted to the equatorial plane and gravitomagnetic
effects have been studied. Moreover, small perturbations
around circular orbits have been discussed in [22]. The
motion of a test scalar quantum particle in the space-time
of a Kerr-Newman black hole pierced by a cosmic string
has been discussed in [23], and it was observed that the
presence of a cosmic string alters the corresponding
observables.

The aim of this paper is to determine the complete set of
analytic solutions of the geodesic equations in the space-
time of a Kerr black hole pierced by a cosmic string and to
derive analytical expressions for observable effects which
can be used for astrophysical searches for such cosmic
strings. The accurate computation of geodesics for massive
particles is important in order to understand gravitational
wave signals from binaries which can later be compared
with eventual gravitational wave measurements. The com-
putation of geodesics for massless particles is important in
order to understand how light signals pass by black holes or
other massive objects. Moreover, our work has a direct link
to the recently proposed explanation [24] of the observed
alignment of the polarization vector of quasars on cosmo-
logical scales [25]. In [24] the assumption is used that two
originally linked electroweak string loops decayed via the
formation of monopole-antimonopole pairs in the early
universe. The remnants of this decay are interconnected
loops of magnetic field whose radii have grown due to the
expansion of the universe and today should be on the order
of Gpc. Interestingly, it was found that the rotation axis of a
quasar would align with the direction of the magnetic field.
Since the size of the magnetic field loops are much larger
than the size of the quasars, we can assume the loop to be
approximated by a straight line of magnetic field—that is
aligned with the rotation axis of the supermassive black
hole in the center of the quasar—at the position of the
quasar. If we assume our infinitely thin cosmic string to be

a toy model for finite width strings (e.g. electroweak or
Abelian-Higgs strings) where the latter would have a mag-
netic flux along their axis, the model studied in this paper
would describe a quasar with its rotation axis equal to the
axis of the magnetic flux.
Our paper is organized as follows: in Sec. II, we give the

geodesic equation, in Sec. III, we classify the solutions,
while in Sec. IV, we give the solutions to the geodesic
equation, and in Sec. V we present examples of orbits. In
Sec. VI we discuss observables such as the perihelion shift
and the Lense-Thirring effect. We conclude in Sec. VII.

II. THE GEODESIC EQUATION

We consider the geodesic equation

d2x�

d�2
þ �

�
�	

dx�

d�

dx	

d�
¼ 0; (1)

where �
�
�	 denotes the Christoffel symbol given by

��
�	 ¼ 1

2g
�
ð@�g	
 þ @	g�
 � @
g�	Þ (2)

and � is an affine parameter such that for timelike geo-
desics d�2 ¼ g�
dx

�dx
 corresponds to proper time.

The explicit form of the metric that we are studying in
this paper reads

ds2 ¼ �
�
1� 2Mr

�2

�
dt2 þ �2

�
dr2 þ �2d�2 þ �2

�
r2 þ a2

þ 2Mra2sin2�

�2

�
sin2�d�2 � �

4Mrasin2�

�2
dtd�;

(3)

where �2 ¼ r2 þ a2cos2�, � ¼ r2 � 2Mrþ a2, a ¼
J=M is the angular momentum J per mass M of the black
hole, and 0<�< 1 is the deficit angle parameter that is
related to the deficit angle � ¼ 2�ð1� �Þ. This metric
describes a Kerr black hole pierced by an infinitely thin
cosmic string that is aligned with the rotation axis of the
black hole. The deficit angle appears due to the presence of
the cosmic string and can be expressed in terms of the
energy per unit length � of the cosmic string: � ¼
8�G�� 8�ð�=MPlÞ2, where � is the typical symmetry
breaking scale at which the cosmic string formed and MPl

is the Planck mass. Note that we are using units such that
G ¼ c ¼ 1.
For a ¼ 0 this metric reduces to the Schwarzschild

solution pierced by an infinitely thin cosmic string [19],
while for � ¼ 1 we recover the standard Kerr solution.
Surfaces with � ¼ 0 correspond to horizons of the Kerr

solution with horizon radius r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, where

the þ sign corresponds to the event horizon, while the �
sign corresponds to the Cauchy horizon. Surfaces with
2Mr ¼ �2 are the static limit and define a Killing horizon.
The domain between the event horizon and the static limit
is the ergosphere. In the following, we are only interested
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in nonextremal black hole solutions, i.e. in solutions with
M2 > a2. Note that the localization of the horizons and the
static limit, respectively, are not altered by the presence of
the cosmic string.

The Boyer-Lindquist coordinates ðr; �;�Þ are related to

Cartesian coordinate ðx;y;zÞ by x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
sin�cosð��Þ,

y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
sin�sinð��Þ, and z ¼ r cos�. Hence r ¼ 0

corresponds to a disk with a deficit angle �, while the
physical singularity at r ¼ 0, � ¼ �=2 is a ring with a
deficit angle. It is then clear—in contrast to the a ¼ 0
limit—that negative values of r are allowed. When cross-
ing r ¼ 0 to negative values of r one enters into another
conical space-time that, however, possesses no horizons.
The Penrose diagram of this space-time looks exactly like
that of the standard Kerr space-time [5]; however, each
point in the diagram would correspond to a sphere with
deficit angle �.

The Lagrangian reads

L ¼ 1

2
g�


dx�

d�

dx


d�
¼ 1

2
"; (4)

where " ¼ �1 for massive test particles and " ¼ 0 for
massless test particles, respectively. The Killing vectors of
this space-time are @

@t and
@
@� . The constants of motion are

the energy E and the angular momentum Lz which are
given by the generalized momenta pt and p�

� pt ¼ �@L
@ _t

¼ � _tgtt � _�gt�

¼
�
1� 2Mr

�2

�
_tþ �

2Mar

�2
sin2� _� ¼: E; (5)

p� ¼ @L

@ _�
¼ _tgt� þ _�g��

¼ ��
2Mar

�2
sin2� _t

þ �2 ðr2 þ a2Þ2 � �a2sin2�

�2
sin2� _�

¼: �Lz: (6)

The dot denotes the differentiation with respect to the
affine parameter �. Therefore the presence of a cosmic
string aligned with the rotation axis of the Kerr black
hole decreases the magnitude of the generalized momenta
due to the parameter � as compared to the standard Kerr
space-time. In particular, for a given energy E a particle on

the surface defined by gtt ¼ 0 (the static limit) has larger _�
as compared to the standard Kerr case.

There is another constant of motion, namely, the Carter
constant K [26] that appears when separating the
Hamilton-Jacobi equations

@S

@�
¼ 1

2
g�
ð@�SÞð@
SÞ; (7)

which persists in the presence of a cosmic string. S denotes
the principal function of Hamilton for which we make the
following Ansatz:

S ¼ 1
2"�� Etþ �Lz�þ SrðrÞ þ S�ð�Þ; (8)

where SrðrÞ and S�ð�Þ are functions of r and � only,
respectively.
By differentiating S with respect to the constants ", E,

Lz, and Q :¼ K � ðLz � aEÞ2, where Q is the modified
Carter constant, we can find the components of the geode-
sic equation. Introducing a new parameter, the so-called
Mino time [7] given by d� ¼ d�

�2 the r and � components of

the geodesic equation can be decoupled. The components
of the geodesic equation then read

dr

d�
¼ � ffiffiffiffiffiffiffiffiffi

RðrÞp
; (9)

d�

d�
¼ � ffiffiffiffiffiffiffiffiffiffiffi

�ð�Þp
; (10)

d�

d�
¼ 1

�

�
Lzcsc

2�� aEffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp d�

d�
þ aPðrÞ

�ðrÞ ffiffiffiffiffiffiffiffiffi
RðrÞp dr

d�

�
; (11)

dt

d�
¼ aðLz � aEsin2�Þffiffiffiffiffiffiffiffiffiffiffi

�ð�Þp d�

d�
þ ðr2 þ a2ÞPðrÞ

�ðrÞ ffiffiffiffiffiffiffiffiffi
RðrÞp dr

d�
; (12)

with

�ð�Þ ¼ Q� cos2�ðL2
zcsc

2�� a2ðE2 þ "ÞÞ; (13)

PðrÞ ¼ Eðr2 þ a2Þ � Lza; (14)

RðrÞ ¼ PðrÞ2 � �ðrÞðQþ ðLz � aEÞ2 � "r2Þ: (15)

For a ¼ 0 these equations reduce to the equations of
motion in a space-time of a Schwarzschild black hole
pierced by a cosmic string [19], while for�¼1we recover
the geodesic equation in the Kerr space-time. As initial
conditions we will choose the þ signs in (9) and (10).

III. CLASSIFICATION OF SOLUTIONS

The classification of the solutions of the geodesic equa-
tions (9)–(12) can be done with respect to the modified
Carter constant Q, the mass of the black hole M, the
angular momentum per unit mass of the black hole a, as
well as the energy E and angular momentum Lz of the
massive (" ¼ �1) or massless (" ¼ 0) test particle.
Apparently, the deficit parameter � does not appear in
the r, �, and t components of the geodesic equation and
will hence only influence the � motion.

A. r motion

In order to have solutions of the geodesic equation for r
we have to require RðrÞ> 0. Therefore solutions of the r
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component of the geodesic equation exist only for specific
choices of E and Lz. RðrÞ will have either 4 real, 2 real and
2 complex or 4 complex zeros. On the boundaries between
the domains in the E2-Lz plane corresponding to these
three different possibilities RðrÞ necessarily has a double
zero. In order to find these boundaries we make the Ansatz
RðrÞ ¼ ðr� Þ2ððE2 þ "Þr2 þ �1rþ �2Þwhere , �1, and

�2 have to be determined. We find that for RðrÞ ¼ 0 we
have the following parametric expressions for E and Lz

EðÞ ¼ �23 � 3"M2 þ ð"a2Þ� KMffiffiffiffiffiffi
P

p ; (16)

LzðÞ ¼ "M4 þ ðK � 2a2 � "a2Þ3 � ð3MK þ 3"Ma2Þ2 þ ð"a4 þ a2KÞþ a2MK

a
ffiffiffiffiffiffi
P

p ; (17)

where

P ¼ 46 þ 8"M5 þ ð4K � 4a"Þ4 � 8MK3

þ 4a2K2: (18)

Note that r ¼  corresponds to a double zero of RðrÞ and
hence represents spherical orbits.

Examples for the polynomial RðrÞ are given in Figs. 1
and 2. In Fig. 1 we show the different domains in the E2-Lz

plane for M ¼ 1, a ¼ 0:8, and K ¼ 4. The blue vertical
line corresponds to E2 ¼ 1, the green line to  2� �1; 0�,
and the red line to  2 ½0;þ1½. The plots of RðrÞ in the
domains R1 to R5 are also shown. For R1 RðrÞ possesses 4
complex zeros, for R2 and R5 there are 2 real and 2
complex zeros, while for R3 and R4 there are four real
zeros. The following type of orbits are then possible [5]:

(i) Fly-by orbit: the test particle starts from �1,
reaches a minimal value of jrj, and flies back to r ¼

�1. There are two fly-by orbits in R2 and R4,
respectively.

(ii) Transit orbit: the test particle starts from �1,
crosses r ¼ 0, and continues to r ¼ �1. There is
a transit orbit in R1.

(iii) Bound orbit: the test particle oscillates in an interval
½r2; r1� where r1 > r2. There are two bound orbits in
R3 and one bound orbit in R4 and R5, respectively.

(iv) Spherical orbit: this is a special bound orbit with r
constant. r ¼  is a spherical orbit that can be stable
or unstable.

In Fig. 2 we show how the domains R1 to R5 change
when changing the Carter constant K (upper three figures).
Obviously R3 decreases in size when increasing K. We
also give the change of R1 to R5 for changing angular
momentum per unit mass a (lower three figures). In this
case, the domain R4 is increasing for increasing a.
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FIG. 1 (color online). The domain of existence of solutions to the geodesic equations for M ¼ 1, a ¼ 0:8, and K ¼ 4 that follows
from the requirement RðrÞ> 0. The top left figure shows the domain of existence in the Lz-E

2 plane. The green and red lines represent
RðrÞ ¼ 0, where the green line is for  2� �1:0� (line separating R3, R4, and R5) and the red line is for  2 ½0:þ1½ (line
separating R1 and R2). The remaining figures show the function RðrÞ for the different domains denoted by R1 to R5.
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B. � motion

It is obvious from the form of the geodesic equations that
we should have�ð�Þ> 0; i.e. �motion is allowed only for
those � for which �ð�Þ> 0. This in turn means that when
we fix Q and a only particular values of E and Lz are
allowed.

(1) Equatorial motion with � ¼ �=2 for massive and
massless particles: in this case, it follows from (13)
that Q ¼ 0, i.e.

Lz ¼ aE� ffiffiffiffi
K

p
: (19)

This is shown in Figs. 3(a) and 3(b) where the blue

and the red lines indicate Lz ¼ aEþ ffiffiffiffi
K

p
and Lz ¼

aE� ffiffiffiffi
K

p
, respectively.

(2) Polar motion with � ¼ 0 or � ¼ �: obviously in this
case, we have to choose Lz ¼ 0 and Q �
�a2ðE2 þ "Þ.

(3) Motion for 0< �< � with � � �=2: in this case,
we find that

Lz � 1

2

ðE�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � "

p
Þða2"þ KÞ

"a
(20)

for massive particles and

Lz � K

4aE2
(21)

for massless particles. This is shown in Figs. 3(a)

and 3(b) where the green line indicates Lz¼ 1
2ðE�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2�"
p

Þða2"þKÞ=ð"aÞ. The allowed domain in
the Lz-E

2 plane is the one above this green line.
We show an example of the different domains corre-

sponding to zeros of �ð�Þ in Fig. 4 for M ¼ 1, a ¼ 0:8,
and K ¼ 4. The function �ð�Þ is plotted for the domains
denoted T1 to T5. In domains T1, T2, and T5 the poly-
nomial �ð�Þ has no real zeros, while it has four real zeros
in domain T3 and two real zeros in domain T4, respec-
tively. Clearly, only in the domains T3 and T4 solutions to
the geodesic equations exist. In T3 there are two domains
in � for which �ð�Þ> 0. Here the particles oscillate be-
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FIG. 2 (color online). The change of the Lz-E
2 plot for varying Carter constant (a) and angular momentum per unit mass of the black

hole a (b), respectively.
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tween �min and �max but cannot cross � ¼ �
2 . In domain T4

the particle can cross the equatorial plane � ¼ �=2.

IV. ANALYTICAL SOLUTIONSOF THEGEODESIC
EQUATION

In the following, we will present the analytical solutions
of the geodesic equation for the r, �, �, and t components.
We will present these solutions using Mino time �.

A. r motion

The polynomial RðrÞ can be written in the form

RðrÞ ¼ ðE2 þ "ÞY4
j¼1

ðr� rjÞ; (22)

where rj denote the zeros of RðrÞ with r1 the largest real

zero. Using the coordinate transformation r ¼ 1=yþ r1
the polynomial RðrÞ can be transformed to a third order
polynomial in y using

d� ¼ drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ � dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 þ "ÞP3
i¼0 biy

i
q (23)

with

b0 ¼ 1; (24)

b1 ¼ ð�r2 � r4 þ 3r1 � r3Þ; (25)

b2 ¼ ðr2r4 � 2r1r2 þ r2r3 þ 3r21 � 2r1r3 � 2r1r4

þ r3r4Þ; (26)
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FIG. 3 (color online). The change of the domain of existence of solutions to the geodesic equations in the Lz-E
2 plane for several

values of the Carter constant K andM ¼ 1, a ¼ 0:8 (a) and several values of the angular momentum per unit mass of the black hole a
and M ¼ 1 and K ¼ 3 (b), respectively. Note that solutions exist only below the blue, above the red and above the green line.
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b3 ¼ ð�r3r
2
1 þ r1r2r3 þ r1r2r4 þ r1r3r4 � r2r

2
1

þ r31 � r4r
2
1 � r2r3r4Þ: (27)

Introducing the variable

z ¼ y� �

�
with � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

b3ðE2 þ "Þ
3

s
; � ¼ � b2

3b3
;

(28)

we can write the solution of (9) as follows:

rð�Þ ¼
�

1

�}ð1� ð�� �0Þ þ Cr; ~g2; ~g3Þ þ �
þ r1

�
: (29)

The integration constant is given by

Cr ¼
Z 1

z0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z3 � ~g2z� ~g3

p ; (30)

where z0 denotes the value of z that corresponds to the
initial radial coordinate and

~g 2 ¼ � 22=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ "Þ2b323

q
ð�b2

2 þ 3b1b3Þ
3b3

2
;

~g3 ¼ �ðE2 þ "Þð2b23 þ 27b0b3
2 � 9b1b2b3Þ

27b3
2

:

(31)

Depending on the sign of the discriminant ~D ¼ ~g32 �
27~g23 we have different values for Cr. In the following, we

will denote the zeros of the third order polynomial in the
square zero of (30) as ~e1 > ~e2 > ~e3.
(1) ~D> 0: In this case RðrÞ has four real zeros which

correspond to domains R3 and R4 in Fig. 1.
For the outer bound orbit in domain R3 with mini-
mal radius r2 and maximal radius r1 we choose z0 ¼
~e1 such that Cr ¼ KðKÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e1 � ~e3
p ¼: ~!1 where

KðKÞ is the complete elliptic integral of the first
kind and K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e2 � ~e3
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~e1 � ~e3

p
is the modulus

of the elliptic integral. For the inner bound orbit in
domain R3 with minimal radius r4 and maximal
radius r3 we choose z0 ¼ ~e2 such that Cr ¼
KðKÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e1 � ~e3
p þ iKðK0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~e1 � ~e3
p ¼: ~!1 þ ~!2

where K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�K2

p
. For the fly-by orbit in R4

with initial minimal radius r1, we choose z0 ¼ 1
such that Cr ¼ 0, while for the inner bound orbit in
R4 with initial maximal radius r2 and minimal
radius r3 we choose z0 ¼ ~e2 such that Cr ¼ ~!1 þ
~!2.

(2) ~D< 0: In this case RðrÞ has two real zeros which
correspond to domains R2 and R5 in Fig. 1. In the
following, we will denote the real zero of the third
order polynomial in the square zero of (30) as ~e2,
while the two complex zeros are denoted by ~e1 and
~e3.
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FIG. 4 (color online). The domain of existence of solutions to the geodesic equations for M ¼ 1, a ¼ 0:8, and K ¼ 4 that follows
from the requirement �ð�Þ> 0. The top left figure shows the domain of existence in the Lz-E

2 plane. The remaining figures show the
function �ð�Þ for the different domains denoted by T1 to T5. Solutions exist only for parameters Lz and E in domains T3 and T4,
respectively.

TEST PARTICLE MOTION IN THE SPACE-TIME OF A . . . PHYSICAL REVIEW D 82, 044024 (2010)

044024-7



For the fly-by orbit in domain R2 with initial mini-
mal radius r1 we choose z0 ¼ 1 such that Cr ¼ 0.
For the bound orbit in domain R5 with initial maxi-
mal radius r1 we also choose z0 ¼ 1, i.e. Cr ¼ 0.

(3) ~D ¼ 0: In this case RðrÞ has one real zero. The orbit
in this case will be a bound spherical orbit.

Note that there is also the possibility of four complex
zeros. This, however, would simply correspond to a transit
orbit with r ¼ �1 ! þ1. Wewill not discuss this case in
detail in this paper.

B. � motion

The solution of (10) as a function of Mino time � is
given by

�ð�Þ ¼ arccos

�
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�}ð1� ð�� �0Þ þ C�; g2; g3Þ þ 

q �

;

(32)

where

� ¼ Q�1=3; 
 ¼ ðQþ L2
z � a2ðE2 þ "ÞÞ=ð3QÞ:

(33)

The positive (negative) sign of the arccos corresponds to
the choice � > �=2 (� < �=2). For the �motion in domain
T4, the solutions thus have to be ‘‘glued together’’ at � ¼
�=2.

The integration constant C� is given by

C� ¼
Z 1

w0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4w3 � g2w� g3

p ; (34)

where w is related to � by cos2� ¼ ð�wþ 
Þ�1, w0 cor-
responds to the value of w that represents the initial �, and

g2 ¼ � 22=3ða21Þ1=3ð3a1a3 � a22Þ
3a21

;

g3 ¼ � 2a32 � 9a1a2a3
27a21

;

(35)

where a1 ¼ 4Q, a2 ¼ 4ða2ðE2 þ "Þ � Lz �QÞ, and
a3 ¼ �4a2ðE2 þ "Þ. The discriminant D ¼ g32 � 27g23 is

always positive, so we have three real zeros of the third
order polynomial, which we call e1 > e2 > e3 in the fol-
lowing. Note that though we might have three real zeros for
the polynomial in w these zeros might not fulfill ð�wþ

Þ�1 ¼ cos2� � 1. Moreover to each zero of the polyno-

mial in w correspond two values of � fulfilling cos� ¼
�ð�wþ 
Þ�1=2. Hence, depending on the values of e1, e2,
and e3 the polynomial �ð�Þ can have four, two, or no real
zeros.

In T4, we typically choose w0 ¼ e1 such that C� ¼
KðKÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1 � e3
p ¼: !1, where KðKÞ is the complete el-

liptic integral of the first kind and K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e3

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e3

p
is the modulus of the elliptic integral.

In T3, we typically choose w0 ¼ e3 such that C� ¼
iKðK0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1 � e3
p ¼: !2, where KðK0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�K2
p

.

C. � motion

The equation for the � component (11) is separated into
�-dependent and r-dependent parts

�d� ¼ Lzcsc
2�� aEffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp d�þ a��1PðrÞffiffiffiffiffiffiffiffiffi

RðrÞp dr ¼: dI� þ dIr:

(36)

The solutions for I� and Ir are

I� ¼ ðLz � aEÞð�� �0Þ þ
X2
i¼1


þ�d0
}0ðxiÞ

�ð�� �0Þ
�

�ðxiÞ

þ lnð	ðx� xiÞÞ � lnð	ðx0 � xiÞÞ
�
; (37)

Ir ¼ �K0ð�� �0Þ þ
X2
i;j¼1

Kj

}0ðujiÞ
��ð�� �0Þ

�
�ðujiÞ

þ lnð	ðu� ujiÞÞ � lnð	ðu0 � ujiÞÞ
�
; (38)

where � and 	 denote the Weierstrass zeta and sigma
functions, respectively.� and 
 are the variables defined in
(33), d0 ¼ ð1� 
Þ=� and x ¼ �=�. Moreover, we have
introduced the variable u ¼ �ð1� ð�� �0Þ þ CrÞ with

uð�0Þ ¼ �Cr and the � given in (28). In addition, }uji ¼
ej with }ðu11Þ ¼ }ðu12Þ ¼ e1 and }ðu21Þ ¼ }ðu22Þ ¼ e2.

Finally, the Kj appear when rewriting dIr as follows:

dIr ¼ K0

�dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z3 � ~g2z� ~g3

p
þ X2

j¼1

Kj

dz

ðz� ejÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z3 � ~g2z� ~g3

p ; (39)

where ej :¼ yj��

� and y ¼ ðr� r1Þ�1.

D. t motion

From (12) we have

dt ¼ aðLz � aEsin2�Þ d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp

þ ðr2 þ a2Þ�ðrÞ�1PðrÞ drffiffiffiffiffiffiffiffiffi
RðrÞp

¼: d �I� þ d �Ir: (40)

To find analytical expressions for �I� and �Ir we proceed as
in the case of I� and Ir, respectively, and find
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�I� ¼ aðLz � aEÞð�� �0Þ þ a2E
X2
i¼1

1

}0ð �xiÞ

�
�ð�� �0Þ

�
�ð �xiÞ þ lnð	ðx� �xiÞÞ

� lnð	ðx0 � �xiÞÞ
�
; (41)

where }ð �x1Þ ¼ }ð �x2Þ ¼ �
=�. The simple poles of the
function under the sum are given by �x1, and �x2 are in the
fundamental domain f2a!1 þ 2b!2ja; b 2 ½0; 1�g where
2!1 2 R and 2!2 2 C. In addition, we have

�Ir ¼ C0ð�� �0Þ þ
X4
i¼1

X2
j¼1

Ci

}0ðujiÞ
��ð�� �0Þ

�
�ðujiÞ

þ lnð	ðu� ujiÞÞ � lnð	ðu0 � ujiÞÞ
�
; (42)

where Ci are the coefficients from the partial fraction and
~ei the poles of the rational function FðzÞ from the trans-
formation ðr2 þ a2Þ�ðrÞ�1PðrÞ drffiffiffiffiffiffiffi

RðrÞ
p . In addition }ðu1iÞ ¼

}ðu2iÞ ¼ ~ei.

V. EXAMPLES OF ORBITS

In the following we give plots of geodesics of massive
and massless particles, respectively, in the space-time of a
nonextremal Kerr black hole pierced by an infinitely thin
cosmic string. In particular, we will demonstrate how the
presence of the cosmic string alters the test particle motion.

A. Motion of massive test particles

The domain of existence of solutions of the geodesic
equation can be obtained from the intersection of the
allowed domains of the Lz-E

2 plane obtained from the
requirement �ð�Þ> 0 and RðrÞ> 0, respectively. This
leads to four domains in the Lz-E

2 plane. These are shown
for M ¼ 1, a ¼ 0:8, and K ¼ 12 in Fig. 5 and denoted by
Z1 to Z4.

(1) Z1: This domain is the combination of domain T4
from Fig. 4 and domain R3 from Fig. 1. The possible
orbits are two bound orbits on which the test particle
can cross the equatorial plane at � ¼ �=2. The
effect of the cosmic string on the geodesic motion
on the outer bound orbit is shown in Fig. 6. For the
inner bound orbit we observe that the test particle
crosses the event and the Cauchy horizon several
times.

(2) Z2: This domain is the combination of domain T4
from Fig. 4 and domain R4 from Fig. 1. The possible
orbits are one fly-by and one bound orbit on which
the test particle can cross the equatorial plane at � ¼
�=2. The effect of the cosmic string on the fly-by
orbit is shown in Fig. 7.

(3) Z3: This domain is the combination of domain T4
from Fig. 4 and domain R2 from Fig. 1.
The possible orbits are two fly-by orbits (from r1 to
1 and�1 to r2) on which the test particle can cross
the equatorial plane at � ¼ �=2. Again, we observe
that the test particle crosses the event and the
Cauchy horizon several times.

(4) Z4: This domain is the combination of domain T4
from Fig. 4 and domain R5 from Fig. 1.
The possible orbit is one bound orbit on which the
test particle can cross the equatorial plane at � ¼
�=2. In this case, the test particle crosses the event
and the Cauchy horizon several times.

B. Motion of massless test particles

The domain of existence of solutions of the geodesic
equation can be obtained from the intersection of the
allowed domains of the Lz-E

2 plane obtained from the
requirement �ð�Þ> 0 and RðrÞ> 0, respectively. This
leads to three domains in the Lz-E

2 plane. These are shown
for M ¼ 1, a ¼ 0:8, and K ¼ 12 in Fig. 8 and denoted by
N1 to N3.
(1) N1: The possible orbit is a fly-by orbit on which the

test particle cannot cross the equatorial plane at � ¼
�=2. The effect of the cosmic string on the fly-by
orbit (from r1 to 1) is shown in Fig. 9.

(2) N2: The possible orbits are one bound and one fly-
by orbit on which the test particle can cross the
equatorial plane at � ¼ �=2.

(3) N3: The possible orbits are one fly-by and one
bound orbit on which the test particle can cross the
equatorial plane at � ¼ �=2.
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FIG. 5 (color online). The four domains Z1 to Z4 in the Lz-E
2

plane for which solutions to the geodesic equation for massive
particles exist are shown for M ¼ 1, a ¼ 0:8, and K ¼ 12. The
two nearly horizontal red lines and the remaining blues lines
come from the restrictions �ð�Þ> 0 and RðrÞ> 0, respectively.
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FIG. 6 (color online). The change of the outer bound orbit of a massive test particle (domain Z1) due to the change of the deficit
parameter �. Here Lz ¼ 3:0, E ¼ ffiffiffiffiffiffiffiffiffi

0:95
p

, K ¼ 12, M ¼ 1, and a ¼ 0:8. The red circles represent the radii of the event and Cauchy
horizons, while the yellow circles denote the minimal and the maximal radii of the orbit, respectively.
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FIG. 7 (color online). The change of the fly-by orbit (domain Z2) of a massive test particle due to the change of the deficit parameter
�. Here Lz ¼ 3:104, E ¼ 1:004, K ¼ 12, M ¼ 1, and a ¼ 0:8. The red circles represent the radii of the event and Cauchy horizons,
while the yellow circle denotes the minimal radius of the orbit.
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VI. OBSERVABLES

For the standard Kerr space-time (� ¼ 1) the analytical
expression of the so-called fundamental frequencies of
bound orbits have been given in [11] in the frequency
domain using a Fourier transformation and in [8] as a
function of a Jacobi elliptic integral. Here, we will present
the fundamental frequencies for � � 1 in the form of a
Weierstrass elliptic integral } and analyze their depen-
dence on the deficit angle.

For bound orbits rð�Þ and �ð�Þ become periodic func-
tions that are independent of each other. We can then define
the fundamental frequencies of these bound orbits using
Mino time �. Using the results of Secs. IVA and IVB we
find

�r ¼ 2
Z rmax

rmin

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 2� ~!1;

�� ¼ 4
Z cos�min

0

d cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðcos�Þp ¼ 4�!1;

(43)

where rð�Þ ¼ rð�þ n�rÞ and �ð�Þ ¼ �ð�þ n��Þ for any
integer n [11]. rmin and rmax correspond to the periapsis and
the apoapsis in the radial direction, while �min corresponds
to the minimal value of the polar coordinate. The angular
frequencies then read

�r ¼ 2�

�r

¼ �

�!r1

; �� ¼ 2�

��

¼ �

2�!1

: (44)

In [8] the frequencies for the � and t components have
been defined via an average over the orbital periods�r and
��. Here we read these periods off from our solutions for
the � and t components of the geodesic equation. These
solutions contain terms that correspond to oscillations with
periods�r and��, respectively, and a term that describes a
linear increase in Mino time �. �� and � are the frequen-

cies of � and t in Mino time, respectively, that correspond
to this linear increase [8]. By using the results of Secs. IVC

and IVD, we can find the expressions for these frequen-
cies. This gives

�� ¼ 1

�

�
ðLz � aE� K0Þ þ

X2
i;j¼1

�

þ�d0
}0ðxiÞ

�ðxiÞ
�

� Kj

}0ðujiÞ
�ðujiÞ
�

��
(45)

and

� ¼ aðLz � aEÞ þ C0 þ
X4
i¼1

X2
j¼1

�
a2E

1

}0ð �xiÞ
�ð �xiÞ
�

� Ci

}0ðujiÞ
�ðujiÞ
�

�
: (46)

These results differ from that of the standard Kerr space-
time by the factor of 1=� in (45).
As shown in [11] the angular frequencies calculated

using Mino time � are related to the angular frequencies
�r,��, and�� calculated using a distant observer time as

follows:

�r ¼ �r

�
; �� ¼ ��

�
; �� ¼ ��

�
: (47)

If these frequencies are different, they give rise to the
precession of the orbital ellipse and of the orbital plane. In
particular, the perihelion shift is related to the difference
between the angular frequency of the radial motion�r and
the angular frequency of the � motion, while the Lense-
Thirring (LT) precession is related to the difference be-
tween the frequencies of the two angular motions

�perihelion ¼ �� ��r; �LT ¼ �� ���: (48)

In comparison to the standard Kerr space-time with � ¼ 1,
the frequencies of the perihelion shift �perihelion and the

Lense-Thirring precession �LT are hence bigger for �<
1, i.e. in the Kerr space-time including a deficit angle. This
is e.g. clearly seen in Fig. 9, where the perihelion shift
increases for decreasing � (see plots in the x-y plane) and
the increase of precession is seen when studying the three-
dimensional orbits.
Using the results from the LAGEOS satellites [27] we

can estimate an upper bound for the deficit parameter and
hence for the energy per unit length of a cosmic string
piercing the earth. The theoretical value of the �LT for the
earth is given by 39� 10�3 arcseconds=year. The
LAGEOS satellites have measured this value with an ac-
curacy of 10%. Using this we find that

�LTð� � 1Þ ��LTð� ¼ 1Þ ¼
�
1

�
� 1

�
��ð� ¼ 1Þ

� 4� 10�3 arcseconds=year:

(49)

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

8

E2

L
z

a = 0.80 and K = 12.00

N1

N2

N3

FIG. 8 (color online). The three domains N1 to N3 in the
Lz-E

2 plane for which solutions to the geodesic equation for
massless particles exist are shown for M ¼ 1, a ¼ 0:8, and K ¼
12. The red and blues lines come from the restrictions �ð�Þ> 0
and RðrÞ> 0, respectively.
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FIG. 9 (color online). The change of the flyby orbit (domain N1) of a massless test particle due to the change of the deficit parameter
�. Here Lz ¼ �0:50, E ¼ ffiffiffiffiffiffi
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Assuming that ��ð� ¼ 1Þ is approximately 2� per day,

we find that

1

�
� 1 & 10�11 ) �

2�
& 10�11: (50)

This transfers to a bound on the energy per unit length� of
a cosmic string piercing the earth that reads

� & 1016 kg=m: (51)

This upper bound is in very good agreement with that
found for a cosmic string piercing a Schwarzschild black
hole when comparing the theoretical results with the ex-
perimental results for the perihelion shift of Mercury and
the light deflection by the Sun [19].

VII. CONCLUSIONS

It would be fascinating to detect cosmic strings in the
universe since this detection would open the window to the
physics of the very early universe and could prove (or
disprove) theories such as string theory, supersymmetry,
and grand unification. In most cases the prediction of the
detection of these objects has focused on the cosmic mi-
crowave background data [28]. Here we discuss another
possibility, namely, that cosmic strings might be detected
due to the way that test particles move in their space-time.

Hence, in this paper we have studied the analytical solu-
tions of the geodesic equation in the space-time of a Kerr
black hole pierced by an infinitely thin cosmic string
aligned with the rotation axis of the black hole. We have
given the analytical solutions for the t, r, �, and � compo-
nents of the geodesic equation in terms of Mino time which
allows one to decouple the r and � motion. We see that the
main difference from the standard Kerr space-time (which
corresponds to the limit of vanishing deficit angle) is the
change of the �- motion. In particular, the precession of
the orbital plane as well as of the orbital ellipse of bound
orbits will increase for increasing deficit angle, i.e. increas-
ing energy per unit length of the string. Comparing our
results with the LAGEOS data, we find that the upper limit
for the energy per unit length of a cosmic string piercing
the earth is � & 1016 kg=m. Our results have also appli-
cations in the computation of gravitational wave templates
for extreme mass ratio inspirals and to the recently sug-
gested alignment of the polarization vector of quasars,
respectively.

ACKNOWLEDGMENTS

The work of P. S. was supported by DFG Grant No. HA-
4426/5-1. The work of E. H. was supported by the DFG
Grant No. LA 905/7-1.

[1] Y. Hagihara, Jpn. J Astron. Geophys. 8, 67 (1931).
[2] S. Chandrasekhar, The Mathematical Theory of Black

Holes (Oxford University Press, New York, 1998).
[3] E. Hackmann and C. Lämmerzahl, Phys. Rev. D 78,

024035 (2008); Phys. Rev. Lett. 100, 171101 (2008).
[4] E. Hackmann, V. Kagramanova, J. Kunz, and C.

Lämmerzahl, Phys. Rev. D 78, 124018 (2008); 79,
029901(E) (2009).

[5] B. O’Neill, The Geometry of Kerr Black Holes (AK Peters,
Wellesley, MA, 1995).

[6] G. Kraniotis, Classical Quantum Gravity 21, 4743 (2004).
[7] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[8] R. Fujita and W. Hikida, Classical Quantum Gravity 26,

135002 (2009).
[9] E. Hackmann, V. Kagramanova, J. Kunz, and C.

Lämmerzahl, Phys. Rev. D 81, 044020 (2010); E.
Hackmann, C. Lämmerzahl, and A. Macias, in ‘‘New
Trends in Statistical Physics: Festschrift in Honour of
Leopoldo Garcia-Colin’s 80th Birthday’’ (World
Scientific, Singapore, to be published).

[10] E. Hackmann, V. Kagramanova, J. Kunz, and C.
Lämmerzahl, Europhys. Lett. 88, 30008 (2009).

[11] S. Drasco and S. Hughes, Phys. Rev. D 69, 044015 (2004).
[12] See e.g. J. Polchinski, arXiv:hep-th/0412244, and refer-

ences therein.
[13] A. Vilenkin and P. Shellard, Cosmic Strings and Other

Topological Defects (Cambridge University Press,
Cambridge, U.K., 1994).

[14] M. Majumdar and A. Davis, J. High Energy Phys. 03
(2002) 056; S. Sarangi and S. Tye, Phys. Lett. B 536, 185
(2002).

[15] R. Bach and H. Weyl, Math. Z. 13, 134 (1922).
[16] M. Aryal, L. Ford, and A. Vilenkin, Phys. Rev. D 34, 2263

(1986).
[17] F. Dowker, R. Gregory, and J. Traschen, Phys. Rev. D 45,

2762 (1992).
[18] A. Achucarro, R. Gregory, and K. Kuijken, Phys. Rev. D

52, 5729 (1995).
[19] E. Hackmann, B. Hartmann, C. Lämmerzahl, and P.

Sirimachan, Phys. Rev. D 81, 064016 (2010).
[20] D. Gal’tsov and E. Masar, Classical Quantum Gravity 6,

1313 (1989).
[21] N. Ozdemir, Classical Quantum Gravity 20, 4409 (2003).
[22] F. Ozdemir, N. Ozdemir, and B. T. Kaynak, Int. J. Mod.

Phys. A 19, 1549 (2004).
[23] S. G. Fernandes, G. De A. Marques, and V. B. Bezerra,

Classical Quantum Gravity 23, 7063 (2006).
[24] R. Poltis and D. Stojkovic, arXiv:1004.2704.
[25] D. Hutsemekers, R. Cabanac, H. Lamy, and D. Sluse,

Astron. Astrophys. 441, 915 (2005).
[26] B. Carter, Phys. Rev. 174, 1559 (1968).
[27] See e.g. I. Ciufolini, Nature (London) 449, 41 (2007).
[28] N. Bevis, M. Hindmarsh, M. Kunz, and J. Urrestilla, Phys.

Rev. Lett. 100, 021301 (2008); Phys. Rev. D 75, 065015
(2007); for a recent review see C. Ringeval, arXiv:
1005.4842.

HACKMANN et al. PHYSICAL REVIEW D 82, 044024 (2010)

044024-14

http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1103/PhysRevLett.100.171101
http://dx.doi.org/10.1103/PhysRevD.78.124018
http://dx.doi.org/10.1103/PhysRevD.79.029901
http://dx.doi.org/10.1103/PhysRevD.79.029901
http://dx.doi.org/10.1088/0264-9381/21/19/016
http://dx.doi.org/10.1103/PhysRevD.67.084027
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://dx.doi.org/10.1103/PhysRevD.81.044020
http://dx.doi.org/10.1209/0295-5075/88/30008
http://dx.doi.org/10.1103/PhysRevD.69.044015
http://arXiv.org/abs/hep-th/0412244
http://dx.doi.org/10.1088/1126-6708/2002/03/056
http://dx.doi.org/10.1088/1126-6708/2002/03/056
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://dx.doi.org/10.1007/BF01485284
http://dx.doi.org/10.1103/PhysRevD.34.2263
http://dx.doi.org/10.1103/PhysRevD.34.2263
http://dx.doi.org/10.1103/PhysRevD.45.2762
http://dx.doi.org/10.1103/PhysRevD.45.2762
http://dx.doi.org/10.1103/PhysRevD.52.5729
http://dx.doi.org/10.1103/PhysRevD.52.5729
http://dx.doi.org/10.1103/PhysRevD.81.064016
http://dx.doi.org/10.1088/0264-9381/6/10/004
http://dx.doi.org/10.1088/0264-9381/6/10/004
http://dx.doi.org/10.1088/0264-9381/20/20/306
http://dx.doi.org/10.1142/S0217751X04017756
http://dx.doi.org/10.1142/S0217751X04017756
http://dx.doi.org/10.1088/0264-9381/23/23/027
http://arXiv.org/abs/1004.2704
http://dx.doi.org/10.1051/0004-6361:20053337
http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.1038/nature06071
http://dx.doi.org/10.1103/PhysRevLett.100.021301
http://dx.doi.org/10.1103/PhysRevLett.100.021301
http://dx.doi.org/10.1103/PhysRevD.75.065015
http://dx.doi.org/10.1103/PhysRevD.75.065015
http://arXiv.org/abs/ 1005.4842
http://arXiv.org/abs/ 1005.4842

