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We consider the Lagrangian of gravity covariantly amended by the mass and polynomial interaction

terms with arbitrary coefficients and reinvestigate the consistency of such a theory in the decoupling limit,

up to the fifth order in the nonlinearities. We calculate explicitly the self-interactions of the helicity-0

mode, as well as the nonlinear mixing between the helicity-0 and -2 modes. We show that ghostlike

pathologies in these interactions disappear for special choices of the polynomial interactions and argue

that this result remains true to all orders in the decoupling limit. Moreover, we show that the linear and

some of the nonlinear mixing terms between the helicity-0 and -2 modes can be absorbed by a local

change of variables, which then naturally generates the cubic, quartic, and quintic Galileon interactions,

introduced in a different context. We also point out that the mixing between the helicity-0 and -2 modes

can be at most quartic in the decoupling limit. Finally, we discuss the implications of our findings for the

consistency of the effective field theory away from the decoupling limit, and for the Boulware-Deser

problem.
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I. INTRODUCTION AND SUMMARY

In this work we study the covariant polynomial potential
of a relativistic and symmetric rank-2 tensor field living in
four-dimensional flat space-time.

We start with the mass term in the potential. Poincaré
symmetry in four dimensions imposes that any massive
spin-2 state has to have five physical degrees of freedom—
namely, the helicity-� 2, helicity-� 1, and helicity-0
modes. The quadratic potential that describes these degrees
of freedom is that of Fierz and Pauli (FP), [1]. The latter is
known to be the unique ghost-free and tachyon-free mass
term for the spin-2 state [2].

No matter how small the graviton mass is in the FP
theory, the helicity-0 state couples to the trace of the matter
stress-tensor with the same strength as the helicity-2 does
[3]. This discontinuity would rule out, on simple observa-
tional grounds, the FP mass term for gravity.

As argued first by Vainshtein, the discontinuity problem
can be cured by the nonlinear interactions which would
become comparable to the linear terms already for very
weak fields [4]. Then, the nonlinearities could give rise to
the screening of the helicity-0 mode at observable scales,
rendering the theory compatible with the known empirical
data [4,5].

However, the very same nonlinearities that cure the
discontinuity problem typically give rise to a ghost in
massive gravity [6]. This ghost, sometimes referred to as
the Boulware-Deser (BD) mode, emerges as a sixth degree
of freedom, that is infinitely heavy on a flat background,
but becomes light on any reasonable nontrivial background
(e.g., on a cosmological background [7] or on the weak
background of a lump of static matter [8–10]). It is straight-
forward to see this ghost in the so-called decoupling limit

[8], in which the dynamics of the helicity-0 mode can be
made manifest. Then, the sixth degree of freedom ends up
being related to the nonlinear interactions of the helicity-0
mode [8–10].1

The obvious question to ask is then whether there exists
a nonlinear model that exhibits the Vainshtein mechanism,
but without the ghost mode. This question was raised in
Ref. [8] and studied in detail in Ref. [9]. The latter work
argued that at the cubic order the ghost can be avoided by
tuning the coefficients of the quadratic and cubic order
terms. Recently, the cubic terms were calculated in a non-
linear massive spin-2 theory of Refs. [14,15], where it was
shown that the necessary tuning is in fact automatic in this
model, and the theory is ghost-free to that order [16]!
In the present work we focus instead on addressing this

question at higher orders, and in a model-independent
framework. We therefore allow for arbitrary nonlinearities
in the potential up to the quintic order, but restrict our-
selves to considerations in the decoupling limit only.
Our result clashes with one of the conclusions of Ref. [9]

which states that the quartic interactions in the decoupling
limit ineradicably lead to a ghost. Regretfully, the decou-
pling limit Lagrangian obtained in Ref. [9] is not repara-
metrization invariant neither at the cubic nor quartic order,
and it gives a tensor equation that does not satisfy the
Bianchi identity. The ghost found in the decoupling limit
of Ref. [9] is an artifact of these properties. Hence, we

1Notice also that the discontinuity is absent when a small
cosmological constant is included before sending the mass of the
graviton to zero [11,12]. Doing so in de Sitter space, however,
one passes through the parameter region where helicity-0 be-
comes a ghost [13], while the anti–de Sitter case is ghost-free
[11,12].
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reinvestigate this issue in the present work. We find a
decoupling limit Lagrangian that is similar to that of
Ref. [9] but differs from it in detail, by coefficients of
various tensorial structures. In particular, due to those
coefficients, our Lagrangian is reparametrization invariant
and naturally leads to a tensor equation for which the
Bianchi identity is automatically satisfied (as it should be
since the helicity-2 mode only mixes linearly in the decou-
pling limit). Then, not surprisingly, we arrive at a different
conclusion, that the quartic theory is also ghost-free in the
decoupling limit. Moreover, we go on one step further and
investigate the quintic-order theory, which we also show is
ghost-free in the decoupling limit. This also allows us to
understand the structure of the interactions to all orders and
to argue that the decoupling limit can be at most quintic
order in interactions (or quartic in the mixing between the
helicity-0 and -2 modes) in the ghost-free theory.

Finally, as a corollary, we find that the decoupling limit
of the most general consistent theory of massive gravity
gives rise to the quadratic, cubic, quartic, and quintic
Galileon kinetic interactions introduced in Ref. [17] in a
different context (namely, as a generalization of the special
cubic term appearing in the decoupling limit of DGP [18]
found in Ref. [19]). The Galileon interactions share the
important properties of (i) being local, (ii) preserving the
shift and Galilean symmetry in the field space of the
helicity-0 mode (in particular, in the kinetic and self-
interaction terms but not in interactions with matter), and
(iii) giving rise to equations of motion with a well-defined
Cauchy problem. Since then, the Galileons have developed
their own independent and interesting life (see, e.g.,
[20,21]). We show here that the Galileons naturally arise
in the decoupling limit of a general theory of massive
gravity. This also helps to prove that upon appropriate
choices of the coefficients in the potential, the decoupling
limit of massive gravity is stable, at least up to the quintic
order in interactions.

We continue this section with a discussion and summary
of our main results in more technical terms before turning
to the detailed calculations in the subsequent sections.

In analogy with a massive non-Abelian (Higgs-less)
spin-1 [22], the dynamics of the helicity-0 mode, �, can
be extracted in a generic theory of gravity with a nonlinear
potential by taking the decoupling limit [8]

m ! 0;MPl ! 1; keeping �5 � ðm4MPlÞ1=5 fixed:

(1)

Following [8], in a generic case of the nonlinear potential,
the corresponding Lagrangian for the helicity-0 mode
reads schematically as follows:

L � ¼ 3

2
�h�þ ð@2�Þ3

�5
5

: (2)

The cubic interaction with six derivatives gives rise to a
ghost on locally nontrivial asymptotically-flat backgrounds

(e.g. on the background of a local lump of matter). This
could be seen by observing that for � ¼ �cl þ ��, with
�cl denoting the weak field of a local source, and �� its
fluctuation, the cubic term in (2) could generate a four-
derivative quadratic term for the fluctuations. This leads to
a ghost, which is infinitely heavy on Minkowski space-
time, but becomes light enough to be disruptive once a
reasonable local background is considered, see Refs. [8–
10].
To avoid pathologies such as in (2), the Fierz-Pauli

combination in the graviton potential should be pursued
further by tuning the coefficients of various higher order
terms. This leads to a cancellation of all the terms for �

that are suppressed by the scales �5, �4 ¼ ðm3MPlÞ1=4,
�11=3 ¼ ðm8M3

PlÞ1=11, etc., for any scale �<�3 ¼
ðm2MPlÞ1=3, such that only the terms suppressed by the
scale �3 survive. Then, �3 is kept fixed in the decoupling
limit, and the surviving terms (in addition to the linearized
Einstein-Hilbert term) read as follows:

�L ¼ h��

�
Xð1Þ
�� þ 1

�3
3

Xð2Þ
�� þ 1

�6
3

Xð3Þ
��

�
: (3)

Here, h�� denotes the canonically normalized (rescaled by

MPl) tensor field perturbation, while Xð1Þ
��, X

ð2Þ
��, and Xð3Þ

��

are, respectively, linear, quadratic and cubic in �.

Importantly, they are all transverse (for instance, Xð1Þ
�� /

���h�� @�@��). Not only do these interactions auto-

matically satisfy the Bianchi identity, as they should to
preserve diffeomorphism invariance, but they are also at
most second order in time derivative. Hence, the interac-
tions (3) are linear in the helicity-2 mode, and unlike the
previous results in the literature, present perfectly consis-
tent terms, at least up to the quintic order.
Furthermore, some of the terms in (3) can be absorbed

by a local field redefinition. For instance, the quadratic

term, h��Xð1Þ
��, can be absorbed by a conformal transfor-

mation h�� ! h�� þ ����. This shift, besides removing

the above mixing, generates terms of the form �Xð2Þ and
�Xð3Þ, which coincide, up to a total derivative, with the
cubic and quartic Galileon terms [17]. Further diagonaliza-

tion of the cubic mixing term, h��Xð2Þ
��, also generates the

quintic Galileon, hence exhausting all the possible terms
that can arise in the Galileon family at arbitrary order.
Moreover, we also point out that if the decoupling limit

happens to pick up the scale �3 (as opposed to another
smaller scale such as�5, �4, etc.), the mixing between the
helicity-0 and -2 modes must stop at the quartic order.
Therefore, for appropriate choices of the interaction coef-
ficients, the decoupling limit at this order is exact. It is the
subsequent diagonalization of the nonlinear terms in the
Lagrangian that generates the quintic Galileon.
Finally, the absence of a ghost in the decoupling limit

does not prove the stability of the full theory away from the
limit, and the Boulware-Deser ghost is still expected to be
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present in general. However, it at least shows that one has a
well-defined and consistent effective field theory below the
scale �3. Above this scale, the full theory has to be
specified. We discuss related issues in Sec. V. Before
that, our work has a two-fold motivation: (i) To establish
a consistent effective field theory below �3 (for the full
theory to be viable its decoupling limit should be ghost-
free as a necessary condition). (ii) All the known examples
show that the Boulware-Deser ghost, if present in the full
theory, does also show up in the decoupling limit.
Therefore, it is encouraging to find no ghosts in this limit.

The paper is organized as follows: In Sec. II we sum-
marize the formalism used to study the decoupling limit of
massive gravity with a general potential. We then explicitly
compute the decoupling limit Lagrangian to the quartic and
quintic orders in Sec. III. Wework with a generic nonlinear
completion of the FP gravity for which the scale �3

3 ¼
MPlm

2 is fixed. We argue that the � mode does not de-
couple from the tensor mode, but that the interactions are
free of any ghostlike pathologies. In Sec. IV we give a
general framework for computing the Lagrangian in the
decoupling limit and argue that in theories which are
consistent with the fixed scale�3, at most the quartic order
mixing term can be obtained, all the higher order mixing
terms being zero. Moreover, we show in Sec. V that upon
an appropriate change of variables we recover the standard
Galileon interactions. Section VI contains some discus-
sions on open issues and future directions addressing the
consistency of massive gravity away from the decoupling
limit.

II. FORMALISM

A. Gauge invariant potential for gravity

Below we consider in detail the decoupling limit of a
general Lagrangian of a massive spin-2 field endowed with
a potential on Minkowski space-time. We use the tech-
nique developed in Ref. [8]. The covariant Lagrangian with
the potential reads as follows:

L ¼ M2
Pl

ffiffiffiffiffiffiffi�g
p

R�M2
Plm

2

4

ffiffiffiffiffiffiffi�g
p ðU2ðg;HÞ þU3ðg;HÞ

þU4ðg;HÞ þU5ðg;HÞ � � �Þ; (4)

where Ui denotes the interaction term at ith order in H��,

U2ðg;HÞ ¼ H2
�� �H2; (5)

U3ðg;HÞ ¼ c1H
3
�� þ c2HH2

�� þ c3H
3; (6)

U4ðg;HÞ ¼ d1H
4
�� þ d2HH3

�� þ d3H
2
��H

2
��

þ d4H
2H2

�� þ d5H
4; (7)

U5ðg;HÞ ¼ f1H
5
�� þ f2HH4

�� þ f3H
2H3

�� þ f4H
2
��H

3
��

þ f5HðH2
��Þ2 þ f6H

3H2
�� þ f7H

5: (8)

Here the index contractions are performed using the in-
verse metric, so that H ¼ g��H��, H2

�� ¼
g��g��H��H��, etc. The coefficients ci, di, and fi are

a priori arbitrary but will be determined by demanding that
no ghosts are present at least up to the quintic order in the
decoupling limit.
Finally, the tensor H�� is related to the metric tensor as

follows:

g�� ¼ ��� þ
h��

MPl

¼ H�� þ �ab@��
a@��

b; (9)

where a, b ¼ 0, 1, 2, 3,�ab ¼ diagð�1; 1; 1; 1Þ, andH�� is

a covariant tensor as long as the four fields�a transform as
scalars under a change of coordinates. Furthermore, ex-
pressing�a in terms of the coordinates x�, and the field��

as �a ¼ ðx� � ��Þ�a
�, we obtain

H�� ¼ h��

MPl

þ @��� þ @��� � ���@��
�@��

�: (10)

In (10), and in what follows, we adopt the convention that
the indices on�� are raised and lowered with respect to the

Minkowski metric ���. Crucially, the expression for the

tensor H�� in (10) differs by a minus sign in front of the

last term from the analogous expression in Eq. (5) used in
Ref. [9]. To emphasize the importance of this sign, we
derive in the Appendix the decoupling limit using the
opposite sign in (10), recover the results of Ref. [9], and
show that the Bianchi identity is then not automatically
satisfied, since the reparametrization invariance is not re-
tained in the resulting Lagrangian.
From (4) it is not immediately clear what is the scale of

the effective field theory represented by this Lagrangian,
i.e., what is the energy/momentum scale by which the
higher polynomial interactions would be suppressed as
compared with the leading ones. This will become clear
by studying the decoupling limit of the theory.
In what follows, we focus on the helicity-2 and helicity-

0 modes but ignore the vector mode. The latter enters only
quadratically in the decoupling limit (since the vector does
not couple to a conserved stress-tensor in the linearized
order) and can be set to zero self-consistently. This does
not prove that the vector sector is ghost-free; however, the
findings of Ref. [16] that the cubic nonlinearities for the
vector are completely harmless due to the Uð1Þ gauge
invariance of the resulting terms suggest that the vector
sector is not going to reintroduce the BD ghost. Therefore,
we use the substitution �� ¼ @��=�

3
3 so that

H�� ¼ h��

MPl

þ 2

MPlm
2
��� � 1

M2
Plm

4
�2

��; (11)

where we use the same notation as in [9], ��� ¼ @�@��
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and �2
�� ¼ ���������. Moreover, in what follows the

square brackets ½. . .� will represent the trace of a tensor
contracted using the Minkowski metric, e.g. ½�2� ¼
������ and ½��2 ¼ �

�
���

�.

B. Decoupling scale

As mentioned in the introduction, the interactions U2

andU3 typically lead to terms of the form ð@2�Þ3=ðMPlm
4Þ,

and the decoupling limit should be taken keeping the scale
�5

5 ¼ MPlm
4 fixed, while MPl ! 1 and m ! 0. However,

we will show in what follows (see also [16]) that for some
special values of the coefficients ci, such interactions
cancel (up to a total derivative), generalizing the FP term
to the cubic order. This procedure can be extended further
to an arbitrary order:

At a given order the leading contributions are of the form

L n � ð@@�Þn
Mn�2

Pl m2ðn�1Þ ; (12)

then, one chooses the interactions UnðHÞ �Hn so that the
above terms combine into a total derivative. At each order,

there exists a unique total derivative combinationLðnÞ
der that

can be written as follows:

L ðnÞ
der ¼ � Xn

m¼1

ð�1Þm ðn� 1Þ!
ðn�mÞ! ½�

m�Lðn�mÞ
der ; (13)

withLð0Þ
der ¼ 1 andLð1Þ

der ¼ ½��. Up to the quartic order, the
total derivatives are

L ð2Þ
der ¼ ½��2 � ½�2�; (14)

L ð3Þ
der ¼ ½��3 � 3½��½�2� þ 2½�3�; (15)

L ð4Þ
der ¼ ½��4 � 6½�2�½��2 þ 8½�3�½�� þ 3½�2�2

� 6½�4�: (16)

Moreover, at higher orders these total derivatives vanish

identically, i.e. LðnÞ
der � 0, for any n � 5. By ensuring that

all the leading terms (12) take the form of a total derivative
(13), all the interactions that arise at an energy scale lower
than �3 disappear. Keeping this in mind we will therefore
consider below the following decoupling limit (first con-
sidered in [19] in the context of the DGP model)

m ! 0; MPl ! 1; keeping �3 � ðm2MPlÞ1=3 fixed:

(17)

Note that the procedure of taking the limit in the present
case is well defined for fields that decay fast enough at
spatial infinity. For these we introduce an infrared regulator
of the theory, say a large sphere of radius L � 1=m, and
take the radius to infinity, L ! 1, before taking the limit
(17). This hierarchy of scales enables us to put all the
surface terms to zero before taking the decoupling limit.

Furthermore, as it should be becoming clear from the
above discussions, the scale �3 will end up being the
effective field theory scale. The higher interaction terms,
both written or implied in (4), will be subdominant to the
leading ones for energy/momentum scales below �3.

III. DECOUPLING LIMIT OF MASSIVE GRAVITY

A. Cubic order

We now explicitly compute the decoupling limit for the
interactions considered in (5)–(9), and thus generalize the
Fierz-Pauli term to higher orders. In terms of the ‘‘Einstein

operator’’ Ê defined for an arbitrary symmetric field Z�� as

Ê��
��Z�� ¼ �1

2ðhZ�� � @�@�Z
�
� � @�@�Z

�
� þ @�@�Z

�
�

� ���hZ�
� þ ���@�@�Z

��Þ; (18)

the decoupling limit Lagrangian of massive gravity up to
the cubic order reads as follows:

L ¼ � 1

2
h��Ê��

��h�� þ h��Xð1Þ
�� � 1

4�5
5

ðð8c1 � 4Þ½�3�

þ ð8c2 þ 4Þ½��½�2� þ 8c3½��3Þ þ 1

�3
3

h��Xð2Þ
��;

(19)

with

Xð1Þ
�� ¼ ½����� ����; (20)

and Xð2Þ
�� quadratic in �. Using the total derivative combi-

nation (15), the interactions arising at the scale �5 can be
removed by setting

c1 ¼ 2c3 þ 1
2 and c2 ¼ �3c3 � 1

2: (21)

As a result, we find the following expression for the tensor

Xð2Þ
��:

Xð2Þ
�� ¼ �ð6c3 � 1Þfð�2

�� � ½�����Þ � 1
2ð½�2�

� ½��2Þ���g: (22)

Notice that both Xð1Þ
�� and X

ð2Þ
�� are automatically conserved,

as they should for the reparametrization invariance to be
retained and the Bianchi identity to be satisfied.
Moreover, it is straightforward to check that these cubic

interactions bear at most two time derivatives, and are
therefore free of any ghostlike pathologies. One should
also check that the lapse (which coincides with h00 in the
decoupling limit) still propagates a constraint, which is

indeed the case here as neither Xð1Þ
00 nor Xð2Þ

00 contain any

time derivatives. Furthermore, these cubic interactions
with the specific coefficient c3 ¼ 1=4 have already been
discussed in detail in Ref. [16].
We now apply the same formalism to quartic interac-

tions for which ghostlike pathologies have been argued to
arise inexorably in Ref. [9].
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B. Quartic order

At the quartic order, we find the following interactions in
the decoupling limit:

Lð4Þ ¼ 1

�6
3

h��Xð3Þ
�� þ 1

�8
4

��
3c1 � 4d1 � 1

4

�
½�4�

þ
�
c2 � 4d3 þ 1

4

�
½�2�2 þ ð2c2 � 4d2Þ½��½�3�

þ ð3c3 � 4d4Þ½�2�½��2 � 4d5½��4
�
; (23)

with �4 ¼ ðMPlm
3Þ1=4 and Xð3Þ

�� cubic in�. Here again the
pathological terms arising at the scale �4 can be removed
by using the total derivative combination (16) and by
setting c1 and c2 as in (21), as well as

d1 ¼ �6d5 þ 1
16ð24c3 þ 5Þ; (24)

d2 ¼ 8d5 � 1
4ð6c3 þ 1Þ; (25)

d3 ¼ 3d5 � 1
16ð12c3 þ 1Þ; (26)

d4 ¼ �6d5 þ 3
4c3: (27)

Substituting these coefficients in Xð3Þ
�� we obtain the mixing

term between the helicity-0 and -2 modes determined by

Xð3Þ
�� ¼ ðc3 þ 8d5Þf6�3

�� � 6½���2
�� þ 3ð½��2

� ½�2�Þ��� � ð½��3 � 3½��½�2�
þ 2½�3�Þ���g: (28)

This expression bears two expected but important features:

(i) It is conserved @�Xð3Þ
�� ¼ 0, as it should be for the

reparametrization invariance to be present and the
Bianchi identity to be automatically satisfied.

(ii) For i, j spacelike indices and 0 timelike index:

Xð3Þ
ij has at most two time derivatives;

Xð3Þ
0i has at most one time derivative;

Xð3Þ
00 has no time derivatives:

These properties ensure that no ghostlike pathology arise at
the quartic level in the decoupling limit as long as the
interactions come in with the generalized FP structure set
by the coefficients (21) and (24)–(27).

C. Quintic order

At the fifth order in the decoupling limit, we consider
interactions as given in (9). The pathological terms that
scale as

L�5 � 1

M3
Plm

8
ð@@�Þ5 (29)

can be canceled with an appropriate choice of the coeffi-
cients f1 to f6:

f1 ¼ 7
32 þ 9

8c3 � 6d5 þ 24f7;

f2 ¼ � 5
32 � 15

16c3 þ 6d5 � 30f7;

f3 ¼ 3
8c3 � 5d5 þ 20f7;

f4 ¼ � 1
16 � 3

4c3 þ 5d5 � 20f7;

f5 ¼ 3
16c3 � 3d5 þ 15f7;

f6 ¼ d5 � 10f7:

(30)

As a result, the quintic interactions in � arrange them-

selves to form the expression forLð5Þ
der, as derived from (13)

Lð5Þ
der ¼ 24½�5� � 30½��½�4� þ 20½�3�ð½��2 � ½�2�Þ

þ 15½��½�2�2 � 10½�2�½��3 þ ½��5 � 0: (31)

Notice that Lð5Þ
der is not simply a total derivative as for the

previous orders but instead vanishes identically. This im-
plies, in particular, that any limiting Lagrangian of the

form LðnÞ � fð�ÞLð5Þ
der, where f is an analytic function,

gives no dangerous � interactions and can be used at
higher orders. Beyond the quintic order the degrees of
freedom in the coefficients to be tuned should therefore
increase, and make it easier to remove any ghostlike
interactions.
With the above choice of coefficient (30), the only

quintic interaction in the decoupling limit then is

L ð5Þ ¼ 1

�9
3

h��Xð4Þ
��; (32)

with

Xð4Þ
�� � 24ð�4

�� ���3
��Þ þ 12Lð2Þ

der�
2
��

� 4Lð3Þ
der��� þLð4Þ

der��� � 0; (33)

with Lð2;3;4Þ
der given, respectively, in (14)–(16). The decou-

pling limit is therefore well behaved up to the quintic order,
and the number of free parameters at higher orders sug-
gests that one can always make appropriate choices to
avoid any ghost mode from appearing in the entire decou-
pling limit. To be certain, one should, however, analyze a
fully nonlinear theory, such as the one proposed in [14,15].
Motivated by the above obtained results, we set up in the

next section a general formalism for obtaining the inter-
actions to all orders.
Before we do so, some important comments are in order.

We might of course argue that the absence of the ghost up
to the quintic order represents no proof of the stability of
the theory even in the decoupling limit, since the ghost
could be pushed to the next order in interactions. It is also
not a proof of the consistency of the full theory, as was
discussed in Sec. I, since the ghost may appear away from
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the decoupling limit. The arguments concerning these two
points, respectively, are as follows:

(1) Beyond the quintic order, the number of free coef-
ficients in the interactions seems sufficient to elimi-
nate pathological contributions of the form ð@@�Þn.
Furthermore, beyond the quartic order all conserved

tensors of the form XðnÞ
�� � ð@@�Þn�� vanish identi-

cally, and cannot lead to any ghostlike pathologies

in the mixing h��XðnÞ
�� between the helicity-0 and -2

modes.
(2) The ghost may exist in a given order away from the

decoupling limit (say at the quartic or higher order)
but disappear in the decoupling limit. If so, then, the
ghost should come with a mass greater than �3.
Then, the theory would be acceptable as an effective
theory below the�3 scale. However, at scales above
�3, one would need to specify an infinite number of
terms in the full nonlinear theory in order to con-
clude whether or not the ghost is removed by the
resummation of these terms. This will be made more
precise in the last section.

IV. GENERAL FORMULATION FOR AN
ARBITRARY ORDER

All our findings up to the quintic order presented in the
previous section can be formulated in a unified way, which
may also suggest how things could work at higher orders.
For this, in the Nth order expansion (so far N 	 5), we
introduce the notations

�UNðg;HÞ � �M2
Plm

2

4

XN
i¼2

ffiffiffiffiffiffiffi�g
p

Uiðg;HÞ; (34)

where the tensor H�� is defined as in Sec. II. If the Nth

order expression for the function �UNðg;HÞ satisfies
�UNðg;HÞjh��¼0;A�¼0 ¼ total derivative; (35)

(where A� denotes the helicity-1 field) then the decoupling

limit Lagrangian for the helicity-0 and -2 interactions, up
to a total derivative, takes the form

L lim
�3

¼ �1
2h

��E��
��h�� þ h�� �XðNÞ

�� ð�Þ; (36)

with the conserved tensor �XðNÞ
�� :

�X ðNÞ��ð�Þ ¼ � �UNðg;HÞ
�h��

��������h��¼0;A�¼0
: (37)

We have checked that the above Lagrangian gives rise to
equations of motion with no more than two time deriva-
tives and appropriate constraints for N 	 5. It seems rea-
sonable to conjecture that this will also be the case for

N > 5. Furthermore, in four dimensions �XðNÞ
�� can only

contain a finite number of terms if it is local and conserved.

It is therefore likely that this formalism leads to a finite
number of interactions in the decoupling limit.
At a given order n in the expansion, there should be

enough freedom to set the polynomial Unðg;HÞ appropri-
ately, so as to ensure that the leading interactions (12) enter

as a total derivative of the form (13), or as fð�ÞLðmÞ
der for

m � 5 and f being an arbitrary function of ���. The

resulting leading contribution is then of the form

L ðnÞ ¼ �

�n�1
3

h��XðnÞ
��; (38)

where � depends on the coefficient c’s, d’s, etc. and XðnÞ
�� �

�n
�� must be conserved as a straightforward consequence

of reparametrization invariance in the decoupling limit
(since higher interactions in h are then suppressed). At
each order n, there is a unique combination of �n

�� ’s

which is conserved. This combination is of the form

XðnÞ
�� / �Lðnþ1Þ

der

���� : (39)

In four dimensions, however, Lð5Þ
der � 0 as pointed out ear-

lier, and the same remains true at higher orders. This
further implies that there is a limit on the number of

possible interactions in the decoupling limit: XðnÞ
�� � 0 for

any n � 4. This suggests that all theories of massive
gravity (with the scale �3) can only have at most quartic
couplings between the helicity-0 and -2 modes in the
decoupling limit.

V. MASSIVE GRAVITYAND THE GALILEON

When making the generalized FP choice for the coef-
ficients (21), (24)–(27), and (30), the higher interactions in
the decoupling limit only arise as a coupling between the
tensor mode and the helicity-0 mode of the form

L int ¼ h�� �XðNÞ
�� ¼ h��

�
Xð1Þ
�� þ 1

�3
3

Xð2Þ
�� þ 1

�6
3

Xð3Þ
��

�
;

(40)

where Xð1Þ is given by (20), Xð2Þ by (22), and Xð3Þ by (28).

Moreover, as emphasized before, @�XðiÞ
�� ¼ 0. We proceed

further by noticing that

Xð1;2Þ
�� ¼ Ê��

��Z
ð1;2Þ
�� ; (41)

with

Zð1Þ
�� ¼ ����; (42)

Zð2Þ
�� ¼ ð6c3 � 1Þ@��@��: (43)

We can therefore diagonalize the action up to the cubic
order by performing a local but nonlinear change of the
variable
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h�� ¼ ĥ�� þ Zð1Þ
�� þ 1

�3
3

Zð2Þ
��; (44)

such that, up to total derivatives, the Lagrangian is

L¼�1

2
ĥ��Ê

����ĥ��þ 3

2
�h�þ 3

2

ð6c3� 1Þ
�3

3

ð@�Þ2h�

þ 1

�6
3

�
1

2
ð6c3� 1Þ2� 2ðc3þ 8d5Þ

�
ð@�Þ2


ð½�2�� ½��2Þþ 1

�6
3

ĥ��Xð3Þ
��� 5

2�9
3

ð6c3� 1Þ


 ðc3þ 8d5Þð@�Þ2ð½��3� 3½��½��2þ 2½�3�Þ: (45)

In the first line we see appearing the quadratic and cubic
Galileon terms, [17] (the usual kinetic term for �, as well
as the interaction present in DGP). Next we notice the
quartic Galileon interaction and finally the quintic, last
interaction of the Galileon family, appears in the last line.

By setting c3 ¼ �8d5 we precisely recover the Galileon
family of terms up to quartic order, and all the remaining
couplings with the tensor mode disappear at the quintic
order. Since there is still a lot of freedom in the coefficients
at higher orders, it is only natural to expect this result to be
maintained to all orders.

On the other hand, if c3 � �8d5, then the last mixing

term h��Xð3Þ
�� does not seem to be removable via any local

field redefinition. This mixing term may be crucial to
address the issue of superluminality of the massive theory,
as the Galileon without the mixing terms does exhibit
superluminal behavior [17].

In a more general case, as soon as the cubic Galileon is
present in (45), we are also bound to have either the quartic
Galileon and no other terms (for c3 ¼ �8d5), or a quartic
mixing and the quintic Galileon [for 4ðc3 þ 8d5Þ ¼
ð6c3 � 1Þ2 � 0], or all of the above terms together.

If, however, the cubic Galileon is absent (for c3 ¼ 1=6),
one in general is left with the quartic Galileon and the
quartic mixing term.

Finally, notice also that for the specific choice c3 ¼ 1=6
and d5 ¼ �1=48, all the interactions at the scale �3 dis-
appear. This may be an example of a theory for which the
decoupling limit picks up a higher scale�? >�3, if such a
theory exists. Alternatively, this may also be a theory in
which all the nonlinear terms disappear in the decoupling
limit. This would suggest that the theory has no strongly
coupled behavior (i.e., no Vainshtein mechanism) and
would be ruled out observationally.

VI. OUTLOOK

The previous analysis shows that for appropriate choices
of interactions that generalize the Fierz-Pauli term to
higher orders, one can construct a consistent and local
theory of massive gravity where no ghostlike instabilities
are present, at least up to the quintic order in the decou-

pling limit, and positive prospects can be foreseen for
higher orders. In particular, the connection with the
Galileon generalization of the cubic term appearing in
the DGP decoupling limit provides a natural framework
for studying ghost-free theories of gravity [17,21].
Furthermore, the decoupling limit considerations of this

paper suggest that the higher nonlinear terms in (5)–(9)
become equally important at the scale �3. Since the scale

�3 ¼ ðMPlm
2Þ1=3 is very low (typically �3 � 10�9 eV),

the effective theory below �3 can only be used for large
scale cosmological studies.2 To extend the scope of appli-
cability of massive gravity to shorter length scales, how-
ever, one would need to go above �3, and, hence, the
higher interactions should be taken into account. For a
viable model, it will therefore be necessary to consider
all the higher polynomial interactions, Unðg;HÞ, and not
only the ones up to the quintic order as presented here
(even though the decoupling limit may only have a finite
number of interactions).
A theory that provides such a resummation is the model

of Refs. [14,15]. In particular, by integrating out the aux-
iliary dimension in that model, one gets an infinite series of
interactions of the form (5)–(8) and beyond, with certain
specific coefficients. In [16], it has been checked that the
coefficients of the quadratic and cubic terms were equal to
those used in Sec. III for the specific choice c3 ¼ 1=4.
Thus, in the decoupling limit, the theory is ghost-free up to
the cubic order. Furthermore, the theory in the cubic order
preserves the Hamiltonian constraint even away from the
decoupling limit [16], and the BD term cancels out in the
exact all-order Hamiltonian [14]. Moreover, it was shown
in Ref. [15] that the nonlinear terms giving rise to a ghost at
a scale �<�3 cancel out in that specific theory. These
findings constitute an important evidence (but not a proof
yet) that the theory of [14,15] may be consistent, at least
classically, to all orders.
How about other possible theories of massive gravity

that would yield the terms discussed here with the coef-
ficients still consistent with the absence of the ghost but not
coinciding with the ones obtained in [16]? Is there any
hope for these theories away from the decoupling limit and
above the scale �3? Naively, the answer seems to be a
negative one: As was shown in [9], in the order-by-order
expansion, and beginning with the quartic order, one can-
not avoid higher powers of the lapse function in the
Hamiltonian, and hence, the emergence of the sixth degree
of freedom (which typically is a ghost) seems to be un-
avoidable in massive gravity [9].
However, there may be a way to circumvent this prob-

lem in the full theory if its Hamiltonian, due to a resum-
mation of perturbative terms, ends up having a very special

2Once external classical sources, such as planets, stars, gal-
axies, etc., are present, the energy scale of nonlinearities—the
Vainshtein scale—depends on the mass/energy of the source and
is significantly lower [5].
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dependence on the lapse and shift functions. Here we
demonstrate this in a toy example, that is motivated by
the Hamiltonian of the theory [14,15] discussed in [14].

Consider the toy Hamiltonian:

H ¼ NðR0 þm2fð	ÞÞ þ NjðRj þm2Qjð	ÞÞ

þm2Pð	ÞNjN
j

2N
; (46)

where N, Nj, 	ij, and R0, Rj are the standard Arnowitt-

Deser-Misner canonical formalism variables and func-
tions, respectively [23]; fð	Þ, Qjð	Þ, and Pð	Þ are some

functions that modify the general relativity constraints by
the mass terms. The shift function Nj is not a Lagrange

multiplier but is algebraically determined, as should be the
case for a massive theory with 5 degrees of freedom.
However, the lapse function also enters in the last term in
a way that seems to prevent it from being a Lagrange
multiplier, and if so, it would give rise to the sixth degree
of freedom. This is not the case, however: One can intro-
duce a new variable nj � Nj=N in terms of which the

Hamiltonian reads

H ¼ NðR0 þm2fð	ÞÞ þ NnjðRj þm2Qjð	ÞÞ

þ Nm2Pð	Þ njn
j

2
: (47)

The shift nj still has no conjugate momentum, hence

�H=�nj ¼ 0. This determines the new shift variable, nj ¼
�ðRj þm2Qjð	ÞÞ=ðm2Pð	ÞÞ, and yields the following
Hamiltonian

Hjnj ¼ N

�
R0 þm2fð	Þ � ðRj þm2Qjð	ÞÞ2

2m2Pð	Þ
�
: (48)

Here, the lapse does certainly appear as the Lagrange
multiplier. Hence, the BD term does not arise, and the
theory does not propagate the sixth degree of freedom.3

On the other hand, a direct perturbative expansion of the
last term in (46) in powers of �N ¼ N � 1with subsequent
truncation of this series at any finite nonlinear order nec-
essarily yields higher powers of �N in the Hamiltonian.4

Naively, this truncated theory would give rise to the poten-

tially false impression that the lapse is not a Lagrange
multiplier, and that there is a sixth degree of freedom in
the model.
Noticing that the higher powers of �N at any finite

nonlinear order emerge from the expansion of the theory
(46) is trivial, in this toy model. However, a similar, albeit
more complicated structure, emerges in the Hamiltonian of
the model of [14,15] (see [14]), and the fact that the terms
in the expansion come up from a single term in the exact
Hamiltonian is not as simple to observe.
Last but not least, in this work we discussed the classical

theory. Generic quantum loop corrections are expected to
renormalize and detune the coefficients of the polynomial
terms needed to avoid the ghost. One way to be protected
against this problem is to have a theory in which the tuned
coefficients automatically emerge as a consequence of a
symmetry that would be respected by the loop corrections.
In this respect, the recent findings of [16] that the cubic
terms with the automatically tuned coefficients emerge as
an expansion of the theory, which by itself exhibits an
evidence for a hidden nonlinearly realized symmetry,
makes us hopeful for the existence of a quantum-
mechanically stable effective field theory of massive
gravity.
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APPENDIX: DECOUPLING LIMIT WITH THE
OPPOSITE SIGN IN H��

As mentioned in Sec. II A, the expression (10) for H��

differs by a minus sign in front of the third term on the
right-hand side from its counterpart considered in Eq. (5)
of [9]:

H�� ¼ h��

MPl

þ @��� þ @��� þ ���@��
�@��

�: (A1)

To emphasize the importance of this sign difference, we
show that we recover the results of Ref. [9] when deriving
the decoupling limit using (A1), but stress that the Bianchi
identity is then not satisfied, as a consequence of the fact
that H�� is then not a covariant tensor if g�� and h�� are

conventionally defined.
Up to the cubic order, the Lagrangian in the decoupling

limit is then

~L¼�1

2
h��Ê��

��h��þh�� ~Xð1Þ
��� 1

4�5
5

ðð8c1þ4Þ½�3�

þð8c2�4Þ½��½�2�þ8c3½��3Þþ 1

�3
3

h�� ~Xð2Þ
��; (A2)

3In general, it could still be propagating ‘‘5.5’’ modes even if
the Hamiltonian constraint is maintained. For instance, since the
toy model described by (46) is not Lorentz invariant for general
functions f, Qj, and P, there may exist nonpropagating instan-
taneous modes in this model. For discussions of related issues,
see [24]. In contrast, the model of Refs. [14,15] is 4D Lorentz
invariant and the instantaneous mode in 4D is not expected. For a
rigorous proof that there are only 5 degrees of freedom, and not
‘‘5.5,’’ however, a detailed study of the algebra of the
Hamiltonian constraint should be performed. The fact that the
decoupling limit gives only 5 degrees of freedom is an important
hint that the full theory is not likely to have the extra ‘‘0.5’’
degree of freedom.

4Note that away from the decoupling limit, and at a nonlinear
order, �N is the right variable and not h00 ¼ 1� N2 þ N2

j ,
which was used before as the lapse in the decoupling limit.

CLAUDIA DE RHAM AND GREGORY GABADADZE PHYSICAL REVIEW D 82, 044020 (2010)

044020-8



with ~Xð1Þ
�� ¼ Xð1Þ

��, since both approaches only differ at
quadratic order in �, and

~Xð2Þ
�� ¼ �ð3c1 � 3

2Þ�2
�� � 2ð1þ c2Þ½�����

þ ð12 � 3c3Þ½��2��� � c2½�2����: (A3)

Setting c1 ¼ 2c3 � 1
2 and c2 ¼ �3c3 þ 1

2 to obtain the total

derivative combination (15), we get

~Xð2Þ
�� ¼ �6ðc3 � 1

2Þð�2
�� � ½�����Þ

� ð3c3 � 1
2Þð½��2 � ½�2�Þ���; (A4)

which is not conserved for any choice of c3 since the
reparametrization invariance is not present with this choice
of H��, and the Bianchi identity has no reason to be

satisfied.
Similarly at the quartic order, we would need to impose

the relation between the coefficients d1 ¼ �6d5 � 1
16 


ð24c3 � 5Þ, d2 ¼ 8d5 þ 1
4 ð6c3 � 1Þ, d3 ¼ 3d5 þ 1

16 


ð12c3 � 1Þ, and d4 ¼ �6d5 � 3
4 c3 to cancel the terms of

the form ��8
4 ð@@�Þ4. The mixing with the helicity-2 mode

will then enter with the quantity ~Xð3Þ
�� as derived in [9]:

~Xð3Þ
�� ¼ ð�1þ 9c3 þ 24d5Þð�3

�� � ½���2
��Þ

� ð9c3 þ 24d5Þ���ð½�2� � ½��2Þ
� ðc3 þ 8d5Þ���ð½��3 � 3½��½�2� þ 2½�3�Þ:

(A5)

As noticed in [9], not only would there then be no choice of
c3 and d5 for which this interaction disappears, but also it
would always lead to higher derivative equations of mo-
tion, suggesting a ghostlike instability. However, the fact

that ~Xð3Þ
�� is not conserved is an artifact of the sign choice in

the expression for H�� that does not lead to reparametri-

zation invariant results.
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