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We discuss the meaning of geometrical constructions associated to loop quantum gravity states on a

graph. In particular, we discuss the ‘‘twisted geometries’’ and derive a simple relation between these and

Regge geometries.
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I. INTRODUCTION

The state space of loop quantum gravity (LQG) is the
direct sum of Hilbert spaces H � associated to graphs �
[1–4]. In practical applications, a convenient approxima-
tion is obtained by cutting-off the continuum theory to a
single fixed graph. Can we assign a geometry to the states
on a single graph �?

The idea of relating loop-quantum-gravity states with
discrete geometries goes back to Immirzi [5]. Geometric
interpretations of this kind have recently been discussed in
the literature. A detailed interpretation in terms of discrete
twisted geometries has been proposed in [6]. An interpre-
tation in terms of a mode expansion of the geometry of a 3-
sphere has been discussed in [7,8]. Similarly, relations
between loop gravity (or loop-inspired models) and dis-
crete geometries have been considered in [9–11]. On the
other hand, a common point of view in the literature is that
LQG states do not need geometrical interpretations of this
kind (see [1–3,12]).

In this article we contribute to the clarification of this
issue with two comments. First, we discuss the general
meaning of assigning a specific geometrical interpretation
to states in H �, and the compatibility between different
choices.

The second comment regards the geometrical interpre-
tation of the twisted geometries. We show that in the
special case in which the dynamical variables are compat-
ible with a Regge geometry, the canonical transformation
studied in [6], which defines the twisted geometries, is
precisely given by the explicit computation of the holon-
omy and the flux of the electric field over a given four-
dimensional (4D) Regge geometry.

II. ASSIGNING GEOMETRIES TO STATES

A basis of LQG states is given by the spin network
states. A spin network state has support on a graph � and
determines a three-dimensional (3D) ‘‘quantum geome-
try.’’ The (intrinsic) geometry is discrete, and can be vi-
sualized as made up of ‘‘quanta of space,’’ or ‘‘polymeric,’’

or similar [1,3,13]. At the same time, the extrinsic curva-
ture is completely fuzzy, due to the Heisenberg principle.
To make a connection with a semiclassical description of
space, we can consider coherent states peaked (but not
sharp) on both the intrinsic and the extrinsic geometry
[12]. These are labeled by a continuous classical 3D ge-
ometry ðEa

i ðxÞ; Ai
aðxÞÞ and have support on all possible

graphs.
In order to extract physics from theory, on the other

hand, we often need to rely on approximations. A conve-
nient one is to allow only states living on a fixed finite
graph �. The Hilbert space H �, formed by the states with
support on � (or subgraphs of �), provides a truncation of
the theory, which may be sufficient to capture the physics
of appropriate regimes [4,7]. Now, one can consider co-
herent states also in the Hilbert spaceH � of the truncated
theory. However, in what sense can one assign a classical
geometrical interpretation to these states? This is the prob-
lem we address here.
For a given graph �with L links l and N nodes n,H � is

the space of square integrable functions c ðUlÞ over the
group manifold SUð2ÞL, invariant under the gauge trans-
formations Ul ! VsðlÞUlV

�1
tðlÞ , where U, V 2 SUð2Þ and

sðlÞ and tðlÞ are the source node and the target node of
the link l. The elementary operators defined onH � are the
multiplicative operators Ul and the right invariant vector
fields Xl which are the generators of the left action of
SUð2Þ. Consider the set of the operators (Ul; Xl) defined
on H � (for a fixed graph �). The corresponding classical
variables [which we also indicate as (Ul; Xl)] parametrize
the phase space T�SUð2ÞL ffi ðsuð2Þ � SUð2ÞÞL, thus a
coherent state in H � will be peaked on a point (Ul; Xl)
in this phase space. Can we interpret a point in this phase
space, that is, the set (Ul; Xl), as a (intrinsic and extrinsic)
3D geometry?
The difficulty is due to the following reason. The opera-

tors (Ul; Xl) have a well-defined interpretation: they are
(the restriction to H � of) the holonomy of the Ashtekar-
Barbero connection A along the link l, and the flux of the
Ashtekar’s electric field E over any surface that intersects
the sole link l of � in the immediate proximity of its source.
They capture only a finite number of degrees of freedom,
out of the infinite number of the degrees of freedom of the
continuous gravitational field. The value of the observables
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Ul and Xl on a single graph, therefore, is not sufficient to
determine a continuous gravitational field uniquely.
Therefore, it cannot determine a 3D geometry completely.
In fact, we are here in context of a truncation of the full
theory, where the continuous metric is replaced by a finite
set of variables. The set (Ul; Xl) characterizes a geometry
only partially, in the same sense as when we partially
characterize a continuous function fðxÞ by means of a finite
number of its values fn ¼ fðxnÞ.

However, in physics, when we are given a finite data set
ðxn; fnÞ, it is often convenient to choose an algorithm to
select a preferred interpolating function fðxÞ, namely, a
function such that fn ¼ fðxnÞ. The interpolation procedure
is of course vastly under-determined, but it is nevertheless
often convenient to choose an interpolating function.
Several choices are common (see Fig. 1). For instance, if
we have N points xn (say in the interval ½0; 2��), we can
choose: (i) the interpolating polynomial fðxÞ ¼ PN

k¼1 akx
k,

with coefficients ak determined by
P

nakx
k
n ¼ fn; (ii) the

periodic function fðxÞ ¼ PN
k¼1 e

ikxck; (iii) the piecewise

linear function that takes the value fðxÞ ¼ fn þ fnþ1ðx�
xnÞ=ðxnþ1 � xnÞ for x 2 ½xnþ1; xn�; or (iv) the discontinu-
ous piecewise constant function that takes the values

fðxÞ ¼ fn; for n < x < nþ 1; (1)

and so on. Each of these choices has specific advantages,
and each is useful in order to visualize the data set. Can we
do something similar with the geometrical data Ul and Xl?

That is, can we find an algorithm that picks up a pre-
ferred ‘‘interpolating geometry’’ for each set of data
(Ul; Xl)? Making this choice is not strictly needed for the
interpretation of the theory. LQG is a continuous theory
defined by a set of variables much larger than the (Ul; Xl)
of a single fixed graph. However, in the context of a
truncation we restrict our attention to a finite number of
gravitational field variables, and it is interesting to choose
an algorithm that selects a preferred geometry character-
ized by the dataUl and Xl. The algorithm is not unique, but
a good choice may serve the purpose of providing a geo-
metrical intuition for the restricted set of gravitational
variables Ul and Xl. This is the sense in which a geometry
can be associated to the set (Ul; Xl): the interpolating result
provides an approximation of a continuous geometry.

Two such choices have been recently considered in the
literature. In [7,8,14] the idea of a mode expansion of the

geometrical degrees of freedom of a (compact) space in
hyperspherical harmonics has been put forward in the
context of loop quantum cosmology [15,16]. Roughly
speaking, it goes as follows. Consider a three-sphere S3

with a smooth metric on it. The components of the 4D
metric gð�Þ, � 2 S3 can be expanded on a basis of
Wigner’s D functions,

gð�Þ ¼ X
j;m;n

gjmnDðjÞ
mnð�Þ:

If we truncate the expansion to a finite order in j, we obtain
a set of 3D geometries where ‘‘short wavelength’’ modes
are not excited. We can compute the quantities Ul and Xl

for a finite graph (and its dual cellular complex) on the
resulting geometries; these are then expressed as functions
of the modes amplitudes gjmn [8]. Solving for gjmn we
obtain a geometry for each set (Ul; Xl). Notice that this is
the analog of using the data set fn for fixing the amplitudes
of the first N Fourier components of fðxÞ, namely, the
analog of the example (ii) mentioned above.
Alternatively, one may capture this finite amount of

information with a discrete metric space. This is an alter-
native interpolation procedure, analog to the examples (iii)
or (iv) above. A construction of a discrete geometry deter-
mined by the variables (Ul; Xl) is discussed in [6]. The idea
is to introduce a class of discrete metric spaces, called
twisted geometries, defined over a cellular complex. The
geometry is specified by the set of variables

ðNl; ~Nl; jl; �lÞ 2 Pl � S2 � S2 � R� S1 (2)

associated to each oriented face l of the complex. Each 3-
cell is taken to be flat, and equipped with an (arbitrary)
orthonormal reference system. The two quantities Nl and
~Nl are interpreted as the two (normalized) normals to the
face l, in the two reference frames associated to the two
cells bounded by l. The quantity jjj is the area of the face l
and the quantity � is related to the extrinsic curvature of the
complex at l (in a manner that we clarify in this paper). The
relation between the variables (Nl; ~Nl; jl; �l) that specify a
twisted geometry and the LQG variables is given by the
canonical transformation (dropping the suffix l)

X ¼ jn�3~n
�1; U ¼ ne��3 ~n�1: (3)

Here X ¼ Xi�i 2 suð2Þ, where �i, i ¼ 1, 2, 3 are the Pauli
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FIG. 1 (color online). A data set and various interpolating functions: polynomial (cf. mode expansion in cosmology), piecewise
linear (cf. Regge geometries), and piecewise-flat (discontinuous, cf. twisted geometries for generic holonomy-fluxes).
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matrices multiplied by �i=2, and n ¼ nðNÞ 2 SUð2Þ is
defined by

Ni ¼ Ri
jðnÞzj: (4)

where ~z ¼ ðzjÞ ¼ ð0; 0; 1Þ, Ri
jðnÞ is the adjoint representa-

tion of SUð2Þ (equivalently Ni�i ¼ n�3n
�1), and by (the

‘‘phase convention’’)

Ri
jðnÞð~z� ~NÞj ¼ ð~z� ~NÞi: (5)

From the quantities above one can construct a metric, but it
is in general discontinuous on the faces. In particular, the
limit of the length of a line that approaches a 1-cell
depends on the side from which the 1-cell is approached.
This discontinuity is analogous to the discontinuity in (1).

In the next section we illustrate in some detail this
discontinuity and the metric structure of such twisted
geometries. In particular, we show that a Regge geometry
is a special case of twisted geometry, and we give a simple
derivation of (3) in this case. This will show, in particular,
that � can be directly obtained from the angle between the
4D normals to the 3-cells.

III. TWISTED GEOMETRIES FROM REGGE
GEOMETRIES

Consider a four-dimensional Regge manifold. By this,
we mean a metric space composed by glued flat four-
simplices, with matching geometry at the intersections.
Consider a three-dimensional slice � in this manifold.
The slice is formed by a collection of tetrahedra and has
intrinsic and extrinsic curvature. The intrinsic curvature is
concentrated on the edges, while the extrinsic curvature is
concentrated on the triangles. Let qabðxÞ be the metric
tensor, in some coordinate system. Let eaðxÞ ¼ eiaðxÞ�i
be a corresponding cotriad, in some gauge. These can be
taken to be continuous, but, in general, not necessarily
smooth, because of the distributional curvature on the
edges. Thus, the metric is continuous but nondifferentiable,
like in the interpolating function of the example (iii) above.

Let kabðxÞ be the extrinsic curvature. Notice that on a
Regge manifold, the extrinsic curvature vanishes inside
each tetrahedron, since each tetrahedron is flat, and is
concentrated on the triangles. Consider, in particular, a
triangle f and a Cartesian coordinate system that covers
the triangle (this is always possible in a Regge manifold, of
course), and let Na be the 3D normal to this triangle in this
coordinate system [we use a capital letter instead of the
more common lower-case notation for the normal, to avoid
confusion with the n 2 suð2Þ group elements considered
above]. In these coordinates kabðxÞ is constant along the
triangle, that is

kabðxÞ ¼ kab
Z
f
�3ðx; fð�ÞÞd2�: (6)

An important observation is that the matrix kab has a
particular form. First, the extrinsic curvature is the deriva-
tive of the 4D normal to �. Since the normal changes only
across f, the derivative is nonvanishing only in the direc-
tion Na normal to f. Second, in a Regge geometry, when
moving across the surface, the normal rotates in a plane
normal to f. This is because the normals of both tetrahedra
are orthogonal to the triangle; hence, the difference is also
orthogonal to the triangle. Therefore both indices of kab are
nonvanishing only in the direction of the normal to the
triangle

kab ¼ kNaNb: (7)

The value of k is then simply the curvature of a curve at a
point where there is an angle �, where � is the dihedral
angle between the 4D normals to the two tetrahedra at f.
Such curvature can be computed by approximating the
angle with an arc of angle � in a circle of radius �, and
hence curvature 1=�. The integral of the curvature along
the curve is

Z
kðsÞds ¼

Z ��

0

1

�
ds ¼ �: (8)

Therefore, in the limit � ! 0 we have kðsÞ ¼ ��ðsÞ.
Comparing with (6) and (7), we have finally

k ¼ �: (9)

Consider now a graph dual to the triangulation �. That
is, a graph with a 4-valent node inside each tetrahedron and
a link l crossing each triangle f. Consider the holonomy-
flux variablesUl and Xl, where l inUl is a link of the graph
and l in Xl is the corresponding dual triangle f. These can
be explicitly computed on the given Regge geometry,
according to their definition

Xi
l ¼

Z
f
Ei ¼

Z
f
EaiNad

2� (10)

in the frame of the source of l, and

Ul ¼ P exp
Z
l
A ¼ P exp

Z
l
dlað�i

a þ 	ebikabÞ�i: (11)

Here Eai is the Ashtekar electric field, namely, the inverse
densitized triad, Ai

a ¼ �i
a þ 	kia is the Ashtekar-Barbero

connection, where �i
a is the 3D spin connection, 	 is the

Immirzi parameter, and kia ¼ ebikab with ebi is the triad
field. Finally, P is the path ordering along l, and dla is the
line element along to the link l.
Let us evaluate these variables on �. It is convenient to

start by choosing a gauge for eiaðxÞ. It will then be easy to
transform the variables to arbitrary gauges. Given a tetra-
hedron t, fix Cartesian coordinates that cover the tetrahe-
dron, its four faces, as well as the entirety of the four edges
dual to the four faces. Then, qabðxÞ ¼ �ab and we can
choose a gauge where eiaðxÞ ¼ �i

a on this coordinate patch.
Then, we have immediately

GEOMETRY OF LOOP QUANTUM GRAVITY ON A GRAPH PHYSICAL REVIEW D 82, 044018 (2010)

044018-3



Xi ¼
Z
f
EaiNad

2� ¼ �aiNa

Z
f
d2� ¼ jNi; (12)

where j is the area of the face andNi ¼ eiaNa is the normal
to the face in the coordinate system chosen. Next, consider
two adjacent tetrahedra. We can extend the Cartesian
coordinate system to the second tetrahedron. Because of
the 3D flatness, the spin connection part of the connection
vanishes, and we are left with

Ul ¼ P exp	
Z
l
dla�ibkab�i: (13)

Inserting the explicit form (6) and (7) of the extrinsic
curvature into this equation, we have

Ul ¼ P exp	��biNb�i
Z
l

Z
f
�3ðl; fð�ÞÞdlaNad

2�: (14)

But the integration is precisely the definition of the inter-
section number, which is unit. Hence, we have simply

Ul ¼ P exp	�Ni�i: (15)

So far we have worked in a gauge in which the two
tetrahedra adjacent to the face share the same reference
frame. Let us now rotate the second of these with an
arbitrary SOð3Þ rotation. Then the parallel transport Ul

gets an additional contribution Ul ! UlV where V 2
SUð2Þ is the rotation that rotates the first reference frame
into the second. Let us parametrize V with a unit vector ~N
and an angle �. We then write V � n~n�1

� , where n ¼
nðNÞ 2 SUð2Þ is defined by (4), and analogously ~n� ¼
~nð ~NÞe��3 . Multiplying (15) from the right by V, we get

Ul ¼ neð	���Þ�3 ~n�1: (16)

The expressions (12) and (16) reproduce precisely the
canonical transformation (3) considered in [6], which map
the holonomy-flux variables ðU;XÞl into twisted geometry
variables ðj; �; N; ~NÞl, where we recognize � as

� ¼ 	�� �; (17)

namely (up to gauge and the Immirzi parameter) as the
modulus of the extrinsic curvature, that is the dihedral
angle between the 4D normals of a Regge geometry.1

This calculation gives a simple geometrical interpreta-
tion to (3), in the sense that it shows that whenever a Regge
geometry is available, the variables of twisted geometries
coincide precisely with the evaluation of the holonomy-
flux variables on this Regge geometry. The underlying
Regge geometry can therefore be chosen as the interpolat-
ing geometry for these particular (Ul; Xl) configurations.

IV. TWISTED GEOMETRIES THATARE NOT
REGGE GEOMETRIES

Holonomies and fluxes computed as above from the
Regge geometries automatically satisfy certain conditions,
namely, that the length of the edges of a triangle is the same
when computed in the frames of the two tetrahedra sharing
it. This means that the metric induced on a given triangle is
continuous. However, these gluing or ‘‘shape matching’’
conditions [18] are not satisfied by a generic point (Ul; Xl)
in the (gauge-invariant) phase space of loop gravity
[6,9,19]. As a consequence, an interpolating geometry in
terms of piecewise-flat continuous metrics is not possible
in general, but only on the (measure zero) subspace where
the shape matching conditions hold. In a sense, Regge
geometries are ‘‘too rigid’’ to be able to interpolate an
arbitrary holonomy-flux configuration.
What can the interpolating geometries be then, in the

general case? The above discussion suggests that we could
insist on piecewise-flat discrete geometries, upon giving up
the continuity. In fact, the result of [6] is that the full
(gauge-invariant) phase space can be still described by
the variables ðj; �; N; ~NÞl, except they now have a larger
range: instead of being only the ones coming from a Regge
geometry as above, they now span the space

P0 � �lPl==C; (18)

where C is the closure condition

Cn ¼
X
l2n

jlNl ¼ 0 (19)

at each node n, and == indicates the restriction to C ¼ 0
and the factorization by the orbits generated by C. Thanks
to the closure conditions, the set of the variables (Nl; jl) for
the links adjacent to each given 4-valent node n can still be
interpreted as determining the local geometry of a flat
tetrahedron. This fixes the metric inside each tetrahedron.
However, while the area of the face is the same when
measured as a limit coming from one side or the other,
nothing now guarantees that the length of the edges match.
The difference with the Regge case is that the metric is in
general discontinuous across the triangles. Thus, the inter-
polating geometry is obtained gluing flat tetrahedra in such
a way that the metric across the faces is discontinuous. This
is analogous to the value of the interpolating function (1)
above, where the value of the function of the integers is
different if defined as a limit from one side or the other.
These are the (gauge-invariant, or closed) twisted geome-
tries (18): a particular choice of interpolating geometry,
which is valid for any point in the phase space of loop
gravity, and which reduces to a Regge geometry when the
shape matching conditions are satisfied.
An advantage of this construction is that it extends to

nodes of arbitrary valence, and thus arbitrary graphs not
only dual to triangulations. In this case, the twisted geome-
try is assigned to a cellular decomposition dual to the

1Notice that a similar relation arises in the semiclassical limit
of the new spin foam models, e.g. [17].
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graph, in which each node is dual to a polyhedron, and each
link to a polygon [20–22].

The twisted geometry parametrization extends to the
non–gauge-invariant level. The kinematical phase space
is given by �lPl ffi T�SUð2ÞL (see [6] for details), with
(19) relaxed. The parametrization assigns to each link an
angle, the (oriented) area of the face dual to it, and the two
normals as seen from the two frames sharing it. Because of
the lack of closure conditions, these kinematical twisted
geometries do not define a piecewise-flat metric even
locally. In this case, the area of a face is still the same
when approached from one side or the other.

Finally, it is interesting to consider relaxing also the area
matching condition [23]. This leads to a even larger space,
in which each link is equipped with the normals, but also

two areas and two additional angles: (N; ~N; j; ~|; �; ~�).
Remarkably, this eight-dimensional link phase space turns
out to span precisely the twistor space C4 with canonical
Poisson brackets [23]. Although this takes us out of the
LQG phase space, it is compelling to have such a simple
starting point for describing quantum geometry.

The relations among the different spaces considered are
summarized in Table I.

V. CONCLUSIONS

Loop gravity on a fixed graph describes a truncation of
general relativity [4]. The variables in this truncation cap-

ture only a finite number of the degrees of freedom of the
metric. Therefore there is no unique geometric interpreta-
tion associated to a single graph.
‘‘Interpolating’’ geometries –such as the twisted geome-

tries, multipolar expansions, and Regge geometry, dis-
cussed here– are not strictly needed for the physical
interpretation of the theory, but provide useful approxima-
tions of a continuous geometry. They have important ap-
plications, for instance in cosmology, in the study of
semiclassical limit in spinfoams [17] in the definition of
n-point functions [24–26] and in the interpretation of
coherent states [27,28].
A twisted geometry is a specific choice of interpolating

geometry, chosen among discontinuous metrics. To any
graph and any holonomy-flux configuration, we can asso-
ciate a twisted geometry: a discrete discontinuous geome-
try on a cellular decomposition space into polyhedra.
Thanks to this result, the phase space of LQG on a graph
can be visualized not only in terms of holonomies and
fluxes, but also in terms of a simple geometrical picture
of adjacent flat polyhedra.
We have shown here that in the special case when the

holonomy-flux variables admit a Regge interpretation, the
canonical transformation that defines the twisted geometry
variables is precisely given by the explicit computation of
the holonomy and the flux of the electric field over the
underlying Regge geometry.
The relation between twisted geometry and Regge cal-

culus implies that holonomies and fluxes carry more infor-
mation than the phase space of Regge calculus. This is not
in contradiction with the fact that the Regge variables and
the LQG variables on a fixed graph both provide a trunca-
tion of general relativity: simply, they define two distinct
truncations of the full theory.
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