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We solve the quantum constraint equations of the Lemaı̂tre-Tolman-Bondi model in a semiclassical

approximation in which an expansion is performed with respect to the Planck length. We recover in this

way the standard expression for the Hawking temperature as well as its first quantum gravitational

correction. We then interpret this correction in terms of the one-loop trace anomaly of the energy-

momentum tensor and thereby make contact with earlier work on quantum black holes.
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In the absence of a full quantum theory of gravity, it is of
interest to consider models which could serve as a possible
guide in the construction of such a theory [1]. One such
model is the Lemaı̂tre-Tolman-Bondi (LTB) model de-
scribing the dynamics of a spherically symmetric dust
cloud [2]. It has been already used in a variety of papers
dealing with canonical quantization in both the Wheeler-
DeWitt framework and loop quantum cosmology, cf. [3–7]
and the references therein. While the full quantization of
the LTB model has not yet been achieved, it was at least
possible to get insights into the recovery of Hawking
radiation and black-hole entropy from it.

Our present paper is a continuation of this earlier work.
Our motivation is twofold. First, we want to derive a
quantum gravitational correction to the Hawking tempera-
ture through a semiclassical expansion scheme for the
quantum states. Second, we want to present an interpreta-
tion of these correction terms through the ‘‘trace anomaly’’
of the matter energy-momentum tensor, making thereby a
connection to earlier work [8–13] in the context of black
holes.

Let us first present the LTB model. The spherical gravi-
tational collapse of a dust cloud, in an asymptotically flat
space-time, having energy density �ð�; �Þ, is described in
comoving coordinates ð�; �; �;�Þ by the LTB metric,

ds2 ¼ �d�2 þ ð@�Rð�; �ÞÞ2
1þ 2Eð�Þ d�2 þ R2ð�; �Þd�2: (1)

Inserting this expression into the Einstein field equations
leads to, for the vanishing cosmological constant,

8�G�ð�; �Þ ¼ @�F

R2@�R
(2)

and

ð@�RÞ2 ¼ F

R
þ 2E � 1�F þ 2E; (3)

where Fð�Þ � 2GMð�Þ, with Mð�Þ being the active gravi-
tational mass within a � ¼ constant shell, and

F � 1� F

R
: (4)

The function Eð�Þ is the total energy per unit mass within
the same shell; the marginally bound models are defined by
Eð�Þ � 0. The case of collapse is described by
@�Rð�; �Þ< 0. We set c ¼ 1 throughout.
The canonical quantization of the LTB model was de-

veloped in [3] and then applied to quantization in a series
of papers, see [4,5,7]. Although no full quantization has yet
been performed, interesting results have been obtained at
the semiclassical level; they include the recovery of
Hawking radiation plus greybody corrections from solu-
tions to the Wheeler-DeWitt equation and the momentum
constraints (that is, the quantum constraint equations).
Insights into the microscopic interpretation of black-hole
entropy were also obtained, cf. [14] and the references
therein.
The semiclassical approximation scheme is also em-

ployed here. We start with the quantum constraint equa-
tions [4],

l4P
�2�

��2
þ l4PF

�2�

�R2
þ �2

4F
� ¼ 0; (5)

�0
��

��
þ R0 ��

�R
� �

�
��

��

�0 ¼ 0; (6)

where� is a functional of the dust variable �ðrÞ as well as
the gravitational variables RðrÞ and �ðrÞ, and lP ¼

ffiffiffiffiffiffiffi
G@

p
is

the Planck length. Here, r is the radial variable in the
Arnowitt-Deser-Misner formalism [3]; we recall that � �
F0 � 2GM0. We note that (5) is elliptic outside the horizon
and hyperbolic inside the horizon; this can be recognized
from (4). In contrast to [4,5] and other papers, no additional
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factor ordering terms are taken into account here; this will
be crucial in obtaining our results.

We now make the ansatz

�½�ðrÞ; RðrÞ;�ðrÞ� ¼ exp

�
i

2l2P

Z
dr�SðR; �Þ

�
; (7)

where SðR; �Þ is a function to be determined recursively in
the following semiclassical approximation scheme. With
the special factor ordering chosen in [4,5], this ansatz
would lead to an exact solution of (5) and (6) with semi-
classical form. Here, instead, we shall use this ansatz to
solve (5) in a semiclassical approximation; the diffeomor-
phism constraint (6) is already solved identically with this
ansatz.

Inserting (7) into (5), we arrive at

�

2

�
@S

@�

�
2 þ �

2
F
�
@S

@R

�
2 � �

2F
� il2P�ð0Þ

@2S

@�2

� il2P�ð0ÞF
@2S

@R2
¼ 0: (8)

Here, ‘‘�ð0Þ’’ indicates the presence of undefined expres-
sions arising from lim�r!r�ðr� �rÞ, which require the pres-
ence of a regularization scheme. [With the special factor
ordering chosen in [4,5], the �ð0Þ-terms are automatically
cancelled; this is why they were introduced there.]

For the semiclassical approximation scheme, we make
the ansatz

S ¼ S0 þ l2PS1 þ l4PS2 þ . . . ; (9)

and compare consecutive orders in l2P. (The general scheme
for such an approximation in quantum geometrodynamics
is presented in [1,15].) Since � is dimensionless, we see
from (7) that S has the dimension of a length (L), so that the
dimension of S1 is L

�1, the dimension of S2 is L
�3, and so

on.
Inserting (9) into (8) and comparing different orders in

l2P, we obtain

O ðl0PÞ:
�
@S0
@�

�
2 þF

�
@S0
@R

�
2 �F�1 ¼ 0; (10)

which, not surprisingly, is equivalent to the Hamilton-
Jacobi equation for the action

A ¼ 1

2G

Z
dr�SðR; �Þ: (11)

The next order yields

Oðl2PÞ: �
@S0
@�

@S1
@�

þ �F
@S0
@R

@S1
@R

� i�ð0Þ @
2S0
@�2

� i�ð0ÞF @2S0
@R2

¼ 0: (12)

The following order then involves S2,

Oðl4PÞ:
�

2

��
@S1
@�

�
2 þ 2

@S0
@�

@S2
@�

�
þ �F

2

��
@S1
@R

�
2

þ 2
@S0
@R

@S2
@R

�
� i�ð0Þ @

2S1
@�2

� i�ð0Þ @
2S1
@R2

¼ 0:

(13)

The solution to the Hamilton-Jacobi equation (10) is

S0 ¼ �
�
a�þ

Z R
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

�
þ constant; (14)

where a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
. With the special factor ordering

chosen in [4,5], this would already be the exact solution to
the Wheeler-DeWitt equation (this, again, was part of the
motivation to choose that factor ordering in the first place).
Here, however, the solution (14) occurs at the highest order
and must be used in the next-order equations.
The variable a above is seen to be related to the (dimen-

sionless) energy E. This is similar to what happens for the
tunneling mechanism [10,16]. The corresponding ansatz
there involves !t in place of a�, where t is the
Schwarzschild time and ! is identified with the conserved
quantity (in this case, the energy) corresponding to the
timelike Killing vector. We also note from (14) since a is
dimensionless and S0 has dimension of L, � has also the
dimension of L. This will be used later on.
Observe that the solution (14) also holds in the presence

of a cosmological constant �, with F then given by F ¼
1� F=R��R2=3 instead of (4), see [7] for the treatment
of positive � and [6] for the treatment of negative �. In
that case, however, the integral can only be evaluated in
terms of elliptic functions. Furthermore, the constant in
(14) only enters the unknown total normalization for� and
will therefore be skipped in what follows.
Inserting now (14) into (12), we arrive at an equation for

S1,

a�
@S1
@�

þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

q
@S1
@R

þ i�ð0Þ F
R2

2�a2F

2F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

p ¼ 0:

(15)

We solve this equation by the special ansatz

S1 ¼ �C�� iU1ðRÞ; (16)

where C is a new variable with the dimension L�2 because
S1 has dimension L�1 and � has dimension L; it will play a
crucial role below. Since the only length scale in this model
is GM, we can set for later purpose

C � �1

ðGMÞ2 ; (17)

where �1 is a dimensionless constant.
Inserting (16) into (15), we get a differential equation for

U1ðRÞ,
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dU1

dR
¼ iaCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2F
p þ �ð0Þ F

�R2

2� a2F
2F ð1� a2F Þ : (18)

We remark that in the marginal limit, a ! 1, this equation
reads

dU1

dR
¼ iC

ffiffiffiffi
R

F

s
þ �ð0Þ

2�ðR� FÞ
�
1þ F

R

�
:

Integrating (18), we find apart from an irrelevant constant
the desired expression for S1,

S1ðR; �Þ ¼ �C�þ aC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð½1� a2�Rþ a2FÞp

1� a2

� a2F

ð1� a2Þ3=2 lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞR

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞRþ a2F

q
Þ
�
� i

�ð0Þ
2�

ð2 lnðR� FÞ
� lnðRþ a2½F� R�Þ � lnRÞ: (19)

We also give the special result for the marginal limit, a !
1:

S1ðR; �Þ ¼ �C�þ 2CR3=2

3
ffiffiffiffi
F

p � i
�ð0Þ
2�

ð2 lnðR� FÞ � lnRÞ:
(20)

In the next order,Oðl4PÞ, we have to insert the solution (19),
apart from (14), into (13). This yields a rather complicated
equation for S2. For example, in the special case a ¼ 1, it is
of the form

�

2

�
C2 � 2

@S2
@�

�
þ �F

2

��
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�F
p � i�ð0Þ

2�

Rþ F

RðR� FÞ
�
2

� 2

ffiffiffiffiffiffiffi
RF

p
R� F

@S2
@R

�
� i�ð0ÞF

�
CF

2R2

�
F

R

��3=2

� i�ð0Þ
2�

ðR� FÞ2 � 2R2

R2ðR� FÞ2
�
¼ 0: (21)

In analogy to (16), one could try to solve it with an ansatz
of the form

S2ðR; �Þ ¼ �D�� iU2ðRÞ; (22)

where D � �2=ðGMÞ4 has dimension L�4 and involves
another dimensionless constant �2. We shall not, however,
follow this here and restrict our attention only to the order
l2P.

Collecting the solutions up to Oðl2PÞ, we can write

S ¼ S0 þ l2PS1

¼ ð�a� l2PCÞ��
Z R

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

þ l2PaC
~GðRÞ

� il2P�ð0Þ ~HðRÞ; (23)

where

~GðRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð½1� a2�Rþ a2FÞp

1� a2
� a2F

ð1� a2Þ3=2

� lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞR

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞRþ a2F

q
Þ; (24)

and

~HðRÞ ¼ 1

2�
ð2 lnðR� FÞ � lnðRþ a2½F� R�Þ � lnRÞ:

(25)

In analogy to earlier papers, cf. [7], we define positive- and
negative-energy states according to the sign in front of the
dust proper time variable �, with the case of the minus sign
corresponding to positive energy. Inserting (23) into the
general ansatz (7), the positive-energy solution reads

�þ ¼ exp

�
i

2l2P

Z
dr�

�
�a��

Z R
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

� l2PC�þ l2PaC
~G� il2P�ð0Þ ~H

��
; (26)

while the negative-energy solution is given by

�� ¼ exp

�
i

2l2P

Z
dr�

�
a�þ

Z R
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

� l2PC�þ l2PaC
~G� il2P�ð0Þ ~H

��
: (27)

In order to calculate the Hawking radiation, we shall
evaluate the overlap between the ‘‘outgoing dust state
with negative energy’’ ��

e (where the index ‘‘e’’ refers to
‘‘expanding’’ cloud) and the ‘‘ingoing dust state with posi-
tive energy’’�þ

c (where the index c refers to ‘‘collapsing’’
cloud). Since the interpretation of these states is made with
respect to an observer in the asymptotic regime using the
Killing time T, we have to substitute the dust time � by T
[7]. For the outgoing case, we have the relation

T ¼ a�þ
Z

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F a2

p
F

; (28)

while in the ingoing case we have

T ¼ a��
Z

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F a2

p
F

: (29)

For the concrete calculation we shall write the full states as
a product of single-shell states where the radial variable r is
assumed to consist of discrete points separated by a dis-
tance 	. (The continuum limit is obtained for 	 ! 0.) As
in [5], the Bogolyubov coefficient 
 is calculated for each
shell separately. In the discrete case, we replace � by the
dimensionless variable 2! and indicate the dependence on
! by an index. (The factor 2 is motivated by the fact that
� ¼ 2GM0.) We omit the shell index and write the corre-
sponding wave functions as c !ðT; RÞ. We then define 
 to
read
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! �
Z 1

F
dR

ffiffiffiffiffiffiffiffi
gRR

p
���

e!�
þ
c!; (30)

where gRR is the RR component of the DeWitt metric, as it
can be read off (5) where the inverse of the DeWitt metric
is l�4

P times the prefactor of the term �2�=�R2. We thus
have gRR ¼ F�1; performing then the required coordinate
transformation from the variables ð�; RÞ to ðT; RÞ gives the
result

ffiffiffiffiffiffiffiffi
gRR

p ¼ ðaF Þ�1 which has to be used in the calcu-

lation of the Bogolyubov coefficient 
.
Inserting now ���

e! and �þ
c! into (30), we get


! ¼
Z 1

F
dRðaF Þ�1 exp

�
� 2i!	

l2P

�
�
T þ

Z R
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

�

� 2i!	
C

a

Z R
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

þ 2!	�ð0Þ ~H
�
: (31)

We note that this expression is independent of ~G.
In the following, we shall employ a ‘‘DeWitt regulari-

zation’’ and set �ð0Þ ¼ 0. Whether this can consistently be
done at the most fundamental level is, however, not clear at
this stage; here, it is merely used as a formal recipe.
Recalling that ðaF Þ�1 ¼ R=aðR� FÞ, we then get


! ¼ a�1 exp

�
� 2i!	T

l2P

�Z 1

F
dR

R

R� F

� exp

�
� 2i!	

l2P

�
1þ l2P

C

a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

�
: (32)

As in [5], we introduce the dimensionless integration vari-
able

s ¼
ffiffiffiffi
R

F

s
� 1;

and get


! ¼ 2Fa�1 exp

�
� 2i!	T

l2P

�Z 1

0
ds

ð1þ sÞ3
s2 þ 2s

� exp

�
� 4i!	F

l2P

�
1þ l2P

C

a

�Z s
ds

ðsþ 1Þ2
s2 þ 2s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2 � a2ðs2 þ 2sÞ

q �
: (33)

Up to higher orders of the Planck length squared in the
exponent, this is so far an exact expression. As in [5], we
now assume that the s integral from zero to infinity is
dominated by its contribution near s ¼ 0, that is, near the
horizon; this is also the assumption in the standard deriva-
tion of the Hawking effect [17]. Using therefore in (33) the
approximation

ðsþ 1Þ2
s2 þ 2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞ2 � a2ðs2 þ 2sÞ

q

¼ 1

2s

�
1þ

�
5

2
� a2

�
sþOðs2Þ

�
; (34)

we get


! � Fa�1 exp

�
� 2i!	T

l2P

�Z 1

0
dss�1�ð2i!	F=l2PÞð1þl2PðC=aÞÞ

� exp

�
� 2i!	F

l2P

�
1þ l2P

C

a

��
5

2
� a2

�
s

�
: (35)

To evaluate this integral, we use the formula [18]Z 1

0
dxx��1e�ðpþiqÞx ¼ �ð�Þðp2 þ q2Þ��=2e�i� arctanðq=pÞ;

which is, in particular, applicable to the case p ¼ 0 and
0< Re� < 1. (We insert a small positive value for Re�,
which we let go to zero after the integration.) Using,
moreover,

�ð�iuÞ�ðiuÞ ¼ �

u sinh�u
;

(with real u), we get

j
!j2 � 2�F2

a2y

1

e2�y � 1
; (36)

with

y ¼ 2!	F

l2P

�
1þ l2P

C

a

�
: (37)

Substituting 	! by G��,1 where �� is the energy of a
shell, and introducing the physical frequency � ¼ ��=@,
we arrive at the final result

j
�j2 ¼ 2�GM

�a2ð1þ l2P
C
aÞ

1

expð @�
kBTH

Þ � 1
; (38)

with the quantum-gravity corrected Hawking temperature
TH,

kBTH ¼ @

8�GMð1þ l2P
C
aÞ
: (39)

where kB is Boltzmann’s constant.
A number of remarks are in order. First, the meaning of

the prefactor in the expression for j
�j2 (which depends
mildly on �) is unclear. It is certainly connected with the
greybody factors, but without a clear-cut normalization of
the quantum states, its interpretation remains incomplete.
Second, different from the earlier papers, we have calcu-
lated the overlap of the quantum states in (30) for coincid-
ing frequencies! only. The reason is that an (approximate)
thermal spectrum only occurs in that case. Unlike the

1Recall that! is the discretized version of �=2 ¼ GM0, so 	!
corresponds to G�M � G��.
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highest order l0P, taking here also into account two frequen-
cies ! and !0 corresponding to two different shells, the
integration over !0 would spoil the thermality. The results
(38) and (39) thus remain valid only as far as the interaction
between different shells is subdominant. Third, when tak-
ing the next order in the Planck-mass expansion into
account, we expect that the term 1þ l2PC=a in the denomi-
nator of (39) is augmented by a term proportional to l4PD=a,
where D occurs in (22).

The form of the temperature given in (39) for a ¼ 1 was
obtained earlier for the case of the Schwarzschild black
hole in [10]. It was calculated there by using the quantum
tunneling method beyond the semiclassical approximation.

We emphasize that in the previous papers [5,7] no such
quantum gravitational correction to the Hawking tempera-
ture has been found, since calculations have led to an exact
solution with semiclassical form.

Substituting now (17) in (19) we obtain the expression
for S1 as

S1ðR; �Þ ¼ � �1

ðGMÞ2 �þ a
�1

ðGMÞ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rð½1� a2�Rþ a2FÞp
1� a2

� a2F

ð1� a2Þ3=2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞR

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2ÞRþ a2F

q ��
� i

�ð0Þ
2�

ð2 lnðR� FÞ
� lnðRþ a2½F� R�Þ � lnRÞ: (40)

We discuss in the following a method developed in [11]
to find the value of the dimensionless constant �1.
Consider for that purpose a constant scale transformation
of the coefficients of the metric (1), given by (cf. also [19])

�g �� ¼ kg��: (41)

Under this transformation we have from (1),

�R ¼ k1=2R: (42)

For the Einstein equations to remain invariant under this
scale transformation, F should according to (3) transform
as

�F ¼ k1=2F; (43)

and � should transform as

�� ¼ k1=2�: (44)

Therefore, (4) yields

�F ¼ F ; (45)

and since F ¼ 2GM, GM transforms as

ðGMÞ ¼ k1=2ðGMÞ: (46)

For the Wheeler-DeWitt equation (5) to be invariant under
this scale transformation, we must have in addition the
following transformations:

�� ¼ k�; (47)

�� ¼ k�ð1=2Þ�; (48)

where (42) and (45) have been used.
Now from the expression for �, Eq. (7), we have

@

i

��ð�; R; �Þ
�X�ðrÞ ¼ �ðrÞ

2G

@SðR; �Þ
@X�ðrÞ �ð�; R; �Þ; (49)

where � ¼ 0, 1 with X0 ¼ � and X1 ¼ R. Because we
have in (49) a functional derivative on the left-hand side
and an ordinary derivative multiplied by �ðrÞ on the right-
hand side, S is not the action. In fact, as we have seen, it is
the quantity (11) which has the correct physical dimension
mass times length and which is equal to the action of this
model. The first-order action is therefore given by

A 1 ¼ l2P
2G

Z
dr�S1ðR; �Þ: (50)

We have seen that the relevant part for the recovery of
Hawking radiation was the first, purely �-dependent term
in (40). Because this part does not contain the gravitational
variables, it can for our purpose be considered as the matter
(dust) action which we shall call Am

1 . We thus have

A m
1 ¼ � l2P

2G

Z
dr�

�1�

ðGMÞ2 : (51)

Hence, under the transformations (44), (46), and (48),Am
1

transforms as

�A m
1 ¼ � l2P

2G

Z
dr ��

�1 ��

ðGMÞ2 ¼ k�1Am
1 ’ ð1� �kÞAm

1 ;

(52)

where we have assumed that �1 and r do not scale, and k ’
1þ �k. Hence,

�Am
1 ¼ �Am

1 �Am
1 ¼ �Am

1 �k: (53)

Now using the definition of the energy-momentum tensor,

Z
d4x

ffiffiffiffiffiffiffi�g
p

T
�
� ¼ 2�Am

1

�k
¼ �2Am

1

¼ @

Z
dr�

�1�

ðGMÞ2 ! 2!	
@�1�

ðGMÞ2 ; (54)

where in the last step, we pass to the discretized version by
replacing � by the dimensionless variable 2! as before.
Therefore, by a simple interposition of (54), we obtain

�1 ¼ ðGMÞ2
2@!�	

Z
d4x

ffiffiffiffiffiffiffi�g
p

T
�
�: (55)

Next, our task is to find the value of �. For the contract-
ing cloud case, � is given by the relation (29), which can be
written in a rearranged form:
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� ¼ T

a
þ 1

a

Z
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F a2

p
F

: (56)

Now in the calculation of j
!j2 [see Eqs. (35) and (36)],
which eventually gives the flux for the model, the first term
in (56) is inconsequential, since it occurs as a phase factor
(� ei�T) which yields unity on taking the modulus. On the
other hand, as we have seen, the terms which contribute to
the flux come from the integration term. Therefore, for the
present calculation, considering only the last term of (56)
and using the fact that F ¼ 1� F

R and then substituting

s ¼
ffiffiffi
R
F

q
� 1, we obtain

� ¼ 2F
Z

ds
ðsþ 1Þ2
s2 þ 2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1Þ2 � a2ðs2 þ 2sÞ

q
: (57)

If this integral is supposed to run from 0 to1 (since R runs
from F to 1), it is certainly divergent. In order to make
contact with the expressions in earlier papers, we make the
following heuristic considerations, which can be viewed as
a regularization prescription. Restricting attention to the
relevant regime near s ¼ 0, use of the approximation (34)
in the above yields

� ’ 2F
Z

ds
1

2s

�
1þ

�
5

2
� a2

�
s

�
¼ F lnsþOðsÞ: (58)

Interpreting s as a complex variable and recalling lns ¼
lnjsj þ i args, we can define a ‘‘Euclidean time’’ �E by

�E ¼ i� ¼ ��F ¼ �2�ðGMÞ: (59)

Finally, substituting this value for �E in the
Euclideanized version of (55), we obtain our cherished
expression,

�1 ¼ � GM

4�@!	

Z
d4xE

ffiffiffiffiffiffiffi�g
p

T�
�: (60)

This shows that �1 is related to the ‘‘one-loop trace anom-
aly’’ of the energy-momentum tensor. A similar result was
obtained earlier in [8,9,11–13] for the eternal black-hole
case.

To conclude, we mention that a quantum gravitational
correction to the Hawking temperature from the LTB
model was established through a semiclassical approxima-

tion scheme employed in [10]. Here, no special factor
ordering [4,5] was chosen, which was a crucial step to
obtain such a correction. Instead, we considered all the
terms in the expansion for S (9). This led to several
equations corresponding to different orders in l2P. In this

paper, only terms up to Oðl2PÞ were considered. The equa-
tions were solved by a special ansatz. After getting the
solutions for the states up to Oðl2PÞ, the ‘‘De Witt regulari-

zation’’ was employed. This regularization enforced
�ð0Þ ¼ 0. The explicit calculation of the Bogolyubov co-
efficient near the horizon led to the emission spectrum. The
corrected Hawking temperature was then automatically
identified. It contained an unknown variable ‘‘C.’’
Dimensional arguments then helped us to fix ‘‘C,’’ apart
from a dimensionless constant.
The last part of the paper was actually devoted to fix the

dimensionless constant appearing in ‘‘C.’’ It was done by a
constant scale transformation of the metric coefficients (1).
A detailed analysis showed that it was related to the one-
loop trace anomaly of the energy-momentum tensor for the
dust (matter).
It must be emphasized that a similar result was obtained

by Hawking [19] for an eternal black-hole space-time by
taking into account the one-loop correction to the partition
function due to the fluctuations of the scalar fields on the
black-hole space-time. Exactly the same result was also
derived later on by different methods [8,9,11–13]. Here our
analysis was done in the spirit of the quantum tunneling
method employing the WKB approximation [10–13].
Indeed the special ansatz (16) used here closely resembles
the Hamilton-Jacobi splitting of the one particle action

Sðt; rÞ ¼ !tþ ~SðrÞ. Such a similarity of our result with
Hawking’s finding [19] may be due to the equivalence of
the path integral with the WKB ansatz up toOðl2PÞ, a result
that has been established earlier in quite general terms [20].
That this connection also holds in the black-hole context is
a new observation.
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