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Rotating black ring on Kaluza-Klein bubbles
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We construct a new exact solution to the 5D Einstein equations describing a rotating black ring with a
single angular momentum surrounded by two Kaluza-Klein bubbles. The solution is generated by two-
soliton Bicklund transformation. Its physical properties are computed and analyzed. The corresponding
static solution, the rotating black string, and the boosted black string are reproduced as limits.
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I. INTRODUCTION

The stationary axisymmetric solutions to the five-
dimensional vacuum Einstein equations have been studied
intensely in recent years in both cases of asymptotically flat
and asymptotically Kaluza-Klein spacetimes and good
progress has been achieved. At this stage, black solutions
with a symmetry group R X U(1)? are completely classi-
fied by the uniqueness theorems [1,2] and general methods
for their construction are developed.

The 5D Einstein equations with R X U(1)?> symmetry
group are completely integrable and reduce to a two-
dimensional nonlinear sigma model which allows the ap-
plication of solitonic techniques. The most general method
for generation of solitonic solutions of the Einstein equa-
tions with described symmetries is the inverse scattering
method developed by Belinski and Zakharov [3,4]. A
Bécklund transformation for the two-dimensional nonlin-
ear problem was also discovered, originally in 4D gravity
by Neugebauer [5,6] and recently adapted to five dimen-
sions [7]. It is relevant only for generation of solutions with
a single angular momentum, however, and in this subsector
is equivalent to the inverse scattering method [8]. Both
solitonic techniques generate solutions by purely algebraic
operations performed on a simpler already known solution,
called a seed.

At present many exact solutions of the 5D Einstein
equations are available, constructed by means of these
methods. The Myers-Perry black hole [9] and the black
ring, originally obtained by Emparan and Reall [10], were
subsequently generated using solitonic techniques [11-13].
More complicated configurations that occur in higher di-
mensional gravity were constructed as well—black lens
[14], black Saturn [15], multirings [16—18], black hole, and
bubble sequences [19,20] (see also [21]).

Good progress in constructing exact solutions to the 5D
Einstein-Maxwell(-dilaton) gravity and 5D minimal super-
gravity was also achieved and many explicit exact solu-
tions were generated [22-28]. Black hole uniqueness
theorems were also formulated and proven for certain
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sectors in 5D FEinstein-Maxwell(-dilaton) gravity and 5D
minimal supergravity [29-33].

The aim of the current paper is to construct a new
stationary and axisymmetric solution to the 5D Einstein
equations with Kaluza-Klein asymptotics. It describes a
rotating black ring on two Kaluza-Klein bubbles and the
two-solitonic Bicklund transformation is applied as a so-
lution generation method. The static solution with the same
rod structure was found by Elvang and Horowitz [34]. It
was later generalized to sequences of an arbitrary (even)
number of black holes and bubbles [35] and its charged
counterparts were generated in [36—38]. Related solutions
representing two black holes on a Kaluza-Klein bubble,
with a single angular momentum along either spacelike
Killing field, were found in [19,20]. In the literature there
exist also interesting Kaluza-Klein black hole solutions
with an unusual (different from R* X S') asymptotic. For
explicit examples we refer the reader to [39-46].

The article is organized as follows. In Sec. II the solution
describing the static black ring on Kaluza-Klein bubbles is
briefly presented. In Sec. III the generating technique of its
stationary counterpart is discussed, the seed solution is
constructed, and the rotating black ring on two Kaluza-
Klein bubbles is generated. In Sec. IV the solution is
thoroughly analyzed. The regularity conditions are esti-
mated, physical characteristics such as mass, tension, an-
gular velocity, and angular momentum are computed, and
Smarr relations are derived. The final section is devoted to
some limits of the solution. Such are the static solution of
Elvang and Horowitz [34], the rotating black string [7], and
the boosted black string [47].

II. STATIC SOLUTION

The solution describing a static black ring on Kaluza-
Klein bubbles was first derived in [34], although it was not
interpreted as such. It was obtained following the Emparan
and Real higher dimensional generalization [48] of the
Weyl method for constructing static axisymmetric solu-
tions in 4D (also called Weyl solutions). The metric for any
D-dimensional spacetime with D-2 commuting orthogonal
Killing vectors, one of which timelike, can be written in the
following form:
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ds? =Y e;?Vi(dx') + e¥(dp® + d2), (1)

where the two-dimensional surfaces orthogonal to the
Killing fields are parametrized in Weyl canonical coordi-
nates, and all the metric functions depend only on p and z.
Emparan and Reall showed that the solution to the Einstein
equations in vacuum can be obtained in the following
manner. The functions U;, i = 1,..., N — 2, proved to be
solutions to a 3D Laplace equation in flat space:

02U,
ap?

1 oU;
p dp az?

92U,
L=0. (2)

Hence, they are called potentials in resemblance to the
Newtonian potentials produced by certain axisymmetric
sources. The potentials U; are not all independent as they
must obey a further constraint:

ZU ; = Inp + constant. 3)

Actually, Inp is a solution to the Laplace equation
corresponding to a Newtonian potential produced by an
infinite rod of zero thickness lying along the z axis. For that
reason, the metric functions U; can be interpreted as
Newtonian potentials produced by linear sources along
the z axis, which according to the constraint (3) must add
up to an infinite rod. The sources of U,;, which can be finite
or semifinite, constitute the so-called rod structure. The
notion of rod structure can be extended to the case of
stationary axisymmetric spacetimes [49]. It is a basic
characteristic of stationary axisymmetric solutions as, ac-
cording to the uniqueness theorems [1,2], a vacuum solu-
tion is determined completely by its rod structure and
angular momenta in the asymptotically flat and asymptoti-
cally Kaluza-Klein spacetime.’

Once the potential U, is obtained from (2), the remaining
metric functions v;(p, z) are determined by the integrable
system:

| ph , 5
apV = _5 - 5 le[(apUl) B (azUi) ]r 4)

D—-2
an=p apUiazU,-. (5)

i=1

Elvang and Horowitz used the method we just described
to obtain the following static axisymmetric solution to the

IStrictly speaking the uniqueness theorems of [1,2] are based
on the so-called interval structure. The interval structure is a
more precise mathematical definition of the rod structure with
very important restrictions which were omitted in the definition
of the rod structure. For the aims of the present paper, however, it
is sufficient to use the more physical and simple notion of rod
structure rather than the more precise mathematical notion of
interval structure.
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5D vacuum Einstein equations in spacetime with Kaluza-
Klein asymptotic
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In order to write the solution in a more convenient form
some auxiliary functions are introduced according to

H=z—a; H=1z7—0b;

(7

HL=z71b; L=z+c¢
Rizvpz"‘fiz» (8)
Y;; = RiR; + {;{; + p*, &)

where a, =b, and —c are the rod end points.

The rod structure of the solution is depicted in Fig. 1. It
is described as representing two Kaluza-Klein bubbles on a
black ring.

As is well known, the finite rod along the timelike
Killing field corresponds to a horizon. In this case the
horizon has §? X S! topology where S' is not topologically
supported—consequently, the black object is called a black
ring. Similarly, the two finite spacelike rods denote the
fixed point sets of the isometry generated by the Killing
field associated with the compact dimension ¢. It can be
proven that they represent two-dimensional surfaces with
disk topology. They are completely regular and, since they
are spacelike, they restrict a region in spacetime which is
causally disconnected from the rest of spacetime. For that
reason such topological structures are called (spacetime)
bubbles. Bubbles are spacetime structures with interesting
properties. A frequently discussed feature is that they can
separate several black objects, thus allowing the construc-
tion of multiblack hole spacetimes without conical singu-
larities [19,20,35].

U t
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U, ‘ ‘ ‘ vy
< b b a
FIG. 1. Rod structure of the static black ring on Kaluza-Klein

bubbles.
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In the rest of the paper, we will construct a rotating
generalization of the described solution, endowing the
black ring with a single angular momentum along the
spacelike Killing field, which is associated with the non-
compact dimension.

III. SOLUTION GENERATION

A. Solution generation method

Although it was possible to obtain the static solution
describing two Kaluza-Klein bubbles on a black ring in a
relatively simple way, the construction of its rotating coun-
terpart will require more advanced solution generation
methods. Fortunately, in five-dimensional stationary axi-
symmetric spacetime all the solitonic techniques, devel-
oped for constructing solutions to the 4D stationary
Einstein equations, can be applied with certain modifica-
tion. In the current paper, we preferred to use the auto-
Bicklund transformation (BT) of the Ernst equation in the
form invented by Neugebauer [5,50] as most suitable for
our purposes. We should note however that it is equivalent
or closely related to a number of other transformations
such as the inverse scattering transform, Hoenselaers-
Kinnersley-Xantopoulos transform [51], or Harrison trans-
form [52]. Below, we will describe briefly the main idea of
the solution generation method. We will use Weyl canoni-
cal coordinates p and z, unless otherwise stated. The
Killing fields are represented in adapted coordinates in
the following way: ¢ = 9/t is the Killing field associated
with time translations, 7 = 9/d¢ is the Killing field cor-
responding to the compact dimension, and { = 9/d ¢ is
the remaining spacelike Killing field.

Without loss of generality, the 5D stationary axisym-
metric metric with one axis of rotation can be represented
in the Lewis-Papapetrou form

ds?> = —e>X7U(dt — wdif)? + e XU p2dy?
+ 672X7u621‘(dp2 + de) + €2ud¢2,

where all the metric functions depend only on the Weyl
canonical coordinates p and z.

The 5D stationary axisymmetric gravitational field
equations in vacuum can be presented in a convenient
form using a complex potential £. It corresponds directly
to the potential introduced by Ernst in 4D [53], its real and
imaginary parts being connected to the metric functions y
and w according to

£ = & +2if, (10)

where f is the twist potential defined by the equations

If = —=—0d.0, (11)

PHYSICAL REVIEW D 82, 044010 (2010)
0f ==—a,m. (12)
P

The potential £ provides an alternative description to the
gravitational problem. Instead of using the metric func-
tions (metric picture), the field equations can be written in
terms of £ and its complex conjugate £*—the so-called
Ernst picture. Then the dimensionally reduced field equa-
tions yield the Ernst equation

(E+ENGZE+ pT19,E + 928) = 2(0,£0,€ + 9,£0,8).

As it is easily noticed, in the static case when the twist
potential vanishes, the nonlinear Ernst equation is simpli-
fied to the linear Laplace equation for the metric function
X, which we discussed in Sec. II.

For any solution to the Ernst equation, the remaining
metric function I' is determined again by a line integral

1 .
pflapr = m[apé’apg* - azgazg*]

+ 200,02 — (3.07)

) 2 3
P '82F=m8p5815 +§8puazu.

The solution of nonlinear partial differential equations
usually involves more refined analysis and complicated
techniques. For certain classes of equations it is possible
to find an auto-Biacklund transformation, which constitutes
a set of relations that connect two different solutions to the
equation. By the repetitive application of the Backlund
transformation different independent solutions can be ob-
tained. Although these relations are much simpler than the
original differential equation, they still involve integration.
In some cases, however, there exist commutation theorems
which can facilitate considerably the repetitive application
of Bicklund transformations. They state that for any BT
applied to a given solution there are three other trans-
formations leading back to the same solution, and specify
the relations between the parameters of the four BT s that
ensure the commutation. Once the commutation theorem
has been proven, it allows the construction of solutions
involving N subsequent applications of BT (N-soliton
solutions) by purely algebraic transformations performed
on a particular initial solution, called a seed.

As already mentioned, Neugebauer has derived the auto-
Bicklund transformation for the Ernst equation. He has
also proven the corresponding commutation theorem, and
deduced the explicit formulas for recursive calculation of
BT’s in its general form and in special cases. One of the
most important cases for the applications is when
Bécklund transformations are performed on a seed repre-
senting a generalized Weyl solution. The rotating solution
in the current article is also constructed in that manner.
Therefore, in the following exposition we will outline the
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algebraic procedure of solution generation only for that
particular case.

The Bicklund transformation for the Ernst equation is
determined by a couple of functions A and «, which satisfy
the total Riccati equations

dA = p~'(A = D[Ap sd{ + p pd{7]

da = (& + )7 [(a — A2, + (a*A? — a)&y d¢
+ (& + &) a— A71)E L.
+ (@A = a)g p1dL, (13)

where & is the Ernst potential for the seed solution, { =
p + iz, the star denotes complex conjugation, and (...),
denotes differentiation.

If the seed solution belongs to the Weyl class, the
coordinate dependence of the functions A and « is found
to be

_ ky —il”

w, + ie?®
k, +il’

o — i

A, (14)

a, =

where n denotes the number of the successive Backlund
transformation, k, and w, are real integration constants,
and @, obeys the equation

d®, = N2 () (d¢ + 20,2 (n&y) d*. (15)

1
2

The new solution to the Ernst equation obtained after 2N
subsequent Bécklund transformations is constructed alge-
braically in the form

a,R, —a, Ry
det(%

—1)
S (L
P q

£E=¢ Eo= e, (16)

where p=1,3,...,2N —1, ¢ =2,4,...,2N, and the
functions Ry are given by

Ry, = P> + = k). (17)

Further, we will consider only two-soliton transforma-
tion. In this case the metric functions of the new solution
can be expressed in explicit form taking into account (10)

Wi e=ew® s

eX = ¢2Xo ,
W, Wi

The following functions are introduced [24]:
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Wi = [(Ry, + R;,)* — (Ak)*](1 + ab)?
+ [(Ry, = Ry,)* — (Ak)*](a — b)?,
Wy =[(Ry, + Ry, + Ak) + (R, + Ry, — Ak)ab]?
+ [(Ry, = Ry, — Ak)a — (R, — Ry, + Ak)bT%,
@& =[(Ry, + Ry,)* — (Ak)*](1 + ab)
X [(Ry, — Ry, + Ak)b + (R, — Ry, — Ak)a]
—[(R, = Ry,)* = (AR?](b — a)
X [(Ry, + Ry, + Ak) — (R, + Ry, — Ak)ab], (19)

where we have denoted Ak = k, — k. The functions a and
b are connected directly with ®,, n = 1,2 as

“1p20;

a=p; b= —ue 2%, (20)

Taking into consideration these relations we will replace
for convenience in the following discussion the real con-
stants p; and u, with another pair @ and 8 defined as
a=pu;',  B=—p @1
As we have already obtained the explicit form of the
Ernst potential for the new solution, we can solve the
equations (13) which determine the remaining metric func-
tion I'. For the particular form of the Ernst potential (16) it
can be expressed as

W1627

T=c .
¢ (Ry, + Ry)* — (Ak)?

(22)

Here C is an integration constant and vy is a solution to the
linear system

pilap’y = (apX/O)z - (az/\~/0)2 + %[(apuO)2 - (az”O)z])
p71817 = zap/?oazf(o + %apuoaz“o» (23)

where we have used the auxiliary potential

. +11Rk1+Rk2—Ak (24)
XOT XTS5 R, T Ry, + AR

In conclusion, we will give the general formulas for
applying a two-soliton Bicklund transformation on a
Weyl solution seed. From the presentation of the algebraic
procedure it is obvious that in this case the Backlund
transformation is completely determined by the solution
of the total Riccati equation (15) and the linear sys-
tem (23). Consider a Weyl seed of the form

Eg = e, xo=>&U,, (25)

where &; and v; are constants and the potentials U », have
the form
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Uvi = %[RV,» + (Z - Vi)]
=3n[yp* + z—v)* +z—v)]  (26)

Then, the total Riccati equation (15) provided with the
described type of Ernst potential has the solution

g (€U + &2Un
where Up,n= 1, 2, is defined by
Uy =3[R, — (z—k,)] (28)

The metric function 7 is obtained in a straightforward
way from Eq. (23) as

Y= Yk — Yok T Yiok, T QZ(Ykl,V,- ~ Vi)

+ > 88,0, (29)
ij

U —tin[RR, + (z = K)(z — 1) + p?]
(30)

We will use the working formulas we just presented for
the generation of the solution describing a rotating black
ring on Kaluza-Klein bubbles.

B. Seed solution

It is observed [12] that the Biacklund transformation with
appropriately selected parameters is able to transform the
solution in such a way that a finite rod along the axis of a
spacelike Killing field is converted into rotational horizon
with angular velocity along the same Killing vector, while
the rest of the rod structure is preserved. For that reason a
convenient seed for generation of a rotating black ring on
Kaluza-Klein bubbles is the generalized Weyl solution
representing two static Kaluza-Klein bubbles in equilib-
rium. The rod structure of the seed solution is presented in
Fig. 2, where the finite rods [, 0, n,0] and [, 0, u,0]
along the axes of the Killing field 9/0¢ correspond to the
bubbles. The semi-infinite axes, (—oo, ;o] and [u,0, ),
and the finite rod [1,0, w,o] that separates the bubbles
represent the fixed sets of the other spacelike Killing field
d/0 4. The rod end point parameters are aligned as 7,0 <
N0 < u10 < uy,o. As they are arbitrary, they can be
chosen proportional to o for convenience in the subsequent
solution generation procedure.

We have obtained the metric functions of the seed
solution in a straightforward way, following the method
described in Sec. II:

PHYSICAL REVIEW D 82, 044010 (2010)
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ne  no ue o

FIG. 2. Rod structure of the seed solution.
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where we have used the auxiliary functions

c=yp*t (=0

%ln[Rc + (Z - C)], (32)
¢ =3[R, — (z = ¢)]
Yoo = R.Ry+ (z— )z — d) + p.

=

In general, some regularity requirements arise on the
rods along the spacelike Killing fields. In order to avoid the
formation of conical singularities, the orbits of a spacelike
Killing field should be identified with a certain period on
all the rods in its direction, which is also compatible with
the asymptotic structure of the spacetime. Taking into
account that the length of the Kaluza-Klein circle at infin-
ity is L, the regularity conditions on the axes of the Killing
field 9/0 ¢ corresponding to the compact dimension result
in the relations

P*8,p

8¢¢

= L, (33)

(85, = 2mlim

where we have denoted the bubble rods with B;, i = 1, 2.
Performing certain calculations, we can express the
regularity conditions as

_ P
(AQ,))OBI nmo<z<m,o 47T0—(lu“2 - 771) W — B
Mo ™ M (34)
(Ad))oﬂz <2<y = 47T0-(M2 - 7’1) Wy — 1, .

The last expressions show that the solution is free of
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conical singularities with respect to ¢, if the two bubble
rods possess equal length, i.e. if we restrict the rod end
point values in such a way that ;0 = —u,0 and 9,0 =
M0

In a similar way, we should identify the orbits of the
other spacelike Killing field 9/ ¢ on all the corresponding
rods with its period at infinity 27,

P*8op _

Ay = 27lim
=0\ 8yy

2. (35)

On the semi-infinite axes the regularity condition is ful-
filled identically. However, on the finite rod that separates
both bubbles, it cannot be satisfied for any values of the rod
structure parameters. Therefore, the generalized Weyl so-
Iution describing two static Kaluza-Klein bubbles pos-
sesses unavoidable conical singularity. By general con-
siderations, it can be expected and interpreted intuitively
as the force necessary to hold the bubbles apart in equilib-
rium. The presence of conical singularity in the seed
solution will not affect the rotating solution we aim to
generate, as we will see in the following sections.

C. Rotating black ring on Kaluza-Klein bubbles

In the generation of the solution describing a rotating
black ring on Kaluza-Klein bubbles we apply directly the
algebraic procedure described in Sec. IIT A, and more
precisely, the working formulas deduced for the case of
the Weyl solution seed. We have performed the calcula-
tions in the general case with parameters of the two-soliton
Bicklund transformation k; and k,. However, the solution
is invariant under translations in the z direction. For that
reason we can set k; = o and k, = —o without loss of
generality by performing the shift z — z + z,, where z5 =
1 (ky + ky). Below, we present the solution obtained by
performing a two-soliton Bédcklund transformation on the
Weyl seed (31). The functions a, b, and y are calculated
according to (27), (20), and (29) as

e2Uo + ?Unme eYUno s + 2o
a=a - _ _
eUno e?o + ¢*Uno eUno
eUno
4_’
e2o + ¢?Vnio (36)
b ﬁer'” + e?Uno eUno eV-o + 2o
e o2V 1 2000 Glus
eU#Z"

—..’
er,(, —+ eZU/LQU
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Y =%Yoo~ 2Yo-0 T Y-0,-0 = Yome = Y-amo)
+ Yome = V-ome) = Youo = Y—opo)
T Yoo = Y-opo0) T Ynyomo T VYmomo
T Ywomo ¥ Yiowo = 2Ymome T 2Ynome

- 27”7117:#20 - 27”’72”,14117 + 2’)/7720,/1'2‘7 - zfyl‘«llf'lfvzlf

- I - 1
UC +§Ud_zln[RCRd+ (Z_ C)(Z_d) +p2]

N =

Yed =
(37)

These functions completely determine the metric and we
can write the new solution in the convenient form

0
ds> = Weldr = wdy? + 2Ll ay?
y
+ ngp(dp2 + dz%) + g%(bdq’)z,

WZ JYU,ﬂlO'YO',,MIO'Y—O',TIZO'Y—O',,U,ZU' (38)
-

Y
— =Y, :
w 4R0'R YO',’IIZO'YD',,U,ZO'Y*O',’I]]O'Y*O',,Udl0'
_wW
Wz’

using the metric functions of the seed solution g?j derived

in Sec. III B. and the definitions of W; and W, (19).

The solution we obtained possesses the rod structure
presented in Fig. 3. Again, the finite rods [n,0, 1,0] and
[my0, poo] along the axes of the Killing field 9/d¢
correspond to the bubbles, while the finite rod
[n,0, u o] separating the bubble is timelike and corre-
sponds to a horizon. In contrast to the static solution [34],
however, it is directed along a linear combination of the
Killing fields v = 9/t + Q0a/d ¢ [denoted as (1, , 0)],
which means that the horizon rotates with angular velocity
Q) along the Killing field 9/9 .

The described solution can be generated by a two-soliton
Bécklund transformation only if the transformation pa-
rameters k; and k, are selected in a very specific way.
Investigations show that the finite spacelike rod along the
Killing vector d/d ¢ is transformed into a finite timelike
rod directed as (1,2, 0) only if the rod structure and

L (1,0,0):
: : t
0,0,1) ©0,0,1) "
(0,1,0) (0,1,0)
v
n,c no Ko  po

FIG. 3. Rod structure of the rotating black ring on Kaluza-
Klein bubbles.
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Bicklund transformation parameters are ordered as —o <
n,0 < 1o < o. The parameter ordering is further re-
stricted as in general the two-soliton Bicklund transforma-
tion causes singular behavior of the metric function W on
some of the rods. It can be avoided (except at isolated
points) again by appropriate parameter alignment, which in
our case proved to be o< —oc<mo<puoc<o<
Moo Fortunately, it is compatible with the solution gen-
eration requirement just discussed.

Under the described ordering of the parameters, the
metric function W still remains singular at the bubble rod
points z = o and z = —o. The singularities can be re-
moved, however, by imposing the following condition on
the other two constants & and 3, which were introduced by
the Bécklund transformation:

azz(l_nl)(l_lu’l) 32:
(1 =)y — 1)’

(A )+ )
(L+n)+ uy)
(39)

Note that according to the parameter alignment 7| <
—1<m, <p; <1< w,, meaning that & and B defined
by the previous expression are real, as required.

The solution contains another couple of integration con-
stants C, and Y,. They should be determined by the
requirements to avoid global rotation of the spacetime
and to preserve the Kaluza-Klein asymptotic, respectively,
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40P _ _ 1
*TTrep TP DT aTapr
(40)

Finally, we should ensure that the expressions which de-
termine « and B are compatible with the condition a +
B = 0. It is easy to prove that this is possible only for rod
structure parameters that fulfill the relations n; = —pu,

and 7, = — .

IV. ANALYSIS

In this section we will examine the obtained solution.
We will find its asymptotics, we will prove that it is free of
conical singularities under certain requirements, and we
will compute its physical characteristics such as rotational
velocity, temperature, mass, and angular momentum.
Finally, the Smarr relations are derived.

A. Asymptotics

We study the asymptotic behavior of the solution by
introducing the asymptotic coordinates r and € defined as

p = rsind, z = rcoséf.

In this way we receive the following asymptotic expan-
sions for r — oo:

1+ 822
g,,%—1+7ﬂz—0=—1+&,
1—B°r r
_ 20?Bsin?0 5 . J sin?6
gz;//“‘_m[m_772"'#1_,U~2_2_,3(771_772+M1_M2+2)]—2Z p
: m=—mtpm—u—2=-B —mtu —pt+2)o
~ 220l 1 _ i
Sy rs1n0|:1 = V:I’ (41)
—_ J’_ —
g¢¢z1+("1 Mt T )T Co
r r
. zl_(m_ﬂz"‘ﬂvl_Mz_z_ﬁz(m_ﬂz"‘ﬂ«l_M2+2))0'
pp 1 - pdr :

We see that, up to leading order in the expansion, the
solution asymptotically approaches the metric of the 5D
Kaluza-Klein spacetime R* X S':

ds*> = —dr* + dr* + r*(d0* + sin*0d¢?) + dp*. (42)

B. Regularity conditions

A possibility exists that the soliton transformation could
introduce conical singularities on spacelike rods.
Therefore, in order to get a regular solution we should
ensure that the orbits of the Killing field /3¢ on the
bubble rods B;, i = 1,2 are identified with appropriate
periods,

p’g
(Ap)g = 27lim4[—L2 =1L, (43)
' P=0N 8g¢

which coincide with the length of the Kaluza-Klein circle
at infinity L.
In explicit form A ¢ is expressed as follows:

Y

(A(ﬁ)Bi = W

(Ag)S, (44)
B,

where (A d))OB_ are the corresponding periods for the seed

solution and the metric functions ¥ /W are computed on the
bubble rods

044010-7



PETYA G. NEDKOVA AND STOYTCHO S. YAZADIJIEV

d+mny)
({) _ (- m)[l + A <1Zi>]2
w Bi:imo<z<mo (1 + 77]) 1 - ﬁz ’
(up=1)

(ﬁ) _ (o + 1)[1 — B <M2+1>]2
w By pio<z<p,o (,Uf2 - 1) 1 - ,82 .

The aforementioned conditions are compatible provided
the bubble lengths coincide, i.e. we should set 0o =
—ur0 and n,o = —u o, as in the case of the seed
solution. In the following analysis we adopt these relations
between the rod structure parameters. Note that they agree
exactly with the conditions that should be imposed on the
expression for & and B so that the requirement a + 8 = 0
is fulfilled. We can deduce the explicit form of the period
A ¢ taking into account (39)

(45)

mipa(py — pi)o
(mipa = Do + 1)
In a similar way, we should identify the orbits of the

other spacelike Killing field d/d¢ on the semi-infinite
axes with its period at infinity 277

Ap = 87

(3 —1.  (46)

P8,

Ay = 27rlim
=0\ 8yy

=27, 47

It does not introduce further constraints, as it is fulfilled
identically.

C. Horizon

As already mentioned, the finite rod [— u, 0, w 0] cor-
responds to a rotating horizon with §? X S! topology. Its
angular velocity () can be computed by the requirement
that the norm of the Killing vector v = 9/dt + Q9/d ¢
vanishes on the horizon rod. Thus, we obtain the following
expression:

_ s - (1—pui)
20 py(po — @) (,U«%_ 1)

(48)

In stationary spacetime an ergoregion exists defined as a
region in spacetime where the Killing vector 9/dt trans-
forms from timelike to spacelike. It is bounded by a closed
surface on which the metric function g,, vanishes. We will
retain the term ergosphere introduced in 4D rotating solu-
tions, although the surface does not have spherical topol-
ogy. Investigations show that for our solution the
ergosphere has the same S X S! topology as the horizon
and encompasses it completely without intersection points.
The ergosphere intersects the z axis at exactly two points,
which are located symmetrically with respect to the hori-
zon and lie on the bubble rods (Fig. 4). They are deter-
mined by the expressions

L+ pips —2p3
L+ uius —2uf

1= *po (49)
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osF -~~~ T T T

0.6 -

L 04

0.2

0.0,

FIG. 4. Cross section of the ergosphere in the (p, z) plane for
three different sets of values of the parameters w; and w,, and
o = 1. The dotted line corresponds to (x;, w,) = (0.1, 1.1), the
dashed line to (w;, mo) = (0.2, 1.2), and the solid one to
(1, o) = (0.3, 1.3).

Further, we have computed the area of the horizon

pypa(py = ) (3 — 1)
(1o — 12 (g + po)?

Ay = 327wL(uw,0)? (50)

It is directly connected with the black ring’s temperature as
it can be observed by the relation derived in [1]

!
T, =L-2L (51)

Agr

Here L is the length of the Kaluza-Klein circle at infinity
and [ 4/ is the length of the horizon rod.
Thus the temperature of the black ring is obtained:

1 (mypn = Dy + po)?
1670 uipas(y — py)(p3 — 1)
_(pipg — DX(py + po)

wipa = wi)(p3 — 1)

Ty =

TS, (52)

where we have used the temperature of the static black ring
on Kaluza-Klein bubbles TgL[ [35]. It is expressed in our

notations as

_ 1 (po+ wyo)
H o 167 wopo

(53)
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D. Near-horizon geometry

Near the horizon of the black ring, i.e. in the limit p —
0, —w;0 <z < w0, the solution simplifies considerably.
We introduce the Boyer-Lindquist coordinates R and 6,
familiar from the 4D Kerr solution and defined as (see e.g.
(49D

p =VR* —2mR + 4> sinb,

z = (R — m) cosb,
(54)

where m is the mass of the Kerr black hole and 4 is the
rotation parameter. Then the metric acquires the form

4 — — A — A2(#)sin%6 (di —
E/
2,0(0) 3/
2 .(0) A — ﬂz(e)sinQH
,u,l(r(e)
#20(0)

where the metric function w is given by the expression

_fy,zo'(e) R—m +M(0)
a fuo(0) A— ﬂz(ﬁ)sinzﬂ:l

- 2a. (56)

wd)?

Asin’6dy?

d¢p? + C*Y/ ( + d@z) (55)

2ﬂ\(0)[1 + M(0)sin0

We have defined the following functions depending only
on 6:

2 —_ _ 2ain2

f 10'(0) - aG',LLIO'aO',—;LIO' + o7sin 0’
- (57)
/.Lzﬂ'(a) Ao 0o, —pyor + o7sin°6,
as well as the constants
a,u,-o‘,p,ja' =| MO — J;o |r

C = aﬂz’T'*Mzﬁaﬂ«l(fﬁM]U aU,*IAsz
a#l”:‘#z”aﬂz”:_#lﬂ' a”',_l’«]”'

The standard notations for the 4D Kerr solution in
Boyer-Lindquist coordinates are used:

A = R?> —2mR + &, S, = R? + G%cos?6,
B 1+ B2 (58)
— 2 m=0o0-—nx

- -8

where m, a, and B are constants.
In a similar manner we have introduced the expressions

S =[R—m+ M) + A%)cos*,

b 1+p2 69
. MOToTe

where b is a function of 0,

ag,— my o f,LLle(e)
ag,— Moo f,LL[(T(e)

a=2o

A0) =20

=B~ (60)
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Note that the functions A () and M(0) fulfill the same
relation A2%(6) + M2(6) = o2, as the constants & and m.

In the limit w; — 1, w, — 1 the function b(6) reduces
to the constant 3, and consequently A(6) — a, M(0) — m,
and X' — 3. It is easy to see that this limit procedure
transforms the near-horizon metric into the rotating black
string solution, as expected (see Sec. V B). The near-
horizon geometry can be interpreted as describing the
distorted rotating black string, which is deformed by the
influence of the bubbles.

E. Mass, tension, and angular momentum

The solution is characterized by three asymptotical
charges—the ADM mass Mpy, the tension 7, and the
angular momentum 7, which are defined in the Komar
integral formulation as

L . .
MADM = _E /:sz [2ln*d§ - lf*d‘/]], (61)

T = “Ton Sgc[i,] xdé —2igxdnl,  (62)
e (63)
167 Joo 'm0

where * is the Hodge dual and iy is the interior product of
the vector field X with an arbitrary form.
Calculating the integrals we get the expressions

I L (pipr +1)
MADM:Z(zct_C¢):§U(M2_ l)(ﬂjﬂﬁ’
Lo Lo Cpip - 1)
TL = Z(Cz 2¢) = 2 olpa = ) (ips = 1)
T = Lo? Mamalp m)\/(l p(pd —1). (64)

(p1n — 1)?

In addition to the asymptotic charges we can define local

quantities—the intrinsic masses of the black ring and the
bubbles:

L . ;
mH = - [j{[z,n *df —igxdn]  (65)

L . .

where JH is the two-dimensional surface defined as the
intersection of the horizon with a constant ¢ and ¢ hyper-
surface and B; (i = 1, 2) are the bubble surfaces.

When calculations are performed these quantities get the
simple form

g = ) Mg, = £U(Mz = ).

M. = Lo
- (mypy — 1) 4
(67)

044010-9



PETYA G. NEDKOVA AND STOYTCHO S. YAZADIJIEV
They satisfy as expected the following Smarr-like rela-
tions:

1
Mapm = My + Y Mg, TL = SMar + 2) Mg,

(68)

We can define in a similar manner a local angular
momentum of the black ring of course:

L .

It is of little significance by itself as in this case it
coincides with the global charge 7. However, the Komar
integral yields after some algebraic manipulations a useful
relation, the Smarr relation for the black ring

1 ng{
=—| M4y ——|, 70
J 20 [ "~ ] (70)
which transforms into the more familiar form
My =2[TQ + TS], (71)

when we take into consideration the definitions of the black
ring’s temperature 7 and entropy S.

V. LIMIT SOLUTIONS
A. Static black ring on Kaluza-Klein bubbles

The solution of Elvang and Horowitz is recovered in the
particular case when the soliton transformation parameters
o and — o coincide with the horizon rod end points. This is
realized at the special value of the parameter w; = 1 at
which B vanishes as well, according to (39). Simple cal-
culations show that in this limit the solution and its physi-
cal characteristics reduce to the static case [34].

B. Rotating black string

In the limit when both Kaluza-Klein bubbles vanish, the
solution reduces to a rotating black string. In order to take
the limit in a proper way, we should shrink the bubbles to
their inner points z = ¢ and z = —o, or, technically, let
M1 — 1 and w, — 1. Thus, we obtain a single finite rod
located at —o < z < o, which is timelike and corresponds
to a black string. There is one more special feature we
should consider taking the limit—the regularity conditions
(39) should not be imposed on the parameters of the soliton
transformation @ and 8. The metric function W obtained
after performing the described limit operation is not sin-
gular at z = ¢ and z = — o, but tends to zero instead. It
corresponds exactly to the expected behavior since in this
limit case the ergosphere intersects the z axis at the horizon
end points, so the metric function g,, = W should vanish at
z=ocandz= —o0.

Performing the limit operation, the seed solution (31)
reduces to the metric describing flat 4D spacetime trivially
embedded in five-dimensional spacetime. On the other

PHYSICAL REVIEW D 82, 044010 (2010)

hand, the functions (36) simplify to constants (a = «, b =
B). In this way the solution acquires the familiar form of
rotating black string [7,54],

ds®> = —e*®(dt — wdip)?
+ e 2[prdy? + Mdp* + dP)] +dp? (72
where @, A, and w are the following functions:

(R, + R_,)* — 4m*> + a*(R, — R(,)Z/a'z]
(R, + R_, +2m)*> + a*>(R, — R_,)*/o* |
(R, + R_,)> —4m> + a*(R, — RU)Z/UZ]
4R R_,, ’
_am (R, +R_, +2m)[40? — (R, — R_,)*]
o’ (R, + R_,)? —4m?> + a*>(R, — R_,)*/o?*’
(73)
Actually, this is a 4D Kerr solution trivially embedded in
5D spacetime, therefore we have presented the metric
functions using the standard parameters for the 4D Kerr
black hole—its mass m, and the rotation parameter a

(m*> = o + a%). They can be expressed by means of
and o as

1
q)zilnl:

A=lln|:
2

o(l1+ B?) 208
m=——-, .
1-pB2 1 — B2
Note that we cannot deduce the physical characteristics
of the limit solution directly from the corresponding ex-
pressions presented in the article, as we have performed all

the calculations using the regularity conditions (39).
However, if we start from the equivalent expressions

_ B = B + )

20[(1 = B + po) + 2821 + p))]
_ Lol(1 = (1 + ) + 271 + )]

(1= B)Hpi (1 + po) ’
2Lo?

J = m[(#z = )1 =B+ 1+ BY)]
and apply the described limit procedure, we will get as
expected (see Kerr solution, e.g. [49])

a= (74)

M (75)

B a o1+ B?) B
“amotmy M Lg—gy T im o
_20%B(1+ B
A (s

where L is the length of the Kaluza-Klein circle at infinity.

C. Boosted black string

The solution describing boosted black string [47] can
also be obtained as a limit. In general, it can be constructed
by the two-soliton transformation we described in
Sec. [IT A. from a seed:
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2 2 e 2 2 Ve 2
ds> = —dit + < ay? + p* <" ag
e“Ymo e“Ymo

Y
2R

eZU,,Z,,
M0, 01T _ (dp2 + dZZ)’ (77)
772‘TRM1‘7 e*Uno

where the functions a, b, and Y are obtained by solving
(15) and (23) as

er(r + erﬂz" eUﬂ]‘T eU(r
a = o = = —,
eUWZV erU' =+ eZUP-]"' eU“’
b B eZU—a + eZUll«llr eUWQIr eU—a
= = = 78
0 Uy 4 2000 U’ (78)

e’me

Y =Y W2 YU’,/.L]G'Y—U',Ule 6200
W Y4R R\ YooV gy o @0

The solution is regular if we impose the parameter
ordering —o < 1,0 < w0 < o, and the following re-
strictions on the constants « and 3:

2=(1_M1)’ 2=(1+772). (79)
(1 =) (1+ 1)
The constants C,, and Y|, are determined as
1
c, =0, Yo =—=. 80
w 0 (1 + aﬁ)z ( )

The boosted black string is recovered as a particular case
of this class of solutions by setting n,0 = — o, or equiv-
alently 8 = 0, and performing the coordinate transforma-
tion z — z + (w; + 1,)/2.

From the solitonic generation of the boosted black string
it is obvious that it can be obtained as a limit of the rotating
black ring on Kaluza-Klein bubbles by setting @, — o
and n; — —oo in an appropriate way.” It means that we
should ensure that both parameters tend to infinity in such a
manner that their ratio remains finite, and further rescale
the coordinates ¢ and i such as

4
=5 81)

¢ — R,
by introducing a constant R, which tends to infinity at the
same rate as u,o and 0,0 (R/u,0 and R/7n, o are finite).
The performed rescaling corresponds actually to shifting

*Note that no regularity conditions should be imposed on the
solution parameters before performing the limit operations.
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the roles of the coordinates ¢ and , so that ¢y describes
the compact dimension now. It can be proven that in the
described limit the seed solution (31) reduces to the
boosted black string seed (77), and the functions a, b,
and Y reduce to expressions (78). The regularity conditions
(79) should be imposed, as well as n,0 = —o, or B =0,
to recover the boosted black string.

VI. DISCUSSION

We presented an exact stationary axisymmetric solution
to the 5D Einstein equations in spacetime with a Kaluza-
Klein asymptotic which describes a rotating black ring on
two Kaluza-Klein bubbles. The solution is an extension to
its static counterpart found by Elvang and Horowitz [34].
In contrast to the static solution, which can be constructed
in a relatively simple way [48], it is necessary to apply
solitonic techniques to generate the rotating one. In the
present article we have chosen to use two-soliton Biacklund
transformation, although the Belinski-Zaharov inverse
scattering method is also relevant, if one is more familiar
with it. A convenient seed solution to apply the Backlund
transformation is not the corresponding static case [34], but
a generalized Weyl solution representing two Kaluza-Klein
bubbles held in equilibrium by a conical singularity.
Despite this, the generated solution is free of conical
singularities. It possesses a horizon with §? X S! topology
surrounded by an ergosphere that intersects the z axis on
the bubble rods. The rotation is performed in a single plane
with angular velocity along the Killing vector 9/d . The
mass, tension, angular velocity, and angular momentum of
the solution are computed and Smarr relations are derived.
Finally, it is shown that some more simple solutions with
the same symmetries can be obtained as particular limit
cases of the generated solution, such as its static counter-
part, the rotating black string, and the boosted black string.

ACKNOWLEDGMENTS

We would like to thank Roberto Emparan for the useful
suggestions and comments. The partial support by the
Bulgarian National Science Fund under Grants No. VUF-
201/06, No. DO 02-257, and Sofia University Research
Fund under Grant No. 101/2010 is gratefully acknowl-
edged. P. Nedkova also acknowledges support from the
European  Operational program HRD, Contract
No. BGOO051P0O001/07/3.3-02/53 with the Bulgarian
Ministry of Education.

[1] S. Hollands and S. Yazadjiev, Commun. Math. Phys. 283,
749 (2008).

[2] S. Hollands and S. Yazadjiev, arXiv:0812.3036.
[3] V. Belinski and V. Zakharov, Zh. Eksp. Teor. Fiz. 75, 1953

044010-11


http://dx.doi.org/10.1007/s00220-008-0516-3
http://dx.doi.org/10.1007/s00220-008-0516-3
http://arXiv.org/abs/0812.3036

PETYA G. NEDKOVA AND STOYTCHO S. YAZADIJIEV

[4]

(5]
(6]

(1978) [Sov. Phys. JETP 48, 985 (1978)].

V. Belinski and E. Verdaguer, Gravitational Solitons
(Cambridge University Press, Cambridge, 2001).

G. Neugebauer, J. Phys. A 13, L19 (1980).

H. Stefani, D. Kramer, M. McCallum, C. Hoenselaers, and
E. Herlt, Exact Solutions of Einstein’s Field Equations
(Cambridge University Press, Cambridge, 2003), 2nd ed.
H. Iguchi and T. Mishima, Phys. Rev. D 74, 024029
(2000).

S. Tomizawa, H. Iguchi, and T. Mishima, Phys. Rev. D 74,
104004 (2006).

R.C. Myers and M.]J. Perry, Ann. Phys. (N.Y.) 172, 304
(1986).

R. Emparan and H.S. Reall, Phys. Rev. Lett. 88, 101101
(2002).

A. Pomeransky, Phys. Rev. D 73, 044004 (20006).

H. Iguchi and T. Mishima, Phys. Rev. D 73, 121501
(2006).

A. Pomeransky and R. Senkov, arXiv:hep-th/0612005.
Yu Chen and E. Teo, Phys. Rev. D 78, 064062 (2008).
H. Elvang and P. Figueras, J. High Energy Phys. 05 (2007)
050.

J. Evslin and C. Krishnan, Classical Quantum Gravity 26,
125018 (2009).

K. Izumi, Prog. Theor. Phys. 119, 757 (2008).

H. Elvang and M. Rodriguez, J. High Energy Phys. 04
(2008) 045.

H. Iguchi, T. Mishima, and S. Tomizawa, Phys. Rev. D 76,
124019 (2007); 78, 109903(E) (2008).

S. Tomizawa, H. Iguchi, and T. Mishima, Phys. Rev. D 78,
084001 (2008).

M. Kimura, Phys. Rev. D 80, 044012 (2009).

S. Yazadjiev, Phys. Rev. D 73, 104007 (2006).

S. Yazadjiev, J. High Energy Phys. 07 (2006) 036.

S. Yazadjiev, Phys. Rev. D 78, 064032 (2008).

A. Bouchareb, C. Chen, G. Clement, D. Galtsov, N.
Scherbluk, and T. Wolf, Phys. Rev. D 76, 104032 (2007).
D. Gal’tsov and N. Scherbluk, Phys. Rev. D 79, 064020
(2009).

G. Compere, S. de Buyl, E. Jamsin, and A. Virmani,
Classical Quantum Gravity 26, 125016 (2009).

P. Figueras, E. Jamsin, J. Rocha, and A. Virmani, Classical
Quantum Gravity 27, 135011 (2010).

044010-12

PHYSICAL REVIEW D 82, 044010 (2010)

S. Hollands and S. Yazadjiev, Classical Quantum Gravity
25, 095010 (2008).

S. Tomizawa, Y. Yasui, and A. Ishibashi, Phys. Rev. D 79,
124023 (2009); arXiv:0901.4724.

S. Tomizawa, Y. Yasui, and A. Ishibashi, Phys. Rev. D 81,
084037 (2010).

J. Armas and T. Harmark, J. High Energy Phys. 05 (2010)
093.

S. Yazadjiev, Phys. Rev. D 82, 024015 (2010).

H. Elvang and G. Horowitz, Phys. Rev. D 67, 044015
(2003).

H. Elvang, T. Harmark, and N. Obers, J. High Energy
Phys. 01 (2005) 003.

J. Kunz and S. Yazadjiev, Phys. Rev. D 79, 024010 (2009).
S. Yazadjiev and P. Nedkova, Phys. Rev. D 80, 024005
(2009).

S. Yazadjiev and P. Nedkova, J. High Energy Phys. 01
(2010) 048.

C. Stelea, K. Schleich, and D. Witt, arXiv:0909.3835.

M. Allahverdizadeh, K. Matsuno, and A. Sheykhi, Phys.
Rev. D 81, 044001 (2010).

B. Kleihaus, J. Kunz, E. Radu, and C. Stelea, J. High
Energy Phys. 09 (2009) 025.

K. Matsuno, H. Ishihara, T. Nakagawa, and S. Tomizawa,
Phys. Rev. D 78, 064016 (2008).

T. Nakagawa, H. Ishihara, K. Matsuno, and S. Tomizawa,
Phys. Rev. D 77, 044040 (2008).

T. Wang, Nucl. Phys. B756, 86 (2006).

H. Ishihara and K. Matsuno, Prog. Theor. Phys. 116, 417
(2000).

S. Yazadjiev, Phys. Rev. D 74, 024022 (2006).

H. Elvang and R. Emparan, J. High Energy Phys. 11
(2003) 035.

R. Emparan and H. Reall, Phys. Rev. D 65, 084025 (2002).
T. Harmark, Phys. Rev. D 70, 124002 (2004).

G. Neugebauer, J. Phys. A 12, L67 (1979).

C. Hoenselaers, W. Kinnersley, and B.C. Xantopoulos,
Phys. Rev. Lett. 42, 481 (1979).

B. K. Harrison, Phys. Rev. Lett. 41, 1197 (1978).

F. Ernst, Phys. Rev. 167, 1175 (1968).

D. Vogt and P. Letelier, Mon. Not. R. Astron. Soc. 384,
834 (2008).


http://dx.doi.org/10.1088/0305-4470/13/2/003
http://dx.doi.org/10.1103/PhysRevD.74.024029
http://dx.doi.org/10.1103/PhysRevD.74.024029
http://dx.doi.org/10.1103/PhysRevD.74.104004
http://dx.doi.org/10.1103/PhysRevD.74.104004
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1103/PhysRevLett.88.101101
http://dx.doi.org/10.1103/PhysRevLett.88.101101
http://dx.doi.org/10.1103/PhysRevD.73.044004
http://dx.doi.org/10.1103/PhysRevD.73.121501
http://dx.doi.org/10.1103/PhysRevD.73.121501
http://arXiv.org/abs/hep-th/0612005
http://dx.doi.org/10.1103/PhysRevD.78.064062
http://dx.doi.org/10.1088/1126-6708/2007/05/050
http://dx.doi.org/10.1088/1126-6708/2007/05/050
http://dx.doi.org/10.1088/0264-9381/26/12/125018
http://dx.doi.org/10.1088/0264-9381/26/12/125018
http://dx.doi.org/10.1143/PTP.119.757
http://dx.doi.org/10.1088/1126-6708/2008/04/045
http://dx.doi.org/10.1088/1126-6708/2008/04/045
http://dx.doi.org/10.1103/PhysRevD.76.124019
http://dx.doi.org/10.1103/PhysRevD.76.124019
http://dx.doi.org/10.1103/PhysRevD.78.109903
http://dx.doi.org/10.1103/PhysRevD.78.084001
http://dx.doi.org/10.1103/PhysRevD.78.084001
http://dx.doi.org/10.1103/PhysRevD.80.044012
http://dx.doi.org/10.1103/PhysRevD.73.104007
http://dx.doi.org/10.1088/1126-6708/2006/07/036
http://dx.doi.org/10.1103/PhysRevD.78.064032
http://dx.doi.org/10.1103/PhysRevD.76.104032
http://dx.doi.org/10.1103/PhysRevD.79.064020
http://dx.doi.org/10.1103/PhysRevD.79.064020
http://dx.doi.org/10.1088/0264-9381/26/12/125016
http://dx.doi.org/10.1088/0264-9381/27/13/135011
http://dx.doi.org/10.1088/0264-9381/27/13/135011
http://dx.doi.org/10.1088/0264-9381/25/9/095010
http://dx.doi.org/10.1088/0264-9381/25/9/095010
http://dx.doi.org/10.1103/PhysRevD.79.124023
http://dx.doi.org/10.1103/PhysRevD.79.124023
http://arXiv.org/abs/0901.4724
http://dx.doi.org/10.1103/PhysRevD.81.084037
http://dx.doi.org/10.1103/PhysRevD.81.084037
http://dx.doi.org/10.1007/JHEP05(2010)093
http://dx.doi.org/10.1007/JHEP05(2010)093
http://dx.doi.org/10.1103/PhysRevD.82.024015
http://dx.doi.org/10.1103/PhysRevD.67.044015
http://dx.doi.org/10.1103/PhysRevD.67.044015
http://dx.doi.org/10.1088/1126-6708/2005/01/003
http://dx.doi.org/10.1088/1126-6708/2005/01/003
http://dx.doi.org/10.1103/PhysRevD.79.024010
http://dx.doi.org/10.1103/PhysRevD.80.024005
http://dx.doi.org/10.1103/PhysRevD.80.024005
http://dx.doi.org/10.1007/JHEP01(2010)048
http://dx.doi.org/10.1007/JHEP01(2010)048
http://arXiv.org/abs/0909.3835
http://dx.doi.org/10.1103/PhysRevD.81.044001
http://dx.doi.org/10.1103/PhysRevD.81.044001
http://dx.doi.org/10.1088/1126-6708/2009/09/025
http://dx.doi.org/10.1088/1126-6708/2009/09/025
http://dx.doi.org/10.1103/PhysRevD.78.064016
http://dx.doi.org/10.1103/PhysRevD.77.044040
http://dx.doi.org/10.1016/j.nuclphysb.2006.09.001
http://dx.doi.org/10.1143/PTP.116.417
http://dx.doi.org/10.1143/PTP.116.417
http://dx.doi.org/10.1103/PhysRevD.74.024022
http://dx.doi.org/10.1088/1126-6708/2003/11/035
http://dx.doi.org/10.1088/1126-6708/2003/11/035
http://dx.doi.org/10.1103/PhysRevD.65.084025
http://dx.doi.org/10.1103/PhysRevD.70.124002
http://dx.doi.org/10.1088/0305-4470/12/4/001
http://dx.doi.org/10.1103/PhysRevLett.42.481
http://dx.doi.org/10.1103/PhysRevLett.41.1197
http://dx.doi.org/10.1103/PhysRev.167.1175
http://dx.doi.org/10.1111/j.1365-2966.2007.12771.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12771.x

