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Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound

(cJ=GM2 > 1). Recent studies analyzed the observable consequences of gravitational lensing and

accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical

stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly

absorbing boundary conditions at the ‘‘surface’’ of the superspinar. We find that these objects are unstable

independently of the boundary conditions, and that the instability is strongest for relatively small values of

the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results

(together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars

are very unlikely astrophysical alternatives to black holes.
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I. INTRODUCTION

Superspinars are vacuum solutions of the gravitational
field equations whose massM and angular momentum J ¼
aM violate the Kerr bound, i.e., a >M (here and else-
where in this paper we use geometrical units: G ¼ c ¼ 1).
These geometries could result from high-energy correc-
tions to Einstein’s theory of gravity, such as those that
would be present in string-inspired models [1]. String-
inspired corrections may require a modification of the
metric (or some sort of ‘‘excision’’) in a small region
surrounding the curvature singularity at the origin, in
such a way as to ‘‘dress’’ the singularity. While stable stars
with a >M are in principle allowed in general relativity,1

superspinars have been proposed as an alternative to black
holes (BHs), and they are therefore imagined to have a
compactness comparable to that of extremal rotating
Kerr BHs and to exist in any mass range. Therefore, the
observation of rapidly spinning ultracompact objects
could potentially reveal or rule out the existence of
superspinars.
One argument against the existence of superspinars was

put forward in Ref. [7]. There, the authors constructed a toy
model for a superspinar by assuming that the external
surface of the superspinar can be modeled as a perfect
mirror, i.e., that the reflection coefficientR ¼ 1 for waves
incident on the superspinar. In this case superspinars are
destabilized by superradiant effects, i.e., by the ergoregion
instability first discussed by Friedman, Schutz, and Comins
[8,9]. The ergoregion instability occurs on a dynamical
time scale, posing a serious challenge to the existence of
these objects in nature. However, a perfectly reflecting
surface may be an unrealistic assumption. In general we
would expect a frequency-dependent reflection coefficient
Rð!Þ, and correspondingly a frequency-dependent trans-
mission coefficientT ð!Þ ¼ 1�Rð!Þ. The exact form of
Rð!Þ depends on the specific model, but unfortunately no
exact solutions describing four-dimensional superspinars
are known.
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1Typical equations of state usually lead to stars with a=M &

0:7 [2,3] that can be treated within a slow-rotation approximation
[4]. However, stable, differentially rotating polytropic stars with
a=M � 1:1 can be produced, e.g., with the Whisky code [5,6].
Also, note that the Kerr bound can be easily violated by non-
compact objects such as the Earth (M=R� 7� 10�10), which
has J=M2 � 103.
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A different instability was recently discussed by Dotti
et al. [10,11]. These authors studied perturbations of a Kerr
solution with a=M > 1 (i.e., unlike Ref. [7], they consid-
ered an actual naked singularity). They cast the linearized
perturbation equations in the form of a self-adjoint opera-
tor and analyzed the discrete spectrum of this operator,
proving the existence of an infinite number of unstable
modes [11].

Here we generalize the stability analyses of Refs. [7,11]
focusing on a superspinar model obtained by considering
the Kerr solution with a >M. Besides extending the study
of Ref. [7], we also impose an alternative (and perhaps
more physical) prescription for the external surface of a
four-dimensional superspinar. We assume that a perfectly
absorbing surface (a ‘‘stringy horizon’’) is created by high-
energy effects at some radius r ¼ r0, and we impose that
the reflection coefficient Rð!Þ � 0 at that radius. These
purely ingoing boundary conditions at r ¼ r0 are designed
to make superspinars as stable as possible against the
ergoregion instability of Ref. [7]. This instability occurs
because, when the boundary at r ¼ r0 is purely reflecting,
the negative-energy modes which exist in the ergoregion
can only leak to spatial infinity by tunneling through a
potential barrier. Modes propagating outside the ergore-
gion have positive energies. This results in the negative
energy of the ergoregion modes to decrease indefinitely, so
that their amplitude becomes unbound, triggering an insta-
bility. By imposing purely ingoing boundary conditions at
r ¼ r0, we basically allow the negative energy trapped in
the ergoregion to ‘‘fall down a sink’’; this could quench the
instability to some extent. A similar quenching occurs for
Kerr BHs with a � M, the role of the sink being played by
the BH horizon. Clearly, if the reflection coefficient 0<
Rð!Þ< 1 the quenching would be less efficient.
Therefore, we conjecture that if superspinars are unstable
when Rð!Þ � 0, it should be impossible to stabilize them
using any other choice of boundary conditions.

In this paper we analyze the stability of superspinars by
imposing either perfectly absorbing (Rð!Þ � 0) or per-
fectly reflecting (Rð!Þ � 1) boundary conditions at some
arbitrary radius r ¼ r0. We find that, quite independently
of r0 and of the chosen boundary conditions, superspinars
are unstable to linearized gravitational perturbations. For
purely ingoing boundary conditions the instability is
slightly weaker than in the perfectly reflecting case, but it
still occurs on a dynamical time scale ��M, i.e., �� 5�
10�6 s for an object with M ¼ M� and �� 5 s for a
supermassive object with M� 106M�. We also show that
this result is valid for a wide class of theories of gravity.
Our findings undermine several claims made in the litera-
ture that superspinars might be detected because the
shadow they cast due to gravitational lensing [12,13] or
their accretion properties [1,14–18] are different from Kerr
BHs with a <M. While this is true, superspinars are
plagued by multiple gravitational instabilities, and there-

fore they are unlikely to be astrophysically viable BH
candidates.

II. A SIMPLE MODEL OF SUPERSPINAR IN FOUR
DIMENSIONS

Following Gimon and Horava [1], we model a super-
spinar of mass M and angular momentum J ¼ aM by the
Kerr geometry

ds2Kerr ¼ �
�
1� 2Mr

�

�
dt2 þ�

�
dr2 � 4Mr

�
asin2�d�dt

þ�d�2 þ
�
ðr2 þ a2Þsin2�þ 2Mr

�
a2sin4�

�
d�2;

(1)

where� ¼ r2 þ a2cos2� and� ¼ r2 þ a2 � 2Mr. Unlike
Kerr BHs, superspinars have a=M > 1 and no horizon.
Since the domain of interest is �1< r <þ1, the space-
time possesses naked singularities and closed timelike
curves in regions where g�� < 0 (see, e.g., [19]).

We study linear perturbations around the Kerr metric (1).
Using the Kinnersley tetrad and Boyer-Lindquist coordi-
nates, it is possible to separate the angular and radial
variables [20]. Small perturbations of a spin-s field are
then reduced to the radial and angular master equations

��s d

dr

�
�sþ1 dRlm

dr

�

þ
�
K2 � 2isðr�MÞK

�
þ 4is!r� �

�
Rlm ¼ 0; (2)

½ð1� x2ÞsSlm;x�;x þ
�
ða!xÞ2 � 2a!sxþ s

þ sAlm � ðmþ sxÞ2
1� x2

�
sSlm ¼ 0; (3)

where x � cos�, K ¼ ðr2 þ a2Þ!� am and the separa-
tion constants � and sAlm are related by

� � sAlm þ a2!2 � 2am!: (4)

The equations above describe scalar, electromagnetic and
gravitational perturbations when s ¼ 0, 	1, 	2 respec-
tively. The oscillation frequencies of the modes can be
found from the canonical form of Eq. (2). Switching to a
‘‘tortoise coordinate’’ r
 defined by the condition
dr
=dr ¼ ðr2 þ a2Þ=�, we get

d2Y

dr2

þ VY ¼ 0; (5)

where

Y ¼ �s=2ðr2 þ a2Þ1=2R;

V ¼ K2 � 2isðr�MÞK þ �ð4ir!s� �Þ
ðr2 þ a2Þ2 �G2 � dG

dr

;
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and G ¼ sðr�MÞ=ðr2 þ a2Þ þ r�ðr2 þ a2Þ�2. The ei-
genvalues sAlm in Eq. (4) can be expanded in a power

series in the parameter a! as [21]

sAlm ¼ X
n¼0

fðnÞslmða!Þn: (6)

The absence of ingoing waves at infinity implies [22]

Y � r�sei!r
 ; r ! 1: (7)

The boundary conditions at r ¼ r0 are crucial. Ref. [7]
assumed a perfect mirror at r ¼ r0, i.e., Yðr0Þ ¼ 0. If
instead we assume the existence of some ‘‘stringy hori-
zon’’ at r0, we must impose purely ingoing waves as r !
r0. Since for a >M the potential V is regular at any r ¼ r0
(including also r0=M ¼ 0), we can write

VðrÞ � Vðr0Þ þOðr� r0Þ: (8)

By expanding Eq. (5) in series around r ¼ r0, we find that
the general solution is a superposition of ingoing and out-
going waves:

Y � Ae�ikr
 þ Beikr
 þOðr
 � r
ðr0ÞÞ3; k2 ¼ Vðr0Þ;
(9)

where the sign of k is chosen to recover the well-known
boundary condition for a wave function in an extreme Kerr
background (a ! M and r0 ! M): k ¼ !�m�, where
� ¼ 1=ð2MÞ is the angular velocity of an extreme Kerr
black hole. Purely ingoing boundary conditions at the
stringy horizon imply B ¼ 0 in Eq. (9) or, equivalently,

dY

dr

¼ �ikY; r ! r0: (10)

This is the condition we impose in our numerical code.
For each !, we integrate Eq. (5) numerically inward,

starting at some large radius (typically r1 ¼ 400M) where
we impose the asymptotic behavior (7). Our results are
robust to variations of r1 in a reasonable range. We stop
the numerical integration at r ¼ r0, where the value of the
field Yð!; r0Þ is extracted. Finally, we repeat the integra-
tion for different values of ! until the desired boundary
condition (either Yð!; r0Þ ¼ 0 or Eq. (10)) at r ¼ r0 is
satisfied, typically to within an accuracy of 10�10.

In our numerical computations we make use of the series
expansion (6), truncated at fourth order. When ja!j< 1,
the series expansion is a very good approximation of the
exact eigenvalues. However, in some cases (i.e., when
ja!j * 1), instead of the series expansion we have used
exact numerical values of sAlm obtained by solving Eq. (3)

with the continued fraction method [23].
We focus on the most relevant gravitational perturba-

tions, described by the Teukolsky equation with s ¼ 2. To
compute unstable modes we also make use of the symme-
try [23,24]

m ! �m; ! ! �!
; sAlm ! sA


l�m: (11)

In practice, this symmetry means that modes with azimu-
thal number �m can be obtained from those with azimu-
thal number m by changing the sign of the real part of the
frequency. Therefore, we focus on modes with Re½!� ¼
!R > 0 only.

III. PERFECT MIRROR

A. Unstable modes with l ¼ m ¼ 2

Let us start by reviewing and extending the results of
Ref. [7], which first found that superspinars with a per-
fectly reflecting surface are unstable due to the ergoregion
instability. In the top panel of Fig. 1 we show unstable
frequencies for s ¼ l ¼ m ¼ 2 as a function of the spin
parameter a=M for selected values of r0=M. We see
that the instability (signalled by a positive imaginary
part !I for the frequency) is always strong, i.e., it always
occurs on a short time scale � � 1=!I � 10M� 5�
10�5ðM=M�Þ s, at least when a & 2:2M. It is interesting
to note that the instability is also effective for r0 ¼ M and
a ¼ Mþ �, i.e., for an object as compact as an extremal
Kerr BH with a rotation parameter that only slightly vio-
lates the Kerr bound. This is also illustrated in Table I.
From Fig. 1 and Table I, it is clear that when r0 >M the

imaginary part does not vanish as a ! M. This is in
agreement with our expectations, since when r0 > rH the
‘‘BH bomb’’ instability [7,25] occurs even when a <M.
The dependence of the eigenfrequencies on the mirror

location is also shown in the bottom panel of Fig. 1 for
different values of the spin parameter. The imaginary part
of the frequency is positive (i.e., the object is unstable) for
a wide range of parameters. For any value of a=M in the
bottom panel of Fig. 1 the instability is strongest when
r0=M� 1, and is effective also in the limit r0=M � 1
(although in this regime high-energy corrections to the
background metric could be relevant).
Overall, Fig. 1 shows that the strongest instability occurs

roughly when a=M� 1:1. For larger values of the spin the
imaginary part decreases and eventually it vanishes (caus-
ing the instability to disappear) for a critical value of a=M
which depends on r0. At first sight, this result seems in
contrast with the superradiant nature of the instability, as
one may naively think that the instability should become
stronger for large spins.
In Fig. 2 we show that this expectation is not justified by

plotting the proper volume of the ergoregion as a function
of a=M. The proper volume can be computed via

V ¼ 4�
Z �=2

�i

d�
Z rf

ri

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrg��g’’

p
; (12)

where we have considered a constant time slice, the metric
elements are taken from Eq. (1), we have exploited the
reflection symmetry of the Kerr metric, and we have al-
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ready integrated out the ’ dependence. For a <M the

ergoregion extends between the outer Kerr horizon at rH ¼
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
and the ‘‘outer ergosphere radius’’ at

reþð�Þ ¼ Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos2�

p
. In this case, we set ri ¼

rH, rf ¼ reþ, and �i ¼ 0 in the integral above. A straight-

forward calculation shows that in this case the proper
volume increases monotonically with a=M, eventually

diverging2 for a ¼ M. However, when a >M, the ergore-

gion extends between the inner ergosphere at re�ð�Þ ¼
M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � a2cos2�
p

and the outer ergosphere reþð�Þ.

TABLE I. Unstable gravitational (s ¼ 2) frequencies with l ¼ m ¼ 2 for a superspinar with a perfect reflecting surface (R ¼ 1) and
with a ‘‘stringy event horizon’’ (R ¼ 0) at r ¼ r0. All modes in this table have been computed using numerical values of sAlm

obtained via the continued fraction method [23].

ð!RM;!IMÞ, R ¼ 1 ð!RM;!IMÞ, R ¼ 0
r0=M a ¼ 1:1M a ¼ 1:01M a ¼ 1:001M a ¼ 1:1M a ¼ 1:01M a ¼ 1:001M

0.01 (0.5690, 0.1085) (0.9744, 0.0431) (0.9810, 0.0097) (0.5002, 0.0173) (0.9498, 0.0062) (1.0286, 0.0033)

0.1 (0.5548, 0.1237) (0.9673, 0.0475) (0.9794, 0.0110) (0.4878, 0.0260) (0.9435, 0.0093) (1.0252, 0.0048)

0.5 (0.4571, 0.1941) (0.9256, 0.0631) (0.9688, 0.0155) (0.3959, 0.0719) (0.9016, 0.0237) (1.0052., 0.0091)

0.8 (0.3081, 0.2617) (0.8598, 0.0878) (0.9507, 0.0202) (0.2537, 0.1053) (0.8298, 0.0376) (0.9793, 0.0095)

1 (0.1364, 0.3095) (0.6910, 0.1742) (0.9003, 0.0640) (0.0916, 0.1219) (0.6530, 0.0821) (0.8853, 0.0313)

1.1 (0.0286, 0.3248) (0.4831, 0.2655) (0.6071, 0.2207) (� 0:0078, 0.1233) (0.4377, 0.1230) (0.5696, 0.1064)
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FIG. 1 (color online). Top: Real (left) and imaginary part (right) of unstable gravitational modes of a superspinar as a function of the
spin parameter, a=M, for l ¼ m ¼ 2 and several fixed values of r0. Bottom: Real (left) and imaginary part (right) of unstable
gravitational modes of a superspinar as a function of the mirror location, r0=M, for l ¼ m ¼ 2 and different fixed values of the spin
parameter. Large dots indicate purely imaginary modes.

2This is because when a ¼ M, grr � 1=ðr�MÞ2 near the
horizon r ¼ M: this causes the integral (12) to diverge
logarithmically.
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Therefore, we set ri ¼ re�, rf ¼ reþ, and �i ¼
arccosðM=aÞ in the integral (12). In this case, the proper
volume of the ergosphere monotonically decreases with
a=M. In the inset of Fig. 2 we plot an azimuthal section of
the ergoregion for selected values of the spin parameter.
The proper volume of the ergoregion vanishes as a=M !
1 because the ergoregion becomes more and more oblate
(in the equatorial direction) as the spin increases. As
a=M ! 1 the proper volume shrinks to zero and the
ergoregion instability for modes with l ¼ m ¼ 2 becomes

harmless. In Sec. V, however, we will see that this suppres-
sion of the ergoregion instability is less effective for modes
with l ¼ m � 2, which are more concentrated in the
equatorial region and which make superspinars unstable
even for larger values of the spin.

B. Unstable modes with m ¼ 0

Superradiance due to an ergoregion is not the only
mechanism driving instabilities in superspinars. Unstable
modes also exist for m ¼ 0, when the condition for super-
radiance!<m� ¼ 0 cannot be fulfilled. This is shown in
the left panel of Fig. 3, where we show different gravita-
tionally unstable modes for l ¼ 2 and m ¼ 0, 1, 2.
We see that the unstable mode with m ¼ 2 exists in the

range 0 � r0=M � 2, i.e., out to the outer location of the
ergoregion in the equatorial plane. Unstable modes with
m ¼ 1 and m ¼ 0 exist only in a more limited range
around r0 �M. Modes with larger values of mð� lÞ drive
stronger instabilities, but the instability for modes with
m ¼ 0 is also important, because it occurs on a dynamical
time scale � ¼ 1=!I �M for a wide range of parameters.
In the right panel of Fig. 3 we show some unstable modes
with m ¼ 0 for different values of the spin parameter.
Unstable modes with m ¼ 0 have been recently found

by Dotti and Gleiser [10,11]. By imposing regularity con-
ditions at r ¼ �1 these authors found (an infinite number
of) unstable purely imaginary modes when a >M. The
superspinar model we are discussing reduces to the space-
time considered in Refs. [10,11] when r0 ! �1 andR ¼
1. We carried out a search of these purely imaginary
unstable modes, and our results agree very well with those
of Ref. [11] in this limit. For illustration, in the left panel of
Fig. 4 we show that the frequency of the m ¼ 0 purely
imaginary mode for a ¼ 1:4M matches the result of
Ref. [11] for r0 ! �1. The figure shows that the fre-
quency of these modes settles to its asymptotic value

0.0 0.5 1.0 1.5 2.0

r0/M

0.1

0.2

0.3

M
ω Ι
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m=1

m=0

R=1
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r0/M
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0.04

0.06

0.08

M
ω Ι

1.1M
1.05M
1.01M

R=1

FIG. 3 (color online). Left: Imaginary part of unstable gravitational modes of a superspinar as a function of the mirror location,
r0=M, for a ¼ 1:1M, l ¼ 2 andm ¼ 0, 1, 2. Right: Imaginary part of unstable gravitational modes of a superspinar as a function of the
mirror location, r0=M, for l ¼ 2, m ¼ 0 and several values of the spin parameter, a.
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FIG. 2 (color online). Proper volume of the ergoregion as a
function of the spin a=M. The volume increases monotonically
when a <M, is infinite at a ¼ M and decreases monotonically
when a >M. The proper volumes for a� 2M and a� 0:3M are
roughly the same. In the inset we show the azimuthal section of
the ergoregion for selected values of the spin. These spins are
marked by filled circles and capital Latin letters in the main plot;
their numerical value is indicated in parentheses in the figure. In
the limit a=M ! 1 the ergoregion becomes so oblate that its
proper volume shrinks to zero.
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when r0 & �3M, so it makes sense to fit M!I for these
m ¼ 0 purely imaginary modes as a function of a, setting
r0 ¼ �3M. A comparison between the numerical results
and the polynomial fit

M!I ¼ 6:375þ 0:177a=Mþ 0:230ða=MÞ2 (13)

is presented in the right panel of Fig. 4. In the range 1:15 &
a=M < 2 the fit is accurate to within 0.003% and suggests
that the imaginary part of the frequency (and therefore the
‘‘strength’’ of the instability) grows approximately as a
quadratic function of the spin. We stress that these results
have been obtained using the asymptotic expansion of the
angular spheroidal eigenvalues [21]

sAlm � ð2l� �þ 1Þja!j � sðsþ 1Þ þOðja!j0Þ; (14)

where � ¼ 2maxðjmj; jsjÞ. Because for these modes
ja!j * 5, this expansion is a good approximation of the
numerical eigenvalues computed by the continued fraction
method [21].

IV. ABSORBING BOUNDARY CONDITIONS
(HORIZON-LIKE SURFACE AT r ¼ r0)

From the results discussed in the previous section we
conclude that a dynamical instability is almost unavoidable
in a broad region of the parameter space if the surface of
the superspinar is perfectly reflecting. The instability is
present even in what would naively seem the most phe-
nomenologically viable case, i.e., when r0 �M and a ¼
Mþ �. One could argue that a perfectly reflecting surface
maximizes the efficiency of the ergoregion instability be-
cause negative-energy modes, which are potentially dan-
gerous, cannot be absorbed, and that this might not happen
for different boundary conditions. In fact, Kerr BHs are

stable because (despite superradiant scattering) the
negative-energy modes can flow down the horizon.
Therefore, we expect ingoing boundary conditions (R ¼
0) at r ¼ r0 to represent the worst possible situation for the
ergoregion instability to develop. If we find an instability
even in this case, the superspinars described by our simple
model are doomed to be unstable. This choice also seems
more physically motivated than the perfectly reflecting
boundary conditions, because r0 might be the location of
an event horizon formed by string-inspired modifications
of gravity at high curvatures. We consider both modes with
l ¼ m ¼ 2 (which we expect to be affected by the ergore-
gion instability) as well as modes with m ¼ 0, which we
found to be unstable in the perfectly reflecting case.
The punch line of this section is that unstable modes

exist even when we impose ingoing boundary conditions.
Qualitatively, the results are the same as those obtained by
imposing perfect reflection at the surface of the super-
spinar. The instability is slightly weaker than in the pre-
vious case, but it is again unavoidable in a wide region of
parameter space.
Gravitationally unstable modes with l ¼ m ¼ 2 and

R ¼ 0 are listed in Table I and shown in Fig. 5 (to be
compared with Fig. 1). Typically the imaginary part of the
unstable modes when R ¼ 0 is only 1 order of magnitude
smaller than that obtained imposing R ¼ 1, which causes
the instability to disappear at slightly smaller spins, i.e.,
when a=M * 1:75. However, as already mentioned, in the
next section we will present evidence that higher-l modes
are unstable for larger values of the spin and show that our
results are sufficient to rule out superspinars as astrophysi-
cally viable alternatives to Kerr BHs.
Also, we stress that perfectly absorbing ‘‘stringy hori-

zons’’ can only be created by high-energy effects taking
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place beyond the range of validity of general relativity.
From a phenomenological point of view, the region that
should be modified by these high-energy corrections is
close to the curvature singularity of the Kerr metric (r0 �
M). Unstable modes generically exists for a ¼ Mþ �,
even in the limit r0=M ! 0. Moreover, results are smooth
in the limit r0=M ! 0, which means that in the region
spanned by our calculations curvature singularities do not
affect our conclusions.
Finally, Fig. 6 (to be compared with Fig. 3) shows that

unstable modes with m ¼ 0 are still present when we
impose R ¼ 0 at r ¼ r0.

V. MODES WITH l ¼ m � 1 AND PHYSICAL
ORIGIN OF THE INSTABILITY

We have seen that when we impose perfectly reflecting
boundary conditions (R ¼ 1) superspinars are plagued by
several instabilities. Moreover, these instabilities are still
present when we impose R ¼ 0, i.e., when we consider a
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‘‘stringy horizon’’ at r ¼ r0, which would be expected to
quench the instabilities. Here we analyze in more detail
how these different instabilities arise. We focus first on the
case r0=M > 0. For R ¼ 1 from Figs. 1 and 3 (and anal-
ogously forR ¼ 0 from Figs. 5 and 6) we see that, for both
m ¼ 0 and m ¼ 2, the imaginary part vanishes at some
critical radius: !IðrcritÞ ¼ 0. By using a root-finding rou-
tine we can solve for the critical radius as a function of the
spin parameter a=M. The results are shown in Fig. 7. For
m ¼ 2 and R ¼ 1 the instability occurs in the region
below the dot-dashed blue line extending from a�M up
to a=M� 2:2. The dashed horizontal line marks the loca-
tion of the outer ergoregion on the equatorial plane (r ¼
2M). As a=M ! 1 the critical radius roughly coincides
with the location of the ergoregion, and it decreases mono-
tonically for larger rotation. The situation is similar for
m ¼ 2 andR ¼ 0 (solid black line extending from a�M
up to a=M� 1:75), with the instability disappearing earlier
(at a=M� 1:75) because the ingoing boundary conditions
allow negative-energy modes to flow down the stringy
horizon. This plot confirms our qualitative understanding
of the instability: as shown in Fig. 2, in the limit a=M ! 1
the proper volume of the ergoregion vanishes and super-
radiance cannot destabilize the modes at arbitrarily large
spins.

It would therefore seem that superspinars with a > 2:2M
might be stable, for any value of r0 and even in the most
restrictive case withR ¼ 1. We argue, however, that this is
not true if we consider modes with l ¼ m> 2. In fact the
angular distribution of modes with higher l ¼ m is more
concentrated around the equatorial plane. Higher-l modes

become more effective at destabilizing the superspinar
when the ergoregion is oblate, i.e., when a � M (see again
the inset of Fig. 2). This intuitive understanding is con-
firmed by Fig. 8. There we plot the imaginary part of the
fundamental unstable modes for l ¼ m ¼ 2 and l ¼ m> 2
(setting r0 ¼ 0), both for R ¼ 1 and R ¼ 0.
In the case R ¼ 1, unstable modes with higher l ¼ m

exist for larger values of the spin. For example the l ¼
m ¼ 5 mode becomes stable when a=M * 3:6, while the
l ¼ m ¼ 2 mode becomes stable when a=M * 2:2, as
previously discussed. Modes with l ¼ m � 1 are gener-
ally difficult to compute with our code. Our results suggest
that, for any fixed value of a=M � 1, there are always
unstable modes as long as l ¼ m is sufficiently large. We
stress that these results are in contrast with the case of Kerr
BHs, where the superradiant amplification is always
stronger for l ¼ m ¼ 2 [22]. Results are qualitatively simi-
lar for R ¼ 0, in which case the l ¼ m ¼ 3 instability
disappears when a=M * 2, while the l ¼ m ¼ 2 instabil-
ity disappears when a=M * 1:75, as previously discussed.
However, in this case the l ¼ m ¼ 4 instability is weaker
than the l ¼ m ¼ 3 instability, and the l ¼ m ¼ 5 insta-
bility disappears for smaller values of a=M than in the l ¼
m ¼ 2 case. This is because the stringy event horizon
quenches the instability of higher-l modes, similarly to
the horizon of a Kerr BH.
More in general, the ergoregion instability that we have

found here at the linear level can be related to simple
kinematical properties of the Kerr spacetime. In fact, as
we show in the Appendix A, Kerr spacetimes with a >M
admit stable nonequatorial null circular orbits with nega-
tive energy. These orbits exist at any radius r <M. The
very existence of these orbits is enough to prove that the
spacetime is plagued by the ergoregion instability, pro-
vided that purely reflecting boundary conditions (R ¼ 1)
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are imposed at r0 <M. This is because null orbits are the
geometric-optics limit of gravitational perturbations, as
can easily be seen by expanding their propagation equation
in powers of 1=� (� being the wavelength of the perturba-
tion). Therefore, the existence of stable null circular orbits
with negative energies implies the existence of short-
wavelength modes with negative energies. Under perfectly
reflecting boundary conditions, these modes can only leak
to infinity by tunneling through the potential barrier.
However, because particles outside the ergoregion must
have positive energies, this leak makes the energy of the
perturbations inside the ergoregion more and more nega-
tive. As a result, their amplitude grows without bound, thus
revealing the instability of the spacetime. For these reasons
we expect modes with l ¼ m � 1 to be unstable for
arbitrarily large values of a=M, at least for R ¼ 1. This
expectation is consistent with the general theorem of
Ref. [8], which states that any spacetime possessing an
ergoregion, but not an event horizon, is vulnerable to the
ergoregion instability. As shown in Fig. 8, this expectation
is not always justified in the less efficient case withR ¼ 0.

The existence of stable nonequatorial null circular orbits
with negative energy clarifies why superspinars are un-
stable even under perfectly absorbing boundary conditions
(i.e., in the presence of a stringy horizon), while for Kerr
BHs with a � M the presence of the horizon kills the
ergoregion instability. For superspinars, the effective po-
tential for gravitational perturbations presents a minimum
at small radii (corresponding, in the eikonal limit, to the
location of a negative-energy stable nonequatorial null
circular orbit), and then rises as r=M� 0. Therefore, the
ergoregion modes need to tunnel through a potential barrier
to fall into the ‘‘stringy’’ horizon. The stability of the
superspinar depends on a delicate balance between the
transmission coefficients through the ‘‘inner’’ and ‘‘outer’’
potential barriers.

A possible objection against instability could be the
following. For sufficiently fast rotation (perhaps even for
spins as low as a� 6M, i.e., at the higher end of the viable
range identified by Ref. [17]), if unstable modes exist in the
eikonal limit (l ¼ m ! 1) their imaginary part will be
small, even in the case R ¼ 1. The ergoregion instability
is due to ergoregion modes leaking to infinity through the
potential barrier, but the tunneling becomes less and less
effective as the modes behave more and more like parti-
cles, because the amplitude transmitted to infinity scales as
expð�L=�Þ (where L�M is the width of the barrier and �
is the mode’s wavelength). It is therefore conceivable that
the imaginary part might be so tiny that these modes can be
considered stable for all practical purposes.

However, accretion is known to spin superspinars down
[14]. According to Ref. [26], a BH which is initially non-
rotating gets spun up to the extremal limit a ¼ M, where it
cannot be spun up any more [26,27], by accreting a mass

�M ¼ ð ffiffiffi
6

p � 1ÞMin ¼ 1:4495Min (Min being the initial

BH mass). This corresponds to the accretion of a gas
mass �M0 ¼ 1:8464Min, of which �M falls into the BH
and �M0 � �M is dissipated by the disk’s viscosity into
electromagnetic radiation. Similarly, a superspinar with
a=M ¼ 7 gets spun down to a=M ¼ 1:5M (where the
ergoregion instability is always effective) by accreting a
mass �M ¼ 1:730Min (corresponding to a gas mass
�M0 ¼ 2:295Min). The two processes (spin-up of a
Schwarzschild BH to the extremal Kerr limit, and spin-
down of a superspinar from a=M ¼ 7 to a=M ¼ 1:5) in-
volve amounts of accreted material of the same order of
magnitude, hence the corresponding time scales too will be
comparable. Supermassive BHs are expected to be spun up
to the extremal Kerr limit by coherent accretion3 on a time
scale much smaller than the Hubble time [36], so a super-
spinar should be spun down to the unstable region on a time
scale much smaller than the Hubble time. For this reason,
the existence of supermassive superspinars is unlikely in
the real Universe.
The situation is slightly different for stellar-mass super-

spinars. Analytical arguments [37] and population synthe-
sis calculations [38] show that BHs in binaries essentially
retain the spin they had at birth, so it is unclear whether
accretion would be efficient enough to destabilize a super-
spinar. On the other hand, as far as we know, no realistic
collapse scenario leading to the formation of stellar-mass
superspinars has been proposed so far. Typical equations of
state lead to compact stars rotating with a=M & 0:7 [2,3].
Polytropic differentially rotating stars with a � 1:1M can
in principle exist [5,6], but they are stable. Even if depleted
of 99% of their pressure and induced to collapse, these
stars do not form a BH and produce either a supermassive
star (which will collapse to a BH with a <M when enough
angular momentum has been shed in gravitational waves)
or a stable, rapidly rotating star.
For r0=M > 0 there is a second family of unstable

modes with m ¼ 0 that cannot be superradiant modes.
Figures 3 and 6 show that, for fixed values of a=M, these
modes only exist in a limited range of r0=M. This range
corresponds to the blue dot-dashed line (R ¼ 1 case) and
to the solid black line (R ¼ 0 case) on the left of Fig. 7,
showing that this family of unstable modes only exists for
a=M & 1:12.

3It has been proposed that supermassive BHs may accrete
small lumps of material with essentially random orientations of
the orbital angular momentum. This ‘‘chaotic accretion’’ results
(on average) in a spin-down of the BH [28], so it is very hard to
produce fast spinning BHs at all (whereas spin estimates as large
as a ¼ 0:989þ0:009

�0:002 have been reported [29]). Therefore it should
be even harder to produce superspinars by chaotic accretion.
Binary BH mergers are also known to always produce spins
below the Kerr limit [30–35], so one would be left only with the
possibility of postulating that supermassive superspinars are
born in the early Universe due to high-energy physics effects
beyond the realm of classical general relativity.
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These unstable modes are related to the existence of
stable ‘‘polar’’ null circular orbits, i.e., circular nonequa-
torial orbits with vanishing azimuthal component of the
orbital angular momentum (Lz ¼ 0) [39]. Equation (A22)
of the Appendix A (see also Fig. 9) shows that for the Kerr
spacetime such orbits exist when 1< a=M < ð�3þ
2

ffiffiffi
3

p Þ � 1:179 96. For l ¼ 4 and R ¼ 1 the instability
range for modes with m ¼ 0 is 1< a=M & 1:14.
However, the upper limit of this range is a slowly increas-
ing function of l, and it is plausible that in the eikonal limit

it should tend to ð�3þ 2
ffiffiffi
3

p Þ � 1:18.
In conclusion, let us discuss the case r0=M < 0 (with

R ¼ 1), summarized in Fig. 4. Now the ring singularity at
r=M ¼ 0 is naked, and the spacetime also possesses closed
timelike curves [40]. Therefore it is not surprising that an
infinite number of unstable modes exist also at the linear
level [11]. At variance with the ergoregion instability, in
the present case the imaginary part of the frequency (and
therefore the strength of the instability) grows roughly
quadratically with a=M (cf. the right panel of Fig. 4).
The same kind of instability has been found in charged,
spherically symmetric BHs with naked singularities [10]
and therefore it is not related to rotation, but to causality
violation (see also the discussion at the end of Ref. [14]).
As a matter of fact, we could not find any mode belonging
to this family when r0=M  0, i.e., when the naked singu-
larity is covered.

In summary, superspinars are plagued by several insta-
bilities for both perfectly reflecting boundary conditions
(R ¼ 1 at r ¼ r0) and perfectly absorbing boundary con-
ditions (R ¼ 0 at r ¼ r0). The instability of modes with
l ¼ m is related to superradiant scattering. When r0 �M,
unstable modes with m ¼ 0 also exist below some critical

rotation parameter: this instability is related to the exis-
tence of stable polar null circular orbits in the spacetime
(cf. the Appendix A). Finally, when r0=M < 0, a third
family of m ¼ 0 modes exists [11]. This third family of
unstable modes is probably related to the existence of
naked singularity and closed timelike curves in the
spacetime.

VI. CONCLUSIONS

The results reported in this paper indicate that super-
spinars are unstable independently of the boundary con-
ditions imposed at the ‘‘excision radius’’ r0 and in a
significant region of the two-dimensional parameter space
ða=M; r0=MÞ, if not in the whole parameter space. The
most effective instability at low rotation rates corresponds
to the l ¼ m ¼ 2 (superradiant) mode, but when a�M
and r0 �M unstable modes withm ¼ 0 also exist. The l ¼
m ¼ 2 mode eventually becomes stable at large rotation
rates, but unstable modes with l ¼ m � 1 are expected to
exist for any value of a=M, at least for R ¼ 1. While the
instability time scale of higher-l modes may turn out to be
very long, making them marginally stable for practical
purposes, the low-l instability (which affects superspinars
with a=M & 2) takes place on a dynamical time scale.
Accretion is known to spin superspinars down [14], so
our results indicate that superspinars are unlikely astro-
physical alternatives to Kerr BHs.
One possible objection is that, in order to assume in-

going boundary conditions at the surface of the superspi-
nar, we must assume that general relativity is modified in
that region. Such a modification of general relativity in the
excised, high-curvature region surrounding the singularity
is implicit in the original superspinar proposal by Gimon
and Horava [1], who invoke string theory in order to violate
the Kerr bound a � M. We stress, however, that our results
hold for a wide class of theories of gravity. Many proposed
alternative theories of gravity admit the Kerr spacetime as
an exact solution [41,42]. Among these theories, we focus
on the large class consisting of Brans-Dicke gravity (with
or without a potential), and theories that can be reduced to
Brans-Dicke theory with a potential via a conformal trans-
formation (e.g., fðRÞ gravity, both in the metric and
Palatini formalism [43,44]). All of these theories admit
Kerr-(anti) de Sitter as an exact solution if the scalar field
is constant. When perturbed, these solutions satisfy differ-
ent equations in general relativity and in modified gravity
theories [42,45], due to the presence of an extra scalar
degree of freedom (the Brans-Dicke scalar), so one might
naively expect the stability properties of the Kerr space-
time to be different. However, one can redefine the tensor
modes via a conformal transformation so that the vacuum
tensor and scalar perturbation equations decouple at linear
order [45]. Basically this happens because the Brans-Dicke
action reduces to the Einstein-Hilbert action plus a mini-
mally coupled scalar field in the Einstein frame, if no
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matter fields are present [44]. Therefore, the tensor modes
satisfy the same equations in general relativity as in Brans-
Dicke theory (or in any other theory that can be recast in
Brans-Dicke form via a conformal transformation.) This
means that Eqs. (2) and (3), which are the starting points of
our analysis, retain their validity, and therefore that the
instability operates in a wider class of gravity theories.

Our results do not imply that there cannot be stable
ultracompact objects with J=M2 > 1. However, they do
imply that either (i) Einstein’s gravity should be modified
in such a way as to retain Kerr as a solution, while at the
same time allowing the tensor modes and the ‘‘extra’’
modes to couple at linear order, or (ii) the structure of
astrophysical superspinning objects, if they exist at all, is
not described by the simple Kerr-based superspinar pro-
posal of Ref. [1].
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APPENDIX: GEODESICS IN D-DIMENSIONAL
KERR SPACETIMES

The main goal of this appendix is to study the existence
of stable null circular orbits (SNCOs) with negative ener-
gies in Kerr spacetimes. We are interested in these orbits
because the very existence of SNCOs (or more generally,
the existence of stable null bound orbits) with negative
energies is enough to show that a spacetime is subject to
the ergoregion instability, provided that purely reflecting
boundary conditions are imposed at the excision surface
r ¼ r0. For completeness we considerD-dimensional Kerr
spacetimes with only one nonzero angular momentum
parameter, and we specialize to the ‘‘ordinary’’ D ¼ 4
case at the end. Our main results for four-dimensional
Kerr spacetimes are summarized in Fig. 9. The meaning
of the different curves on this plot is explained below.

The metric of a D-dimensional Kerr BH with only one
nonzero angular momentum parameter is given in Boyer-
Lindquist-type coordinates by [46]

ds2 ¼ ��D � a2sin2#

�
dt2

� 2aðr2 þ a2 � �DÞsin2#
�

dtd’

þ ðr2 þ a2Þ2 � �Da
2sin2#

�
sin2#d’2 þ �

�D

dr2

þ�d#2 þ r2cos2#d�2
D�4; (A1)

where � ¼ r2 þ a2cos2#, �D ¼ r2 þ a2 �MDr
5�D,

d�2
D�4 denotes the metric of the unit (D� 4) sphere and

MD and a are related to the physical mass M and angular
momentum J of the spacetime

MD ¼ 16�M

D� 2
AD; a ¼ D� 2

2

J

M
; (A2)

with AD ¼ ð2�Þð1�DÞ=2�½ðD� 1Þ=2�. The outer horizon is
defined as the largest real root of r2H þ a2 �MDr

5�D
H ¼ 0.

1. Equatorial null geodesics

For null geodesics in the equatorial plane (� ¼ �=2) of
the spacetime (A1), the radial geodesic equation reads

E�2 _r2 ¼ Veff ¼ RðrÞ=r4

¼ 1þ MD

rD�1
ð�� aÞ2 � �2 � a2

r2
; (A3)

where � ¼ Lz=E and where the dot denotes derivatives
with respect to the dimensionless affine parameter.
Conditions for circular orbits are VeffðrcÞ ¼ V 0

effðrcÞ ¼ 0.
The condition VeffðrcÞ ¼ 0 implies

� ¼ �aMD 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðD�3Þ
c �DðrcÞ

q
rD�3
c �MD

(A4)

for direct and retrograde orbits, respectively. ForD ¼ 4 the

outer horizon is located at r ¼ rH ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
and

(of course) the Kerr bound implies a=M � 1. The condi-
tion V 0

effðrcÞ ¼ 0 then leads to three different solutions:

r
phot
	 ¼ 2M

�
1þ cos

�
2

3
cos�1

�
� a

M

���
;

rc� ¼ 2M� Re½	� � ffiffiffi
3

p
Im½	�;

(A5)

where

	 ¼ ½Mð�M2 þ 2a2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �M2

p
Þ�1=3: (A6)

The three solutions are all real. Orbits with rc ¼ rphotþ (rc ¼
rphot� ) correspond to unstable direct (retrograde) circular
orbits lying outside the horizon, whereas rc� < rH and
therefore this solution does not correspond to physical
circular orbits. For a >M, there is only one real solution

rphot� ¼ 2M

�
1þ cosh

�
2

3
cosh�1

�
a

M

���
; (A7)
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corresponding to an unstable null circular orbit. This is
shown in Fig. 9. It is easy to show that the same qualitative
results hold also when D  5. Therefore no stable null
equatorial circular orbits exist in D-dimensional Kerr
spacetimes with a single angular momentum parameter.

2. Nonequatorial null geodesics

Let us now focus on nonequatorial null geodesics in
D-dimensional Kerr spacetimes with a single spin parame-
ter. We shall follow and generalize the approach discussed
in Chandrasekhar’s book [47].

The separability of the Hamilton-Jacobi equation in Kerr
spacetime was proved by Carter, who also discovered an
additional constant of motion Q (the ‘‘Carter constant’’)
besides the energy, the angular momentum and the norm of
the four-velocity [40,48]. The same procedure can be
easily generalized to D-dimensional Kerr spacetimes
with a single spin parameter, given by Eq. (A1). Our basic
equations are

E�2�2 _r2 ¼ RðrÞ
¼ r4 þ ða2 � �2 � �Þr2

þMD½�þ ð�� aÞ2�r5�D � a2�; (A8)

E�2�2 _�2 ¼ �ð�Þ ¼ �þ a2cos2�� �2cot2�; (A9)

E�1�D� _’ ¼ �ðr; �Þ
¼ ��Dcsc

2�� a½a�þ�D � ðr2 þ a2Þ�;
(A10)

E�1�D� _t ¼ Tðr; �Þ
¼ ðr2 þ a2Þ2 � a2�Dsin

2�

þ a�½�D � ðr2 þ a2Þ�; (A11)

where we use a dot to denote derivatives with respect to the
dimensionless affine parameter, and where � ¼ Lz=E,� ¼
Q=E are two constants of motion. Notice that the angular
Eq. (A9) does not depend on D, and that the equations
above reduce to Eqs. (190) and (191) of Ref. [47] when
D ¼ 4.

A. Proof of no planar bounded orbits in D-dimensional
Kerr spacetimes

A relevant question is whether nonequatorial planar
orbits exist in these spacetimes. The conditions for a planar
orbit (� ¼ �0 ¼ constant) are �ð�0Þ ¼ 0 ¼ �0ð�0Þ. From
Eq. (A9) we see that these conditions are fulfilled on the
equatorial plane (�0 ¼ �=2) only if � ¼ 0. For �0 � �=2
planar orbits exist if

� ¼ �a2cos4�0; � ¼ 	asin2�0: (A12)

For the ‘‘plus’’ branch of the solutions above, the radial
Eq. (A8) simply becomes _r ¼ 	E. These geodesics are
unbound and describe shear-free null-congruences [47].
The ‘‘minus’’ branch of the solutions describes nonequa-
torial planar orbits. These solutions only exist whenD ¼ 4
and a <M. Moreover they always lie inside the event
horizon, and therefore they do not correspond to physical
orbits. For these reasons we do not discuss them further.

3. Nonequatorial, circular orbits

Since no planar, nonequatorial circular orbits exist in
D-dimensional Kerr spacetimes, let us focus on nonequa-
torial, circular orbits, i.e., orbits with constant radius but
which are not planar (i.e., � is not constant). These orbits
are periodic [49–51] and they are often called ‘‘spherical
orbits’’ in the literature, but here we adopt the term ‘‘cir-
cular orbits’’ as in Refs. [49–51].
The conditions for null circular orbits, RðrcÞ ¼ 0 and

R0ðrcÞ ¼ 0, read

r4c þ ða2 � �2 � �Þr2c þMD½�þ ð�� aÞ2�r5�D
c

� a2� ¼ 0; (A13)

4r3c þ 2ða2 � �2 � �Þrc
þ ð5�DÞMD½�þ ð�� aÞ2�r4�D

c ¼ 0; (A14)

which can be solved for � and � as functions of rc. There
are two sets of solutions:

� ¼ r2c þ a2

a
; � ¼ � r4c

a2
; (A15)

and

� ¼ a2ðD� 5ÞMDr
3
c þ ðD� 1ÞMDr

5
c � 2rDc ða2 þ r2cÞ

aðD� 5ÞMDr
3
c þ 2arDc

;

� ¼ ½aðD� 5ÞMDr
3
c þ 2arDc ��2

� f4MDr
5þD
c ð2a2ðD� 3Þ þ ðD� 1Þr2cÞ

� ðD� 1Þ2M2
Dr

10
c � 4r2ðDþ2Þ

c g: (A16)

The first set of solutions implies � ¼ constant and indeed
reduces to the minus branch of solutions (A12), which do
not correspond to physical orbits.
The second set of solutions, Eqs. (A16), can describe

bound orbits. The condition of stability is simply R00ðrcÞ<
0. By differentiating Eq. (A8) twice and using Eqs. (A16)
we obtain the following expression for R00ðrcÞ:
R00ðrcÞ ¼ ½ðD� 5ÞMDr

3
c þ 2rDc ��2

� f�8ðD� 5ÞðD� 1ÞM2
Dr

8
c þ 32r2ðDþ1Þ

c

þ 16ðD� 5ÞMDr
Dþ3
c ½a2ðD� 3Þ þ ðD� 1Þr2c�g:

(A17)

The stability of null circular orbits depends on the sign of
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the expression above. It is possible to show that stable
circular orbits exist for D ¼ 4 and a >M, but not for D 
5. Therefore in the following we will specialize to D ¼ 4
spacetime dimensions.

A. D ¼ 4 Kerr spacetime

When D ¼ 4, Eqs. (A16) read

� ¼ r2cð3M� rcÞ � a2ðrc þMÞ
aðrc �MÞ ; (A18)

� ¼ r3c½4a2M� rcðrc � 3MÞ2�
a2ðrc �MÞ2 : (A19)

These equations correspond to Eqs. (224) and (225) of
Ref. [47], and they can be used to define the shadow cast
by Kerr BHs or superspinars [12,13]. When � ¼ 0, from
Eq. (A19) we have 4a2M� rcðrc � 3MÞ2 ¼ 0, which de-
fines the equatorial orbits (A5)–(A7). In general, however,
the constant of motion � can be positive or negative. When
�< 0, Eqs. (A18) and (A19), together with Eq. (A9) for
the �-motion, implies that orbits of constant radius are not
allowed [47]. When �  0 circular orbits are allowed, and
according to Eq. (A19) they must satisfy the condition
4a2M� rcðrc � 3MÞ2  0. For a <M this condition
reads

r
phot
þ < rc < rphot� ;

where rphot� and rphotþ refer to retrograde and direct unstable
photon orbits in the equatorial plane [Eq. (A5)]. More
importantly for the analysis of superspinars, when a >M
the condition �> 0 reads

rc < rphot� ; (A20)

where rphot� is given by Eq. (A7). Notice that the condition
above includes also the singular case rc ¼ M (in fact �,
� ! 1 when a >M and rc ! M).

WhenD ¼ 4, from Eq. (A17) we see that stable circular
orbits exist whenever the orbital radius rc satisfies the
relation rc < rS, with [12]

rS
M

¼
�
1þ ½ða=MÞ2 � 1�1=3 for a >M;
1� ½�ða=MÞ2 þ 1�1=3 for a <M:

(A21)

Null circular orbits with radii smaller than this critical
radius are stable. When a >M, rS < rphot� , i.e., stable
circular orbits are allowed. When a <M the critical radius
rS is covered by the horizon, and it becomes ‘‘visible’’ to
external observers only when a >M. Therefore stable null
circular orbits may exist only for a >M, while orbits with
r < rS around BHs with a <M do not have a physical
meaning because they lie inside the horizon.

By substituting Eq. (A21) into Eqs. (A18) and (A19) we
can compute the corresponding critical parameters
�ðrSÞ ¼ �S and �ðrSÞ ¼ �S:

�S

M2
¼ 3M2

a2

�
1þ

��
a

M

�
2 � 1

�
1=3

�
4
;

�S

M
¼ � a

M
þ 3M

a

�
1�

��
a

M

�
2 � 1

�
2=3

�
:

For a given value of a=M, when � ¼ �S and � ¼ �S we
have a marginally stable orbit. If instead � & �S we have a
stable orbit, while � & �S gives a stable orbit if a > 3M
and � * �S gives a stable orbit if a < 3M. However, these
are only sufficient conditions, because other stable orbits
may exist, far from the critical values �S and �S. In fact,
depending on the value of the spin we can have different
situations: (i) for a < 3M, if �< �SðaÞ there is only one
stable circular orbit (with rc <M), while for �> �SðaÞ
we have two stable orbits: one with rc <M and one with
rc >M; (ii) for a > 3M, when �< 27M2 we have only
one stable circular orbit (with rc <M); when 27M2 <�<
�SðaÞ we have two stable orbits with rc >M and one with
rc <M; when �> �SðaÞ we have one stable circular orbit
with rc <M and one with rc >M. This can be understood
by plotting � as a function of r, with 0< r < rSðaÞ, for
various values of a.
Also, let us consider the sign of the impact parameter

� ¼ Lz=E. A study of Eq. (A18) shows that there is a
critical spin

aL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�3þ 2

ffiffiffi
3

p Þ
q

M � 1:179 96M; (A22)

such that
(i) if a > aL, then � > 0 for rc <M and � < 0 for rc >

M. Notice that � diverges if rc ¼ M.
(ii) if M< a< aL, then � > 0 for rc <M and for

r1ðaÞ< rc < r2ðaÞ (with r1, r2 >M), whereas � <
0 elsewhere. Notice that � diverges if rc ¼ M.

(iii) if a � M, then � > 0 for rþ < rc < r2ðaÞ, where
rþ is the outer Kerr horizon and r2 < 3M. � < 0 for
rc > r2ðaÞ.

The situation for a four-dimensional Kerr spacetime is
summarized in Fig. 9. Orbits of radius r1 and r2 carry
vanishing angular momentum (Lz ¼ 0) and therefore are
called polar null orbits. Orbits of constant radius r2 are
unstable polar null orbits, while orbits of constant radius r1
are stable polar null orbits, and they exist forM< a< aL.
A relevant question to ask is whether the null circular

orbits that we have identified have positive or negative
energy. The sign of the energy is determined by imposing
that the geodesics be future oriented, i.e., that the derivative
_t of the coordinate time with respect to the affine parameter
[given by Eq. (A11)] be positive. (This is because the
hypersurfaces t ¼ const are spacelike for any r > 0 if
a >M, and for any r > rH if a � M.) By substituting
Eq. (A18) into Eq. (A11), we find that for the nonequatorial
null circular orbits that we have identified we have
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_t ¼ E

�

�
r2cðrc þ 3MÞ
rc �M

þ a2cos2�

�
: (A23)

Because these orbits cross the equatorial plane (as they
have �> 0), we can evaluate Eq. (A23) for � ¼ �=2. The
energy E is a constant of motion, so it cannot change sign
along the trajectory. Then it is clear that all orbits have E>
0, with the exception of orbits with rc=M < 1, which, as
we have seen, exist only for a=M > 1. Indeed, it possible to
show explicitly that orbits with rc=M < 1 in Kerr space-
times with a=M > 1 have negative energy at all times.
Using Eq. (A9), one obtains that such orbits have polar
angle � oscillating between �=2þ �c and �=2� �c, with

cos 2�c ¼ 2rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�ða2Mþ r2cð2rc � 3MÞÞp � 


a2ðrc �MÞ2 ; (A24)

where 
 ¼ r4c � 3M2r2c þ 2a2Mrc. One can show that

cos2�c < 1 for a=M > 1 and rc=M < 1. Using this expres-
sion in Eq. (A23) it is then possible to show that the energy
must be negative all along trajectories with a=M > 1 and
rc=M < 1. The region where stable negative-energy orbits
exist is shown in Fig. 9.
Finally, let us suppose we have a compact object rotating

with a >M. According to the cosmic censorship conjec-
ture, the singularity at r=M ¼ 0 must be excised by some
horizonlike one-way membrane or by a reflecting surface.
It is then natural to ask the question of what the compact-
ness of the object can be if one wants to excise all SNCOs
with negative energies. Because such orbits exist for any
rc <M, if a >M, the maximum allowed compactness
turns out to be�max ¼ M=r ¼ 1. Because orbits with rc &
M lie far away from the singularity at r=M ¼ 0, this
maximum compactness is not expected to be altered by
high-energy corrections.
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