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We derive a special scalar field potential using the anisotropic Bianchi type I cosmological model from

canonical quantum cosmology under determined conditions in the evolution to anisotropic variables ��.
In the process, we obtain a family of potentials that has been introduced by hand in the literature to explain

cosmological data. Considering supersymmetric quantum cosmology, this family is scanned, fixing the

exponential potential as more viable in the inflation scenario Vð�Þ ¼ V0e
� ffiffi

3
p

�.
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I. INTRODUCTION

One of the main problems of inflationary cosmology is
to find a mechanism to derive in a natural way the appro-
priate scalar field potential in order to develop enough
e-foldings of inflation. By natural, we understand a mecha-
nism from which some theory provides a scalar field
potential that offers the convenient features of inflation.
In this work, we derive a scalar field potential from super-
symmetric quantum cosmology that gives these conditions.

In a previous work, we determined scalar potentials
from an exact solution to the Wheeler-DeWitt (WDW)
equation in the quantum cosmology scenario [1], using
as a toy model a homogenous and isotropic cosmological
model. There we focus on solutions that may be relevant
for the early universe constructed within the WKB ap-
proximation. Recently, these scalars potentials were ob-
tained using a local supersymmetric scheme [2]. Nowadays
it is a common issue in cosmology to make use of scalar
fields � as the responsible agents of some of the most
intriguing aspects of our universe [3–11], such as inflation
[12,13], dark matter, and dark energy [14]. The natural
derivation of a scalar potential is a challenge, posing the
following question: What physical processes provide the
adequate scalar field potentials that govern the universe in
determined epoch? To answer this question, we use the
ideas of quantum cosmology to solve the Wheeler-DeWitt
equation with a particular ansatz for the Bianchi type I
universe wave function. In this scheme, we obtain two
possible scenarios, the first one with a scalar exponential
potential Vð�Þ ¼ V0e

��, and the second one giving a
family of potentials, similar to those obtained in our pre-
vious work [1]. It is interesting that in the first scenario the
� parameter is not fixed by the quantum scheme, remaining
as a free parameter of the theory. To fix it, we invoke a

supersymmetric scale, using the tools of supersymmetric
quantum cosmology in order to find the most viable scalar
potential for the inflationary epoch, in this scale. To do this,
we applied supersymmetry as a square root of general
relativity [15–18], in which the Grassmann variables are
only auxiliary and cannot be identified as the supersym-
metric partners of the cosmological bosonic variables.
Therefore, we construct a family of scalar potentials treat-
ing the quantum solutions to anisotropic Bianchi type I
cosmological model in the anisotropic variables �þ and
��. The conditions we use give us a special structure for
the scalar potential; by simplifying the Wheeler-DeWitt
equation we obtain two cases: one in which both parame-
ters �� have hyperbolic trigonometric functions as solu-
tions, and another where �� (�þ) have a trigonometric
(hyperbolic trigonometric) behavior. This potential is also
a good candidate, depending on the parameter value, in
order to study inflation, dark matter, dark energy, or
tachyon models [19]. The transform Wheeler-DeWitt
equation can be solved using a particular ansatz in the
WKB approximation (Bohmian representation [20]). This
method has been used in the literature [21] to solve the
cosmological Bianchi class A models, and in a particular,
our result in the second case is similar to the one found in
Ref. [1] for the isotropic Friedmann-Robertson-Walker
(FRW) cosmological model. On the other hand, the best
candidates for quantum solutions become those that have a
damping behavior with respect to the scale factor, in the
sense that we obtain a good classical solution using the
WKB approximation in any scenario in the evolution of our
universe [22,23]. The supersymmetric scheme has the
particularity that is very restrictive because there are
more constraints equations applied to the wave function.
So, in this work we found that there exists a tendency for
supersymmetric vacua to remain close to their semiclassi-
cal limits, because the exact solutions found are also the
lowest-order WKB approximation, and do not correspond
to the full quantum solutions found previously.
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II. THE WHEELER-DEWITT EQUATION

On the Wheeler-DeWitt equation there are a lot of
papers dealing with different problems, for example,
Gibbons and Grishchuk [24] asked the question of what a
typical wave function for the universe is. In Ref. [25] there
appears an excellent summary of a paper on quantum
cosmology where the problem of how the universe
emerged from big bang singularity can no longer be ne-
glected in the GUT epoch. Also, an important approach to
this problem is the wave-function proposal in which the
universe would be completely self-contained without any
singularities and without any edges. Our goal in this paper
deals with the problem to build the appropriate scalar
potential in the inflationary scenario.

We start by recalling the canonical formulation of the
ADM formalism to the diagonal Bianchi Class A cosmo-
logical models. The metrics have the form

ds2 ¼ �ðN2 � NjNjÞdt2 þ e2�ðtÞe2�ijðtÞ!i!j; (1)

where N and Ni are the lapse and shift functions, respec-
tively, �ðtÞ is a scalar, and �ijðtÞ a 3� 3 diagonal matrix,

�ij ¼ diagð�þ þ ffiffiffi
3

p
��; �þ � ffiffiffi

3
p

��;�2�þÞ, !i are

one-forms that characterize each cosmological Bianchi
type model, and that obey d!i ¼ 1

2C
i
jk!

j ^!k, Ci
jk the

structure constants of the corresponding invariance group
[26]. The metric for the Bianchi type I, takes the form

ds2I ¼ �N2dt2 þ e2�e2�þþ2
ffiffi
3

p
��dx2

þ e2�e2�þ�2
ffiffi
3

p
��dy2 þ e2�e�4�þdz2; (2)

the total Lagrangian density function is given by

L Total ¼ Lg þL� þLmatter;�

¼ ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þLmatter;�: (3)

We use as a first approximation a perfect fluid and a scalar
field as the matter content, in a comoving frame [26],

L Total ¼ ffiffiffiffiffiffiffi�g
p ðR� 2�þ 16�G�þ 1

2g
��@��@��

þ Vð�ÞÞ; (4)

and using (2) we have

L Total ¼ e3�
�
6

N
_�2 � 6

N
_�þ2 � 6

N
_��2 � 6

N
_’2

þ 16�GN�� 2�N þ Vð’ÞN
2

�
; (5)

where we redefined the original scalar field as � ¼ ffiffiffiffiffiffi
12

p
’.

The corresponding momenta are calculated in the usual
way

�� ¼ @L

@ _�
¼ 12 _�

N
e3� ! _� ¼ e�3�

12
N��

�þ ¼ @L

@ _�þ
¼ � 12 _�þ

N
e3� ! _�þ ¼ � e�3�

12
N�þ

�� ¼ @L

@ _�� ¼ � 12 _��
N

e3� ! _�� ¼ � e�3�

12
N��

�’ ¼ @L

@ _�
¼ � 12 _’

N
e3� ! _’ ¼ � e�3�

12
N�’

now writing (5) in canonical form Lcan ¼ �q _q� NH
where H is the Hamiltonian density function,

Lcan ¼ ��
_�þ�þ _�þ þ�� _�� þ�’ _’

� Ne�3�

24
ð�2

� ��2þ ��2� ��2
’

� e6�½384�G�� 48�þ 12Vð’Þ�Þ

we obtain the corresponding Hamiltonian density function

H ¼ e�3�

24
ð�2

� ��2þ ��2� ��2
’

� e6�½384�G�� 48�þ 12Vð’Þ�Þ (6)

when we include the energy-momentum tensor for a baro-
tropic perfect fluid p ¼ ��, we have

H ¼ e�3�

24
ð�2

� ��2þ ��2� ��2
’ þ 48�e6�

� 384�GM�e
�3ð��1Þ� � 12e6�Vð’ÞÞ: (7)

Imposing the quantization condition and applying this
Hamiltonian to the wave function �, we obtain the WDW
equation for these models in the minisuperspace by the
usual identification Pq� by �i@q� in (7), with q� ¼
ð�; �þ; ��; ’Þ, and following Hartle and Hawking [22]
we consider a semigeneral factor ordering, which gives

Ĥ� ¼
�
� @2

@�2
þ @2

@�2þ
þ @2

@�2�
þ @2

@’2
þQ

@

@�
þ 48�e6�

� 384�GM�e
�3ð��1Þ� � 12e6�Vð’Þ

�
� ¼ 0;

where Q measures the ambiguity in the factor ordering
between the scalar function � and its corresponding mo-
menta. This equation is not easy to solve, first because we
do not have the structure of scalar potential, and second, it
depends strongly on the class of scenario we analyze with
barotropic equation. In the following, for simplicity we
shall use the inflationary case, � ¼ �1.
Using the following ansatz for the wavefunction

�ð�; ’; ��Þ ¼ e�a1�þ�a2���ð�; ’Þ, we obtain a reduced
WDW
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�
� @2

@�2
þ @2

@’2
þQ

@

@�

þ e6�ð48�� 384�GM�1 � 12Vð’ÞÞ þ c2
�
� ¼ 0;

(8)

where the constant c2 ¼ a21 þ a22.
Equation (8) can be written in compact form as

h�þQ
@�

@�
�Uð�; ’; �effÞ� ¼ 0; (9)

where the d’Alambertian in two dimensions is redefined
as h � �@2� þ @2’, �eff ¼ 48�� 384�GM�1 is the ef-

fective cosmological constant, and the potential
Uð�; ’;�Þ ¼ e6�½12Vð’Þ � �eff� � c2.

To solve (8) we take the ansatz, which is similar to the
one used in the Bohmian formalism into quantum mechan-
ics [20]

�ð�; ’Þ ¼ Wð�; ’Þe�Sð�;’Þ; (10)

where Sð�; ’Þ is the superpotential function. Equation (9)
can be written as the following set of partial differential
equations

ðrSÞ2 �U ¼ 0; (11a)

W

�
hSþQ

@S

@�

�
þ 2rW � rS ¼ 0; (11b)

hW þQ
@W

@�
¼ 0; (11c)

where the first equation is the classical Hamilton-Jacobi
equation, which plays an important role in this work. The
different terms in this equation are

rW � rS � �ð@�WÞð@�SÞ þ ð@’WÞð@’SÞ;
ðrÞ2 � �ð@�Þ2 þ ð@’Þ2:

Any exact solution complying with the set of Eqs. (11a)–
(11c) will also be an exact solution of the original WDW
equation. Following Ref. [1], first we shall choose to solve
Eqs. (11a) and (11b), whose solutions at the end will have
to fulfill with Eq. (11c), which plays the role of a constraint
equation.

Taking the ansatz [27,28]

Sð�; ’Þ ¼ 1

�
e3�gð’Þ þ cðb1�þ b2�’Þ; (12)

with �’ ¼ ’� ’0, ’0 is a constant scalar field, bi arbi-
trary constants, Eq. (11a) is transformed as�
� 9

�2
g2 þ 1

�2

�
dg

d’

�
2 � 12Vð’Þþ�eff

�
e6�

þ c2½1� b21 þ b22�þ
6c

�

�
b2
3

dg

d’
�b1g

�
e3� ¼ 0: (13)

This equation is more difficult to solve, at this point we

introduce the main idea of the paper to obtain the scalar
potential family, which are strongly dependent to solutions
for the anisotropic variables ��. We include two steps to
solve Eq. (13):
(1) First, consider that the second and third parenthesis

are null, but maintaining that c � 0. The first con-

dition implies that b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b22

q
, and the constants

a1 and a2 are real, the solutions for the anisotropic
variables �� can be considered as hyperbolic trigo-
nometric functions. The second condition becomes
an ordinary differential equation for the unknown
function gð’Þ, yielding

gð’Þ ¼ g0e
	=2�’; (14)

with g0 an integration constant and 	 ¼ 6b1
b2

¼
�6

ffiffiffiffiffiffiffiffiffi
1þb2

2

p
b2

with b2 � 0. The scalar potential function

become, when we take the first parenthesis in
Eq. (13),

Vð’Þ ¼ ð4�� 32�GM�1Þ þ V0e
	�’; (15)

with V0 ¼ 3g2
0

4b2
2
�2 . With these results, the superpoten-

tial function (12) is

Sð�; ’Þ ¼ g0
�

e3�e	=2�’

þ cð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b22

q
�þ b2�’Þ: (16)

Substituting (16) into (11b), the corresponding so-
lutions for the function W in the form eq�þ
’

become W ¼ Exp½12 ðQ� 3Þ�� 1
4	�’�, we de-

velop the following wave function

� ¼ Exp½a1�þ þ a2�� þ 1
2ðQ� 3Þ�

� 1
4	�’�e�ðe3�þð	=2Þ�’=�Þ; (17)

with the constraint on the parameter 	 � �6.
In the literature [29], the scalar potential type
Vð�Þ ¼ e�� gives a power law in the classical scale
factor, considering the flat FRW cosmological

model when � <� ffiffiffi
2

p
. If we consider the extreme

values for the 	 parameter (Q ¼ 0) and the corre-
sponding transformation between ’ ! �, we ob-

tain the special scalar potential Vð�Þ ¼ V0e
� ffiffi

3
p

�.
For a standard inflationary model, this class of po-
tential has the advantage that classical analytical
solutions can be found and, for appropriate values
of the parameters, inflation can be obtained.

(2) In the second step, we consider that the constant c ¼
0, implying that a1 ¼ �ia2, then the solutions for
the wave function for the anisotropic variables ��
are considered trigonometric functions for the vari-
able �þ and hyperbolic trigonometric function for
the variable ��. Thus the superpotential term (12)
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has the simple form

Sð�; ’Þ ¼ 1

�
e3�gð’Þ; (18)

and Eq. (13) becomes an ordinary differential equa-
tion for the unknown function gð’Þ in terms of the

scalar potential V ð’; �effÞ ¼ Vð’Þ � �eff

12 ,�
dg

d’

�
2 � 9g2ð’Þ ¼ 12�2

�
Vð’Þ � �eff

12

�

¼ 12�2V ð’; �effÞ; (19)

this equation is similar to the one obtained in
Ref. [1]. It is not surprising that this equation is
similar to Eq. (12) in Ref. [1], because the aniso-
tropic Bianchi type I cosmological model is the
generalization of the flat FRW model. The last
equation has several exact solutions, which can be
generated in the following way. Consider that V ¼
g2FðgÞ, where FðgÞ is an arbitrary function of its
argument. So, Eq. (19) can be written in quadratures
as

�’ ¼ � 1

2
ffiffiffi
3

p
Z d lngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
4 þ�2FðgÞ

q : (20)

In this way, we can solve the gð’Þ function, and then
use the expression for the potential term V ¼
g2FðgÞ back again to find the corresponding scalar
potential that leads to an exact solution to the
Hamilton-Jacobi equation (11a). Some examples
are shown in Table I.
In this way, the superpotential Sð�; ’Þ is known.
For solve (11b) we assume

W ¼ e½zð�Þþ!ð’Þ�; (21)

we arrive to a set of ordinary differential equations
for the functions zð�Þ and !ð’Þ

2
dz

d�
�Q ¼ k;! zð�Þ ¼ Qþ k

2
� (22)

d2g

d’2
þ 2

dg

d’

d!

d’
¼ 3ðkþ 3Þg;! !ð’Þ

¼ 3k

2

Z d’

@’ðlngÞ

� 3�2
Z d½V ð’; �effÞ�

ð@’gÞ2
:

(23)

Thus, the explicit form for the function W becomes

W ¼ exp

�
3k

2

�
�

3
þ

Z d’

@’ðlngÞ
�
þQ

2
�

� 3�2
Z d½V ð’; �effÞ�

ð@’gÞ2
�
: (24)

The constraint (11c) can be written as

@2’!þ ð@’!Þ2 � k2 �Q2

4
¼ 0; (25)

and

@’! ¼ 3k

2@’ðlngÞ � 3�2
@’½V ð’; �effÞ�

ð@’gÞ2
:

Taking into account Table I, we present the correspond-
ing wave function in each case, in Table II.
In a special case, the third line in Table II, has a damping

term that corresponds to e�S and a plane wave type, similar
to Eq. (17) obtained in the first step. The first line has this
behavior, but corresponds to null scalar potential.
In this way, using the quantum formalism in the sector of

inflationary scenario, we found that the scalar potential
becomes an exponential behavior, however the coupling
constant is undetermined. The question is, how can we fix
the coupling constant? The answer could be in the super-
symmetric quantum cosmology using differential opera-
tors to the Grassmann variables, where we present the
formalism in the next section.

TABLE I. Some exact solutions to Eq. (19) and their corresponding scalar potentials, where n
is any real number and V0 is an arbitrary constant, different to step one. The third line is
equivalent to this obtained by the first step.

FðgÞ gð’Þ V ð’;�effÞ
0 Exp½�3�’� 0

V0g
�2

ffiffiffiffiffiffiffiffiffiffi
4�2V0

3

q
sinhð�3�’Þ V0

V0 e	=2�’ V0 expð	�’Þ, 	 ¼ �4
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4 þ�2V0

q
V0g

�n (n � 2) ½e
�’�4�2V0e
�
�’

2
ffiffi
3

p �2=n ½e
�’�4�2V0e
�
�’

2
ffiffi
3

p �2ð2�nÞ=n, 
 ¼ 3n
2

lng euð’Þ ue2u, u ¼ ð� ffiffiffi
3

p
�’Þ2 � 3

4�2

ðlngÞ2 erð’Þ r2e2r, r ¼ 1
2 ½euð’Þ � 3

4�2 e
�uð’Þ�, u ¼ 2

ffiffiffi
3

p
��’
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III. SUPERSYMMETRIC QUANTUM MECHANICS

In the following, we shall apply the supersymmetric
quantum formalism at the quantum structure obtained in
the previous section, to obtain a closed value to the pa-
rameters that optimize the inflation scenario, i.e., we do an
analysis to the family obtained in Table I for the function
gð’Þ; or in other words, which is the constraint on the
superpotential function that appears in the quantum level,
Eq. (18), based in Tables I or II?. In this order of ideas, we
found one integrability condition on the gð’Þ function,
which fixes the coupling parameter of our problem.

To obtain these results, in this section we consider only a
reduced supersymmetry in two bosonic variables ð�; ’Þ,
without considering the anisotropic parameters, because
the full problem does not contemplate the initial condition
on our original problem. For instance, the decomposition
of the wave function in the full expansion has 16 compo-
nents, or 16� 16 matrix components, and the solution is
very complicated. In this sense, to solve our problem we
use a reduced bosonic Hamiltonian, Eq. (8), and in con-
sequence, one reduced supersymmetry.

The idea of Witten [30] is to find the supersymmetric
supercharges operators Q, �Q that produce a super-
Hamiltonian H susy, that satisfies the closed superalgebra

H susy ¼ 1
2½Q; �Q�; ½ �Q; �Q� ¼ ½Q;Q� ¼ 0; (26)

where the super-Hamiltonian H susy has the following

form

H susy ¼ H b þ @2S

@q�@q�
½ �c �; c ��; (27)

with H b is the bosonic Hamiltonian (8) taking the con-
stant c ¼ 0, then the supersymmetric approach will only be
applied to the reduced Hamiltonian, and S is the corre-
sponding superpotential function that is related with the
potential term that appears in the bosonic Hamiltonian, i.e.,
has the same structure that in the quantum level, proposed
in the last section. This idea was applied in Ref. [18] for all

Bianchi Class A models without matter content, and in [31]
to the FRW cosmological model. For example, in Ref. [32]
it is explained that, in particular, we can formulate a
particle dynamics in a potential Vðq�Þ on a curved mani-
fold and supersymmetry requires that the potential Vðq�Þ
is derivable from a globally defined superpotential Sðq�Þ
via Vðq�Þ ¼ 1

2G
��ðqÞ @SðqÞ@q�

@SðqÞ
@q� , where G��ðq�Þ is the

metric in the curved space. This equation is represented
in the quantum level by Eq. (11a).
In this approach, a supersymmetric state with Qjc> ¼

0 is automatically a zero energy ground state, in a similar
way that it is in the quantum regime. This simplifies the
problem of finding a supersymmetric ground state because
the energy is known a priori and the factorization of
H susyjc> ¼ 0 into Qjc> ¼ 0, �Qjc> ¼ 0 often pro-

vides a simpler first-order equation for the ground state
wave function. The simplicity of this factorization is re-
lated to the solubility of certain bosonic Hamiltonians. In
this work, as in others, we find for the empty (þ ) and
filled (� ) sector of the expansion of the wave function in
this approach, in the sector of the fermion Fock space zero
energy solutions jA�> ¼ e�Sj �> where A� are the
corresponding components for the empty and filled fermi-
onic sector.
The corresponding supercharges that satisfy the super-

algebra, when we consider the bosonic Hamiltonian given
by Eq. (8) become

Q ¼ c �

�
@

@q�
þ @S

@q�

�
; �Q ¼ �c �

�
@

@q�
� @S

@q�

�
:

(28)

We consider the following algebra for the fermionic vari-
ables [18]

fc �; �c �g ¼ 
��; f �c �; �c �g ¼ fc �; c �g ¼ 0; (29)

and the corresponding representation

TABLE II. Wave function corresponding to Table I.

gð’Þ wave function �

Exp½�3�’� expfa2ð�i�þ þ ��Þ þ ðkþQ
2 Þ�� 3k

2 �’ge�ðe3��3�’=�Þffiffiffiffiffiffiffiffiffiffi
4�2V0

3

q
sinhð�3�’Þ coshk=2ð�3�’Þ expfa2ð�i�þ þ ��Þ þ ðkþQ

2 Þ�ge�ðe3�
ffiffiffiffiffiffiffiffi
4�2V0

3

q
sinhð�3�’Þ=�Þ

e	=2�’ expfa2ð�i�þ þ ��Þ þ ðkþQ
2 Þ�þ ð3k�12�2

	 Þ�’ge�ðe3�þ	
2
�’=�Þ

½e
�’�4�2V0e
�
�’

2
ffiffi
3

p �2=n expfa2ð�i�þ þ ��Þ þ ðkþQ
2 Þ�þ!ð’Þge�ðe3�þgð’Þ=�Þ

!ð’Þ ¼ k
2 ½��’þ 2

3nLnð4�2V0 þ e2
�’Þ� � �2ð2�nÞ
3nV0

Arctanhð 1
4�2V0

e2
�’Þ
euð’Þ expfa2ð�i�þ þ ��Þ þ ðkþQ

2 Þ�þ kþ3�2�2

4�2 Ln�’� 3�2

2 �’2ge�ðe3�þuð’Þ=�Þ

erð’Þ expfa2ð�i�þ þ ��Þ þ ðkþQ
2 Þ�þ!ð’Þge�ðe3�þrð’Þ=�Þ

!ð’Þ ¼
ffiffiffiffi
3k

p
6� Arctanð2�ffiffi

3
p euð’ÞÞ þ 6�3�’� �

2 Lnð 3
4�2 þ e2uð’ÞÞ

þ �
4 ½ 3

4�2 e
uð’Þ � e�uð’Þ� �

ffiffi
3

p
8 Arctanð

ffiffi
3

p
2� e

�uð’ÞÞ
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�c � ¼ ��; c � ¼ 
�� @

@��
: (30)

Equation (28) are

Q ¼ �
�

@

@q0
þ @S

@q0

�
@

@�0
þ

�
@

@q1
þ @S

@q1

�
@

@�1
;

�Q ¼ �0
�

@

@q0
� @S

@q0

�
þ �1

�
@

@q1
� @S

@q1

�
:

(31)

The decomposition of the wave function becomes

�ð�; ’Þ ¼ Aþ þB0�
0 þB1�

1 þA��0�1; (32)

where the coordinates fields are q� ¼ ðq0; q1Þ ¼ ð�; ’Þ,
A�, B0, B1 are the bosonic and fermionic contributions
to the wave function.

The supersymmetric equations Qj�> ¼ 0, �Qj�> ¼ 0
are

Q� ¼ �
�

@

@q0
þ @S

@q0

�
@

@�0
½Aþ þB0�

0 þB1�
1

þA��0�1� þ
�

@

@q1
þ @S

@q1

�
@

@�1
½Aþ þB0�

0

þB1�
1 þA��0�1�; (33)

�Q� ¼ �0
�

@

@q0
� @S

@q0

�
½Aþ þB0�

0 þB1�
1 þA��0�1�

þ �1
�

@

@q1
� @S

@q1

�
½Aþ þB0�

0 þB1�
1

þA��0�1�: (34)

Then (34) gives the following set of differential equa-
tions

�0:

�
@Aþ
@q0

�Aþ
@S

@q0

�
¼ 0; (35)

�1:

�
@Aþ
@q1

�Aþ
@S

@q1

�
¼ 0; (36)

�0�1:

�
@B1

@q0
�B1

@S

@q0

�
�

�
@B0

@q1
�B0

@S

@q1

�
¼ 0; (37)

whose solutions to Eqs. (35) and (36) are

Aþ ¼ aþeS; (38)

On the other hand, Eq. (33) gives

free term : �
�
@B0

@q0
þB0

@S

@q0

�
þ

�
@B1

@q1
þB1

@S

@q1

�
¼ 0;

(39)

�1:

�
@A�
@q0

þA�
@S

@q0

�
¼ 0; (40)

�0:

�
@A�
@q1

þA�
@S

@q1

�
¼ 0; (41)

where (39) can be written as


��ð@�B� þB�@�SÞ ¼ 0; (42)

considering the following ansatz for the fields B�

B � ¼ eS@�fþ; (43)

(37) is satisfied identically, and (42) is


��ð@�@�fþ þ @�fþ@�Sþ @�fþ@�SÞ
¼ 
��ð@�@�fþ þ 2@�fþ@�SÞ ¼ 0; (44)

where a possible solution is fþ ¼ hð�� ’Þ, and h is any
function dependent to the argument, given the following
constraint on the superpotential function

@S

@�
¼ � @S

@’
; (45)

and considering the structure of the superpotential (18) we
find one condition on integrability over the function gð’Þ,
given

gð’Þ ¼ g0e
�3�’: (46)

and taking into account Tables I or II, we obtain the
following constraint in the parameter 	 of the models
when Eq. (45) is satisfied

	

2
¼ �3;

so, only the exponential scalar potential can survive in
Table I, and the coupling constant become 	 ¼ �6, given

the scalar potential Vð�Þ ¼ V0e
� ffiffi

3
p

��. In this way, super-
symmetric quantum mechanics fix the values for the 	
parameter, being valid the argument introduced in the
quantum scheme.
Equations (40) and (41) can be written as

@A�
@q�

þA�
@S

@q�
¼ 0;

1

A�
@A�
@q�

¼ � @S

@q�
! @LnA�

@q�
¼ � @S

@q�
; (47)

with solution

A� ¼ a�e�S; (48)

then, the set of contributions for the supersymmetric wave
functions are found to be

A� ¼ a�e�S B0 ¼ eS@0ðfþÞ B1 ¼ eS@1ðfþÞ
It is interesting to note that supersymmetry is very restric-
tive because there exist more constraints equations applied
to the wave function. In this sense, we observe a tendency
for supersymmetric vacua to remain close to their semi-
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classical limits, because the exact solutions found are also
the lowest-order WKB approximation.

IV. CONCLUSIONS

Using the quantum formalism in the inflationary sce-
nario, we find that the scalar potential has an exponential
behavior as a good candidate. However, the coupling con-
stant is undetermined. The question was, how can we fix
the value of the coupling constant? The answer was in the
supersymmetric quantum cosmology using differential op-
erators to the Grassmann variables, where the coupling
constant is found under one condition of integrability on
the function gð’Þ ¼ g0e

�3�’, and taking into account
Tables I or II, 	

2 ¼ �3. So, the main goal in this paper

was to fix the value for the coupling constant to the infla-
tionary scenario � ¼ 	

2 ¼ �3 using the supersymmetric

approach, when the quantum approach only gives the

general structure for the scalar potential. Also we find exact
solutions in both regimes. In the quantum level, we found
that the possible solutions become the contributions to the
empty (þ ) and filled (� ) sector of decomposition to the
wave function in the supersymmetric approach.
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