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We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid

distributions undergoing dissipation in the form of radial heat flow. For a model that corresponds to an

incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state

after the emission of a small amount of energy. Initially collapsing distributions of matter are not

permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution

collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a

model that corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a

shorter hydrodynamic time scale.
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I. INTRODUCTION

Dissipation as an emission process [1] is crucial for the
outcome of gravitational collapse. Thermal conduction is
usually considered proportional to the gradient of tempera-
ture. This is a sensible choice, since the mean free path of
particles responsible for the propagation of energy in stel-
lar interiors is very small as compared with the typical
length of the object [2]. Observations from supernova
1987A indicate that the regime of radiation transport pre-
vailing during the emission process is closer to the diffu-
sion approximation than to the free streaming limit [3]. The
addition of a test bed for studying dissipation mechanisms
and other transport processes in order to later incorporate
them into a more sophisticated numerical framework
(Arnowitt-Deser-Misner [ADM] or characteristic) is a
necessity.

In this work we study a self-gravitating spherical distri-
bution of matter containing a dissipative fluid in the diffu-
sion limit. We found behaviors similar to those reported
with a different mechanism by [4], and report the zeroth
order results for dissipation. We use noncomoving coordi-
nates and follow the method reported in [5,6] named the
postquasistatic approximation (PQSA), which has been
proposed as a test bed in numerical relativity [7]. For recent
advances and applications see [8,9]. For origin, reviews
and details of the PQSA see [10–19]. We do not consider
here temperature profiles to determine which processes can
take place during the collapse. For that purpose, transport
equations in the relaxation time approximation have been
proposed to avoid pathological behaviors (see, for instance,
[20] and references therein). These issues will be consid-
ered in a future investigation. It is worth mentioning here

that in order to get a higher order approximation we have to
know the zero order approximation in the relaxation time,
as in the present study. To the best of our knowledge, no
author has undertaken in practice the dissipative matter
problem in numerical relativity. Our purpose here is to
show how heat flow processes can be considered in the
context of the PQSA. The results indicate that an observer
using radiation coordinates does not ‘‘see’’ some details
when heat flow is considered. The final goal is to even-
tually study the same problem using the Müller-Israel-
Stewart theory for the dissipative system, which is highly
nontrivial in spherical symmetry.
In Sec. II, we present the field equations, the matching

conditions and the set of surface equations. For additional
details concerning the PQSA method see [4,6]. Three
models are presented in Sec. III and some remarks are
discussed in Sec. IV.

II. MAIN EQUATIONS

To write the Einstein field equations we use the line
element in Schwarzschild-like coordinates

ds2 ¼ e�dt2 � e�dr2 � r2ðd�2 þ sin2�d�2Þ; (1)

where � ¼ �ðt; rÞ and � ¼ �ðt; rÞ, with ðt; r; �;�Þ �
ð0; 1; 2; 3Þ.
In order to get physical input we introduce the

Minkowski coordinates ð�; x; y; zÞ by [21]

d� ¼ e�=2dt; dx ¼ e�=2dr;

dy ¼ rd�; dz ¼ r sin�d�;
(2)

In these expressions � and � are constants, because they
have only local values.
Following the Bondian point of view as in [4,6,7,21] we

assume that, for an observer moving relative to the local*On sabbatical leave.
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Minkowskian coordinates with velocity ! in the radial
direction, the space contains an isotropic fluid of energy
density �, radial pressure p, and radial heat flux q. For this
comoving observer, the covariant energy tensor in
Minkowski coordinates is thus

� �q 0 0
�q p 0 0
0 0 p 0
0 0 0 p

0
BBB@

1
CCCA; (3)

Making a Lorentz boost we write the field equations in
relativistic units (G ¼ c ¼ 1) as follows [4]:
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S ¼ � �;t

8�r
e�ð1=2Þð�þ�Þ; (7)

where the comma (,) represents partial differentiation with
respect to the indicated coordinate and the conservative
variables are

~� ¼ �þ p!2

1�!2
þ 2q!

1�!2
; (8)

S ¼ ð�þ pÞ !

1�!2
þ q

1þ!2

1�!2
(9)

and the flux variable

~p ¼ pþ �!2

1�!2
þ 2q!

1�!2
: (10)

as in the standard ADM 3þ 1 formulation. Within the
PQSA ~� and ~p are referred as to effective density and
effective pressure, respectively. Note that from (2) the
velocity of matter in Schwarzschild coordinates is

dr

dt
¼ !eð���Þ=2: (11)

It is easy to check that [2]

pa ¼ qa; (12)

which expresses the continuity of the radial pressure across
the boundary of the distribution r ¼ aðtÞ. Equivalently, in
terms of the effective variables

~p a ¼ ~�a!
2
a þ qað1þ!aÞ2: (13)

Defining the mass function as

e�� ¼ 1� 2m=r; (14)

and substituting (14) into (4) and (7) we obtain, after some
rearrangements,

dm

dt
¼ �4�r2

�
dr

dt
pþ qð1� 2m=rÞ1=2e�=2

�
: (15)

This equation is the momentum constraint in the ADM 3þ
1 formulation, it expresses the power across any moving
spherical shell.
Equation (6) can be written as T�

1;� ¼ 0 or equivalently,

after a lengthy calculation

~p ;r þ ð~�þ ~pÞð4�r3 ~pþmÞ
rðr� 2mÞ þ 2

r
ð~p� pÞ

¼ e��

4�rðr� 2mÞ
�
m;tt þ 3m2

;t

r� 2m
�m;t�;t

2

�
: (16)

This last equation is the generalization of the Tolman-
Oppenheimer-Volkov for nonstatic radiative situations. In
can be shown that Eq. (16) is equivalent to the equation of
motion for the fluid in conservative form in the standard
ADM 3þ 1 formulation [7].
At the surface, Eqs. (11), (15), and (16) lead us to a set of

differential equations for a, ma, and !a if we prescribe in
some way the metric functions (m and �).
The other two field equations (4) and (5) can be inte-

grated to obtain

m ¼
Z r

0
4�r2 ~�dr (17)

which is the Hamiltonian constraint in the ADM 3þ 1
formulation and

� ¼ �a þ
Z r

a

2ð4�r3 ~pþmÞ
rðr� 2mÞ dr; (18)

the polar slicing condition, from where it is obvious that for
a given radial dependence of the effective variables, the
radial dependence of the metric functions becomes com-
pletely determined.

III. MODELING

We consider here a seed model inspired by the well-
known Schwarzschild interior solution. This model corre-
sponds to an incompressible fluid departing from the static
equilibrium. Following the PQSAwe take

~� ¼ fðtÞ; (19)

where f is an arbitrary function of t. The expression for ~p
is

~pþ 1
3 ~�

~pþ ~�
¼

�
1� 8�

3
~�r2

�
h=2

kðtÞ; (20)
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where k is a function of t to be defined from the boundary
condition (12) or (13). Thus, (20) and (13) give

~� ¼ 3ma

4�a2
; (21)

~p ¼ ~�

3

�
	Sð1� 2ma=aÞ1=2 � 3c S


c S
� 	Sð1� 2ma=aÞ1=2
�
; (22)

with


 ¼
�
1� 2ma
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�
r

a

�
2
�
1=2

where

	S ¼ 6ð!2
a þ 1Þma

a
þ 8�a2qað1þ!aÞ2; (23)

and

c S ¼ 2ð3!2
a þ 1Þma

a
þ 8�a2qað1þ!aÞ2: (24)

Using (17) and (18) it is easy to obtain expressions for m
and �:

m ¼ maðr=aÞ3; (25)

e� ¼
�
að	Sð1� 2ma=aÞ1=2 � c S
Þ

4ma

�
2
: (26)

Thus, the system of equations at the surface can be inte-
grated, but it is necessary to specify one function of t and
the initial data. We choose

L � 4�a2qa (27)

to be a Gaussian

L ¼ L0e
�ðt�t0Þ2=�2

; (28)

with L0 ¼ Mr=
ffiffiffiffiffiffiffiffi
��

p
, t0 ¼ 5:0 and � ¼ 0:25, which cor-

responds to a pulse radiating away a fraction of the initial
mass Mr. Therefore, the system can be numerically inte-
grated for the following typical initial conditions:

að0Þ ¼ 5:0; mað0Þ ¼ 1:0; !að0Þ ¼ 0:0:

The integration was done up to some t guaranteeing well
behavior of the physical variables, that is, � > 0; � � p;
j!j< 1; !, q 2 <. Feeding back the numerical values of
a, ma, and !a (and their derivatives) in (17) and (18) we
obtain m and � (and their partial derivatives) for any value
of r. Thus, variables �, p, !, and q can be monitored for
any piece of the material, via field equations. We calculated
them for the values r=a ¼ 0:0, 0.2, 0.4, 0.6, 0.8, and 1.0.

We explore a complete range of initial conditions and
parameters of integration to get physically acceptable re-
sults. A radiated mass bigger than 10�4 and an initially
contracting velocity are not permitted. The reason is a
complex root calculating the local radial velocity and
heat flow for some regions of spacetime. Representative

and acceptable results are shown in Figs. 1 and 2. For this
model, the energy density and the radius of the distribution
remain almost constant (within six significant figures).
These features were not reported in the past using radiation
coordinates and lead us to the following model. Our results
clearly show that the heat flow keeps the evolution near
quasistaticity (slow evolution). Under the same initial
compactness used above, that is, að0Þ ¼ 5, we found a
possible initial local radial velocity of !að0Þ ¼ �10�3

and a radiated mass of Mr ¼ 10�2, producing now an
appreciable change in the energy density and the radius
of the distribution. These results are shown in Figs. 3 and 4.
For these conditions only the evolution of a bubble is
possible (r=a � 0:99 ! 1:00). We do not observe any
evidence of thermal peeling [2], that is, positive velocities
(expansion) of outer shells and negative velocities (con-
traction) of the inner shells. The development of thermal
peeling leads to complex roots for the radial velocity.
We consider now other interior seed model based on the

Tolman VI interior solution [22]. This model corresponds
to a highly compressed Fermi gas. Let us take

~� ¼ g

r2
; (29)

~p ¼ g½1� 9�ðr=aÞ�
3½1� �ðr=aÞ�r2 ; (30)

where g and � are functions of t, which can be determined
using (13). Thus

g ¼ ma

4�a
(31)

FIG. 1. Evolution of the radial local velocity ! (multiplied by
103) for the Schwarzschild-like model. The initial conditions are
að0Þ ¼ 5:0, mð0Þ ¼ 1:0, !að0Þ ¼ 0:0. The total radiated mass is
Mr ¼ 10�4mað0Þ.
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� ¼ 2ma=a� 3�

3½6ma=a� �� (32)

� ¼ 2!2
a

ma

a
þ 8�a2qað1þ!aÞ2: (33)

Once the metric functions are obtained from (17) and (18),
the system of equations at the surface can be again nu-
merically integrated for the following initial conditions:

að0Þ ¼ 8:0; mað0Þ ¼ 1:0; !að0Þ ¼ �0:02:

As before, a radiated mass bigger than 10�4 is not permit-
ted. But even more, now it is not possible to go inside the
distribution without violating real values assumption from
the beginning. For that reason the Gaussian has been set to
� ¼ 0:01 and t0 ¼ 1. At the surface, see Fig. 5, the results
are as expected.

FIG. 3. Evolution of the radius a for the Schwarzschild-like
model. The initial conditions are að0Þ ¼ 5:0, mð0Þ ¼ 1:0,
!að0Þ ¼ �0:001. The total radiated mass is Mr ¼ 10�2mað0Þ.

FIG. 4. Evolution of the energy density � (multiplied by 103)
for the Schwarzschild-like model. The initial conditions are
að0Þ ¼ 5:0, mð0Þ ¼ 1:0, !að0Þ ¼ �0:001. The total radiated
mass is Mr ¼ 10�2mað0Þ.

FIG. 5. Evolution of the radius a for the Tolman VI-like
model. The initial conditions are að0Þ ¼ 8:0, mð0Þ ¼ 1:0,
!að0Þ ¼ �0:02. The total radiated mass is Mr ¼ 10�4mað0Þ,
with a narrow Gaussian given by � ¼ 0:01 with maximum at
t0 ¼ 1:0.

FIG. 2. Evolution of the heat flow q (multiplied by 107) for the
Schwarzschild-like model. The initial conditions are að0Þ ¼ 5:0,
mð0Þ ¼ 1:0, !að0Þ ¼ 0:0. The total radiated mass is Mr ¼
10�4mað0Þ.
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IV. CONCLUSIONS

In this paper we considered heat flow as a transport
mechanism in the PQSA. Heat flow produces a stable
configuration, which is the opposite effect of viscosity
[4]. This result indicates that a combination of viscosity
(anisotropy) with heat flow may be crucial for gravitational
collapse or at least just out of equilibrium, where we expect
the PQSA is a good approach. We did additional tests
including anisotropy but its effect is marginal. For distri-
butions far from equilibrium we find that heat flow is a very
restrictive transport mechanism.

These results are apparently different for the same con-
figurations in radiation coordinates [16–19]. If the initial
distribution is in equilibrium the transition from static to

postquasistatic, in radiation coordinates, allows the sphere
to ‘‘instantaneously’’ bypass diffusion stressing. But in
Schwarzschild coordinates we can follow the transition
from the static configuration to the postquasistatic with
more resolution. Diffunding radiation strongly interacts
with matter. As a result, the interior of the distribution is
not permitted to go far from equilibrium. When including
heat flow, there is not PQSA except very close to or at the
surface.
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