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We study string gas dynamics in the early universe and seek to realize the Brandenberger-Vafa

mechanism—a goal that has eluded earlier works—that singles out three or fewer spatial dimensions

as the number that grows large cosmologically. Considering wound string interactions in an impact

parameter picture, we show that a strong exponential suppression in the interaction rates for d > 3 spatial

dimensions reflects the classical argument that string world sheets generically intersect in at most four

spacetime dimensions. This description is appropriate in the early universe if wound strings are heavy—

wrapping long cycles—and diluted. We consider the dynamics of a string gas coupled to dilaton gravity

and find that (a) for any number of dimensions the universe generically stays trapped in the Hagedorn

regime and (b) if the universe fluctuates to a radiation regime any residual winding modes are diluted

enough so that they freeze-out in d > 3 large dimensions while they generically annihilate for d ¼ 3. In

this sense the Brandenberger-Vafa mechanism is operative.
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I. INTRODUCTION

One of the few mechanisms aiming to explain the hier-
archy between three large and six small spatial dimensions
within superstring theory is due to a suggestion, some two
decades ago, by Brandenberger and Vafa [1]; see [2] for a
review. In this scenario the early universe consists of a hot
string gas in thermal equilibrium near the Hagedorn tem-
perature. The topology of space has nontrivial cycles sup-
porting winding modes in the gas. The background metric
and string coupling evolve with the low-energy effective
dilaton-gravity equations of motion according to which the
winding modes resist the expansion of the spatial direc-
tions they wrap. If due to a thermal fluctuation a number of
dimensions starts growing, then eventually the equilibrium
number of winding modes will drop to zero. The winding
modes have the capacity to relax to equilibrium through
annihilations with antiwinding modes; if these interactions
are efficient, then at large volumes the winding numbers
will vanish, allowing the corresponding dimensions to
grow. The Brandenberger-Vafa (BV) mechanism relied
on a simple dimension-counting argument that wound
strings generically intersect in at most three spatial dimen-
sions, singling this out as the maximum number of dimen-
sions in which winding numbers have the capacity to track
their equilibrium values, thereby dropping to zero and
allowing the dimensions to grow large. In [3] this argument
was supported using numerical simulations of a network of
classical strings, though gravitational dynamics was not
taken into account.

Over time it became clear that strings are not the only
fundamental degrees of freedom of string theory and that
higher dimensional objects (membranes) are also funda-
mental states of the theory; superstring theory was shown
to result from compactification of a higher dimensional
theory, M theory. In a paper by Alexander, Brandenberger
and Easson [4] the setup of [1] was extended to include
p-branes for p ¼ 0, 1, 2, 4, 5, 6, 8 in the weak-coupling
limit of M theory with one small dimension compactified
on S1 (type IIA string theory). The other spatial dimensions
were compactified on a 9-torus. The authors argued that
fundamental string winding modes are still the decisive
objects regarding decompactification and that the conclu-
sions of [1] still hold. They also pointed out that a further
hierarchy between dimensions could arise. Past the string
scale, as the universe grows, more and more energy is
needed to support wound branes of highest p; hence high-
est p branes would tend to decay first. As two p-branes can
intersect in at most 2pþ 1 spatial dimensions, there is no
obstacle for the disappearance of p-branes for p > 2. But
2-branes can allow for a five-dimensional subspace to grow
first. Further, within this subspace, 1-branes will only allow
for a three-dimensional space to continue expanding, as in
[1]; hence one is left with a 3-2-4 dimensional hierarchy.
These claims relied on heuristic thermodynamic and

topological arguments. Aiming to carry out a more rigor-
ous investigation, Easther et al. [5] considered the full
equations of motion for 11D supergravity on a homoge-
neous but anisotropic toroidal background, coupled to a
gas of branes and supergravity particles. Focusing on the
late time behavior of the system, they justifiably ignored
excitations on the branes and included only M2-branes,
sinceM5-branes (the other fundamental states of M theory)
would annihilate efficiently in the full 11-dimensional
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(11D) spacetime. Motivated by the BV mechanism and the
arguments of [4], the authors of [5] chose initial states
resulting from fluctuations that would leave three dimen-
sions unwrapped, some number of dimensions partially
wrapped, and some fully wrapped. The conclusion was
that indeed the dynamics leverage the topological reason-
ing and a hierarchy among dimensions is established. This
conclusion was supported further by [6], where in addition
nontrivial fluxes were included (the 3-form gauge field of
11D supergravity). In fact, the presence of fluxes seemed to
enlarge the possible space of initial conditions that lead to
three large dimensions at late times. Specifically, for the
case of six initially unwrapped dimensions, the dynamics
of fluxes introduced a new hierarchy suppressing the
growth of three out of the six unwrapped dimensions.

An apparent limitation of the BV argument is that it
seems to depend crucially on noncontractible spatial cycles
and their associated topologically stable winding modes.
Phenomenologically viable compactifications of string the-
ory, however, may not have such cycles. Nonetheless the
authors of [7] surmised that these more general spaces
might still support ‘‘pseudowound’’ modes, long strings
that extend around a dimension but are contractible. If
these strings are stable over time scales larger than the
cosmological Hubble scale, then as far as the dynamics are
concerned they play the same role as stable wound strings.
In [7], using numerical simulations for string networks on
toroidal orbifolds with trivial fundamental group, the au-
thors showed that pseudowound strings generically do
persist for many Hubble times, suggesting that the require-
ment of noncontractible cycles can be relaxed.

The results up to this point seemed promising, but it
remained to actually test the heart of the argument:
whether at early times, thermal fluctuations near the
Hagedorn era and string (or brane) interactions really
lead to annihilation of winding modes in a three-
dimensional subspace. An early attempt to investigate
this was carried out in [8]. The authors considered a gas
of 2-branes and supergravity particles, along with excita-
tions on the branes that lead to a limiting Hagedorn tem-
perature. This setup was within the low-energy limit of
M theory compactified on a 10-torus, with an anisotropic
and homogeneous metric evolving according to 11-
dimensional Einstein gravity. The winding numbers of 2-
branes evolved according to Boltzmann equations. The
authors assumed initial conditions in which the total vol-
ume of the torus was fixed but otherwise assumed that all
states were equally likely. By numerically solving the
coupled Boltzmann-gravity equations the authors con-
cluded that the number of unwrapped dimensions at late
times depended crucially on the initial volume of the torus.
Typically a large (and monotonically increasing) overall
volume would decrease the interaction cross section of
branes too quickly, eventually leading to brane number
freeze-out. If the initial volume was constrained according

to holographic arguments, the initial winding numbers
proved so small that all dimensions would decompactify
early on. Three dimensions was not found to be singled out
by the dynamics.
Similar all-or-nothing behavior was found in [9,10] for

IIA theory compactified on T9. In these papers the dilaton-
gravity equations for the background were coupled to
Boltzmann equations for winding modes and radiation.
Even though this behavior was attributed to the rolling of
the dimensionally reduced coupling to weaker values, we
emphasize here a more decisive phenomenon that prevents
the annihilation of the winding modes and yields the all-or-
nothing behavior. If the initial energy density of the uni-
verse is large, the system is found in the Hagedorn phase
with a significant amount of winding present in thermal
abundance but in a regime that resembles a matter-
dominated universe with vanishing pressure. This, along
with ‘‘friction’’ due to the dilaton’s velocity, results in an
insignificant growth of the wrapped dimensions (even over
an infinite amount of time). With the total energy nearly
constant, the equilibrium number of winding modes ge-
nerically does not fall to zero. In this sense the system stays
‘‘trapped’’ in the Hagedorn phase. It is very likely, how-
ever, that this problem is particular to the approximation of
treating the background with the lowest order dilaton-
gravity dynamics. Corrections to these [11], or a different
treatment of the metric degrees of freedom, could alleviate
it. An alternative approach would be to keep the back-
ground dynamics to lowest order and still consider a high
density initial phase—a fairly natural assumption—but
consider large volume fluctuations that could yield an
exit. This is the approach we adopt here.
Finally, and most importantly for our purposes, the

aforementioned problems were independent of the number
of dimensions growing large. The reason was that the rate
at which wound strings annihilated only fell off like the
inverse volume of the transverse dimensions. This failed to
single out three large dimensions as special, suggesting
that the Brandenberger-Vafa argument might not be sup-
ported by the dynamics underlying string/M theory.
In this paper, we reexamine this conclusion and suggest

a possible way in which string dynamics may indeed favor
three large dimensions. Our basic approach is this:
According to the Brandenberger-Vafa dimension-counting
argument, one expects that string interaction rates should
be dramatically suppressed when the number of large
spatial dimensions is bigger than three. Moreover, as the
dimension-counting argument is purely classical, one ex-
pects it to be valid in a regime where the wound strings
behave nearly classically and can be regarded as one-
dimensional extended objects tracing a two-dimensional
world volume. In such a regime the quantum thickness of
the strings should be small compared to their length along
the dimension they wrap and also small compared to the
size of the transverse space. This suggests, in contrast to
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our previous work, that we hope for a dilute gas of winding
strings. Furthermore, as we discuss, in a dilute regime we
are led to work in an impact parameter representation of
the string scattering amplitude. As we will see, this makes
manifest the distinction between three and more large
spatial dimensions regarding the interactions of winding
modes. Our main observation is that if the universe fluc-
tuates out of an initial dense Hagedorn regime—something
that we believe is generically necessary in order to match
to a realistic expanding cosmology in the string gas sce-
nario independently of the decompactification mecha-
nism—then any residual winding modes that were
thermally excited in the Hagedorn phase are indeed diluted
enough so that they freeze-out in d > 3 spatial dimensions.
Further, for d ¼ 3, the enhancement in interaction rates
due to the length of wound strings generically overcomes
the suppression due to the weak coupling and winding
modes may annihilate efficiently. While a number of im-
portant issues remain, this appears to be the first demon-
stration of dynamical string theory decompactification that
generically yields three large spatial dimensions.

By way of outline we begin with a discussion of the
impact parameter representation, proceed to set up our
model for the string gas, and finish with a numerical
simulation, along the lines of [9], that will allow us to
identify the regions of phase space in which three or more
spatial dimensions decompactify.

II. INTERACTION AMPLITUDES AND IMPACT
PARAMETER PICTURE

In this section we derive interaction rates for wound
strings in a semiclassical impact parameter picture. We
will show that when long strings interact at impact parame-
ters larger than their thickness, there is an exponential
suppression in the interaction rates for d > 3.

The starting point is the Virasoro-Shapiro amplitude for
wound strings in d ¼ D� 1 large dimensions given by
[12,13]

Aðs; tÞ ¼ ��2
D�2

s2

t
ð�0s=4Þ�0t=2e�i��0t=4 (1)

with s computed either from the right-moving or left-
moving momenta of the closed string, s � 4R2=�02 with
R the radius of the dimension that the strings wrap. The
imaginary part of the amplitude as t ! 0 is

ImAðs; t ¼ 0Þ ¼ �0�
4

�2
D�2s

2: (2)

Here �2
D�2 ¼ �2=V is the gravitational coupling in D� 2

dimensions, where V is the transverse compactification
volume times the area of the torus wrapped by the strings
[12]. By the optical theorem 1

s ImðAðs; tÞÞjt¼0 � �0�2
D�2s

controls string interactions. It is crucial to observe that for
D ¼ 4 this quantity is dimensionless and gives the proba-
bility for two colliding winding strings to interconnect and

unwind (to leading order), while for D> 4 it has units of
ðlengthÞD�4 and represents a cross section in the D� 4
dimensions transverse to the moving strings. This reflects
the fact that long strings generically intersect in D ¼ 4,
like point particles moving on a line, while they generically
miss in D> 4 and the relevant quantity becomes a cross
section.
One can consider the interaction probability in an impact

parameter picture. As discussed above, long wound strings
have an effective impact parameter in the D� 4 directions
transverse to the motion of both strings. The impact pa-
rameter b is the conjugate variable to the transverse mo-
mentum q ¼ ffiffiffiffiffiffi�t

p
, and the amplitude in this representation

is obtained by the following transform in the transverse
directions:

Aðs; bÞ ¼
Z dD�4q

ð2�ÞD�4
e�iqb Aðs; tÞ

s
: (3)

For the Virasoro-Shapiro amplitude (1), using q�2 ¼
�0 R1

0 dxx
�0q2�1, this gives

Aðs; bÞ ¼ �0�2
D�2s

Z 1

0

dx

x

�
Z dD�4q

ð2�ÞD�4
e�ðY�ið�=4Þ�logðxÞÞ�0q2�ibq

¼ �2
D�2s

4�ðD=2Þ�2
b6�D�

�
D

2
� 3;

b2=ð4�0Þ
Y � i �4

�
; (4)

where Y ¼ logð�0s
4 Þ and �ða; xÞ is the lower incomplete

gamma function. The imaginary part of the above ampli-
tude in the limit b2 � Y�0 is

ImAðs; bÞ ! ��0�2
D�2s

4ð4�Y�0ÞD=2�2
e�ðb2=4Y�0Þ: (5)

These results are similar to those found in [14], the
difference being that the authors of [14] consider graviton
scattering and take the number of transverse directions to
be D� 2. In fact, the interpretation of b as a classical
impact parameter in (3) can be justified along the lines of
[14]. In the high energy limit (s ! 1 which for wound
strings is R ! 1—precisely our limit of interest) the
authors of [14] sum up the amplitude to all loop orders to
a unitary eikonal form. The large R or large energy limit
localizes strings in the transverse directions and reveals
classical behavior, much as the eikonal treatment in quan-
tummechanics (or optics) reveals semiclassical particle (or
ray) behavior.
Note that Aðs; bÞ is dimensionless for any D. It deter-

mines the annihilation probability PðbÞ via

PðbÞ ¼ 1

v
ImðAðs; bÞÞ (6)

with ImAðs; bÞ as in Eq. (5) and v the velocity of the
colliding strings in their center of mass frame. This pre-
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scription can be shown to satisfy the usual unitarity con-
ditions in the large s limit [15–17].

The quantity �x2 � 4Y�0 ¼ 4�0 logðR2=�0Þ appearing
in (5) is interpreted as the quantum thickness of the string.
It measures the fluctuations about the classical straight
string configuration. The fact that it increases logarithmi-
cally with the string’s length reflects that it is energetically
less costly to excite oscillators on a long string. Similar
string spreading effects occur in high energy collisions and
for strings falling into black holes [18]. Note that this string
spreading does not include the effect of real (as opposed to
virtual) oscillator excitations as would be appropriate in
the Hagedorn phase of a string gas. In the Hagedorn phase
wound strings are highly excited and their spread in the
transverse directions is comparable to the length of the
dimension they wrap [19].1 These wiggly strings are very
likely to intersect, leading to rapid interactions which keep
the strings in equilibrium. But as the universe expands and
cools down, the equilibrium phase becomes one of pure
radiation. Then the oscillator excitations decay away and
the spread of the wound strings approaches �x. This
justifies our use of the amplitude (5) if b > �x.

It is useful to contrast the impact parameter picture to the
more standard method of obtaining a scattering probability.
Typically one derives a cross section �, and the collision
probability is simply n� where n is the number of targets
per transverse volume. If one has a collision probability in
impact parameter space, PðbÞ, then the scattering cross
section is obtained via [20,21]

� ¼ 1

n

Z
d?bnPðbÞ: (7)

In other words, n� is an averaged probability in impact
parameter space. Most frequently it is assumed that the
targets are uniformly distributed (n ¼ const) and one ob-
tains

� ¼
Z

d?bPðbÞ: (8)

In the case of the optical theorem, for example, one can
immediately derive � ¼ 1

vs ImAðs; t ¼ 0Þ using Eqs. (8),

(6), and (3). It is the n ¼ const assumption that we are
willing to relax here. There are two ways in which it can be
justified. First, if the targets are dense and uniform as in
collider experiments, a test particle in that case will interact
with targets at all impact parameters so one can integrate as
in (8). Second, if the time between collisions is much
smaller than the total time over which collisions take place,
then the test particle is given enough time to interact with
targets at all impact parameters (assuming each collision is

at a random impact parameter) and the averaging over
impact parameters is essentially a time average.
But if the winding modes in a string gas are dilute, with a

mean separation much larger than their thickness, the
dense target assumption above does not apply. It could still
be that, since the strings move in a compact space, they
collide repeatedly with each other and a time average is
appropriate. It then becomes a matter of time scales. We
need to compare the mean time between collisions with the
recollapse time, the time required for winding modes to
pull the universe back to a small-radius regime where
winding modes are no longer dilute. An additional effect
which must be taken into account is that the string coupling
is time dependent. This could also invalidate the use of a
time-averaged cross section.
We thus have to develop a model for the distribution of

interactions over impact parameters. We will return to this
in the next section after we set up the rest of the dynamics.

III. EQUATIONS OF MOTION

In this section we write down coupled dilaton-gravity
and Boltzmann equations for the matter degrees of free-
dom. For further details on the thermodynamic phases and
energy conservation see [9,11] and references therein.
The general setup is similar to [9], except that instead of

an anisotropic universe we consider d growing dimensions
all with the same radius, and hold the remaining 9� d
dimensions frozen at the self-dual radius. By removing the
randomness in the choice of initial radii present in [9] we
can see more clearly the dependence of the winding anni-
hilations on the number of growing dimensions.
We consider type IIA string theory with a flat

Friedmann-Robertson-Walker metric on a torus for the
d ¼ D� 1 growing dimensions,

ds2 ¼ �dt2 þ �0e2�ðtÞ
X
i

dx2i ; 0 � xi � 2�; (9)

and a homogeneous shifted dilaton ’ðtÞ. From now on we
set �0 ¼ 1. When the metric and dilaton are coupled to
matter, the equations of motion are

€’ ¼ 1

2
ð _’2 þ d _�2Þ; €� ¼ _’ _�þ 1

8�2
e’P; (10)

and the Hamiltonian constraint (Friedmann equation) is

E ¼ ð2�Þ2e�’ð _’2 � d _�2Þ: (11)

Here E is the total energy in the string gas and P is the
pressure (times the volume) in d dimensions.

A. Matter content and Boltzmann equations

The background equations of motion are coupled to
phenomenological Boltzmann equations that govern the
evolution of matter. We model matter with three species:

1In the Hagedorn phase strings perform a random walk in all
directions. As their energy scales with their length, their mean
extent in all directions scales as

ffiffiffiffi
E

p
. This is the dependence of

the winding number on energy as we will see in the section on
thermodynamics.
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(i) Winding modes that evolve according to

_W ¼ ��WðW2 � hWi2Þ: (12)

We specify the interaction rates � and the thermal
equilibrium values h�i below. The total energy in
winding and antiwinding modes is EW ¼ 2dWe�

and their contribution to the pressure is PW ¼
�2We�.

(ii) Radiation, or pure Kaluza-Klein (KK) modes,
evolve according to

_K ¼ ��KðK2 � hKi2Þ: (13)

The energy in KK and anti-KK modes is EK ¼
2dKe��, and their pressure is PK ¼ 2Ke��.

(iii) Finally we include string oscillators, or massive
string modes, as pressureless matter. The oscillator
modes fill up the energy budget via Eosc ¼ E�
ðEW þ EkÞ. We do not need a Boltzmann equation
for these modes since the dilaton-gravity equations
of motion automatically conserve energy, dE ¼
�PdV.

B. Thermodynamic phases and interaction rates

Near the self-dual radius the gas of strings is in a high
density Hagedorn phase. The thermodynamics of this
phase has been studied in [22,23]. The quantities of interest
here are the equilibrium values of the winding and KK
numbers2

hWi ¼ 1

12

ffiffiffiffi
E

�

s
e��; hKi ¼ 1

12

ffiffiffiffi
E

�

s
e�: (14)

Since E � 1 most of the energy in the Hagedorn phase

resides in oscillator modes (Eosc ’ E� ffiffiffiffi
E

p
).

As the volume of the universe grows and the energy
density drops, the equilibrium state should be one with
only radiation.3 As the condition for that transition we set

E

Vd

� cdT
dþ1
H (15)

with TH the Hagedorn temperature, Vd ¼ ð2�Þded� the
volume of the large dimensions, and cd a Stefan-
Boltzmann constant appropriate to the IIA gas of 128
massless Bose and Fermi degrees of freedom in d dimen-
sions,

cd ¼ 128
2d!�ðdþ 1Þ
ð4�Þd=2�ðd=2Þ ð2� 1=2dÞ: (16)

In this phase the equilibrium values are

hWi ¼ 0; hKi ¼ 1

2d
Ee�: (17)

That is, at equilibrium all the energy is in radiation (KK
and anti-KK modes).
Now we need to specify the interaction rates entering the

Boltzmann equations. Recall that for winding modes, with
an impact parameter b in D� 4 dimensions, the interac-
tion probability isPðbÞ ¼ 1

v ImAðs; bÞwith ImAðs; bÞ given
in (5). For two wound strings moving in the x1 direction
and with opposite winding along x2, the right-moving
momenta are pR1;2 ¼ ðE;	Ev;	R=�0Þ so sR ¼ �ðpR1 þ
pR2Þ2 ¼ 4E2 ’ ð2R=�0Þ2 for slowly moving strings.
Putting things together, the interaction probability per
unit time (per winding mode in the direction of motion)
can be written as

�W ¼ �0 � �b

� ��0

4

�2
10

V

�
2R

�0

�
2
��

2�R

ð��x2Þ1=2
�
D�4

e�ðb2=�x2Þ
�

(18)

with V the total spatial volume of the 9-torus. In terms of

our variables, and with �0 ¼ 1, we have
�2
10

V ¼ 1
2ð2�Þ e

’ and

R ¼ e�. Note that �0 is the interaction rate used in [9].
As explained earlier, an impact parameter representation

is appropriate only in the radiation phase, when the sepa-
ration between winding modes r is larger than the string
thickness �x. From the thermodynamic distributions of
[23] we can estimate how the mean velocity �v of a single
winding mode depends on R and E (see Appendix A).4 The
mean time between collisions, or recollision time, is then
tr ’ r

�v . In practice, as we numerically integrate the equa-

tions of motion, once we are in the dilute regime we
randomly choose an impact parameter b on every recol-
lision time. The impact parameter is chosen at random,
from a uniform distribution in the transverseD� 4 dimen-
sions, up to the maximum value b ¼ r. In effect, under the
assumption of isotropy and even distribution of winding
modes, we treat their interactions as d-many copies of a
single interaction over a periodic lattice rd (d ¼ D� 1).
We have now enough information to determine �b.
Another concern, raised earlier, is that in the dilute

regime the winding strings might not have time to collide
before the universe recollapses to a dense Hagedorn phase.
In principle this could happen even in D ¼ 4. We test for
this as follows. Upon entering the dilute regime we esti-
mate the recollision time tr and turn off interactions, i.e. set
� ¼ 0. If the negative pressure from the frozen winding

2These values are derived under the assumption that the
microcanonical energy is split equally amongst all dimensions;
see [9].

3See [24,25] for a detailed treatment of the conditions for
equilibrium between massive and massless modes in a string gas.

4Even though we are working off-equilibrium we consider the
equilibrium velocities to be a good approximation. In other
words, we are assuming kinetic equilibrium and explore the
possibility of chemical equilibrium. To be precise, note that �v ¼
vrms ¼

ffiffiffiffiffiffiffiffiffihv2ip
is the root-mean-squared velocity.
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modes recollapses the universe in a time smaller than tr, it
means that freezing the interactions was consistent; that is,
the winding modes truly had no time to collide. On the
other hand, if after time tr we are still in the dilute regime,
then string interactions must be taken into account.

Thus (18) provides our description of string interactions
in the dilute regime. In the Hagedorn phase the strings have
highly excited oscillator modes which enhance the inter-
action rates since more string is available. This was studied
in [9], and it amounts to inserting an overall factor of 169 E in

the Boltzmann equations.
We also need to specify the interaction rate for KK

modes. Since the wavelength of these modes grows with
R, a semiclassical impact parameter picture at large R is
not appropriate. Instead we should average over impact
parameters. Since we already know the averaged interac-
tion rate �0 for winding modes, by T-duality we can take
�K ¼ �0j�!��.

C. Initial conditions

We need to integrate the coupled Eqs. (10), (12), and
(13) subject to the constraint (11). We need six initial
conditions: ’0, _’0, �0, _�0, W0, and K0. In this section
we describe our method for sampling from the space of
initial conditions. The basic idea is to fix the value of _’,
scan over allowed values of �0 and ’0, and average over
the values of _�0, W0, and K0 using a suitable probability
distribution.

For effective supergravity to be valid and to ensure weak
coupling we take _’0 ¼ �1 and ’0 & �1. Recall that the
dilaton evolves monotonically to weaker coupling with the
absolute value of its velocity decreasing [9].

With _’0 and ’0 fixed we consider the universe at
equilibrium with _� ¼ 0 and � ¼ 0 (at the self-dual radius).
Calculating the energy Eeq ¼ Ej _�¼0 determines the equi-

librium number of winding and KK modes per dimension
the universe would have at the self-dual radius,

hWisd ¼ hKisd ¼ 1

12

ffiffiffiffiffiffiffi
Eeq

�

s
:

We will use these values to set upper (lower) bounds for
choosing W0 (K0) below, once the volume fluctuates to
larger values.

Next we choose the scale factor �0 of the d-torus.5 We
take �0 > 0 since by T-duality we need not consider
smaller volumes. Having already determined Eeq, choosing

�0 fixes the energy density and thus the equilibrium ther-
modynamic phase. The choice of �0 can be thought of as
merely a choice of initial condition, but since we choose
the winding and KK modes with respect to their values at

� ¼ 0 (see below) it is more appropriate to interpret it as a
fluctuation from � ¼ 0 to a larger volume. Since we are
choosing �0 at random, we are then assuming the thermal
distribution to be flat. This is not an arbitrary choice. The
entropy to leading order in the Hagedorn phase is S0 ’
E=TH, and thus it costs no entropy or energy for such a
fluctuation. To next order the dependence of the entropy on
the radii R ¼ e� for d spatial dimensions is [23,26]

S1 ’ log½1� �ð2dÞ�1ð�EÞ2d�1e��E

with�� 1=R2. Even though this contribution is very small
for the ranges of energies and radii we consider, it would be
interesting to study more precisely the effect that these
corrections give to our scenario.
The Hubble rate _� can also fluctuate away from zero,

which is the value that maximizes the entropy. In the
Hagedorn phase the entropy is given to a good approxima-
tion by S ¼ E=TH. Thus _�0 is chosen randomly from the
Gaussian distribution

eS / e� _�2
0
=ð2�2

HÞ (19)

with �2
H ¼ THe

’0

2ð2�Þ2d . In the radiation phase the entropy is

S ¼ dþ1
d cdVdð E

cdVd
Þd=ðdþ1Þ. Using (11), to leading order in

_�0 we have the distribution

eS / e� _�2
0
=ð2�2

r Þ (20)

with

�2
r ¼

�
	

	H

�
1=ðdþ1Þ

�2
H; 	 ¼ Ej _�¼0

Vd

;

	H � cdT
dþ1
H :

(21)

It remains to choose the initial winding and KK num-
bers. Depending on whether we are in the radiation or
Hagedorn phase, the equilibrium number of winding
modes could be zero or not. Since we do not want to begin
with zero winding (we would not be testing the BV mecha-
nism in that case) the lowest value ofW we may pick is 0.5,
our chosen threshold between zero and nonzero winding.
The furthest we can fluctuate from equilibrium (the largest
winding) is Wsd. However, it is possible that the volume is
so large that there is not enough energy to support that
much winding. This occurs if Wsd > Ee��=ð2dÞ. Putting
everything together, the initial winding number is chosen
randomly in the range�

Maxf0:5; hWig;Min

�
hWisd; E2d e

��

��
: (22)

In the Hagedorn phase the KK number can fluctuate be-
tween hKisd and the equilibrium value at the given �0, so
we choose a value randomly in this range. In the radiation
phase, givenW0, we compute the energy in winding EW ¼
2dW0e

�. The rest of the energy should be available to

5We consider the dynamics of d dimensions, while the remain-
ing 9� d are kept frozen at the self-dual radius, � ¼ 0 with _� ¼
0 for all times.
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radiation with the maximum KK number being Kmax ¼
ðE� EWÞe�=ð2dÞ. Therefore K0 is chosen randomly in the
range ðhKisd; KmaxÞ. If Kmax < hKisd, we set K0 ¼ Kmax.

6

Once initial conditions are fixed, we integrate the equa-
tions of motion until either the winding modes annihilate
(W < 0:5) or the interactions freeze out, which we define
as �0W < 0:1H. We use the maximum rate �0 instead of
the total �W to allow for the possibility that, depending on
the randomly chosen value for b, strings could interact
even for D> 4.

IV. RESULTS

With _’0 fixed at�1we can scan initial conditions over a
two-dimensional lattice of points ð�0; ’0Þ. For each lattice
point we do 1000 runs to average over different choices of
_�0, W0, and K0.
The results for values of d ranging from 9 to 3 are

contrasted in Figs. 1 and 2. For all values of d we find
that equilibrium is maintained during the Hagedorn phase.
A consequence of this is that for a large range of initial
conditions, as long as the system starts out in the Hagedorn

phase, it will remain forever trapped there (see Fig. 2). This
is related to the limiting value of �ðtÞ as t ! 1 in the
solution to the equations of motion (10) in thermal equi-
librium [11], and it is also the same behavior found in [26]
at exact equilibrium. When the volume is large enough
such that hWi ! 07 yet the system is still in the Hagedorn
phase, then the universe decompactifies for any d. This
region gets narrower as d increases as seen in Fig. 2. But
for d > 3 this is essentially the only region in parameter
space where decompactification occurs. If the system gets
to the radiation era, as the oscillators decay to massless
modes and the long strings start diluting, hardly any choice
of initial conditions leads to decompactification. For d > 3
and outside the Hagedorn phase there are few cases (of
order 1%) in which the universe decompactifies. Those rare
cases have a very small winding number and happen to
have collisions at small impact parameters.
By contrast, for the d ¼ 3 case shown in Fig. 1, we see

that even in the radiation phase long strings are able to
annihilate. It is interesting to note that the effects of large �
enter in two competing ways. First, because of the factor of
s� R2 ¼ e2� in the amplitude, long strings interact more
efficiently, even at weak coupling. But at large � the effect

FIG. 1 (color online). Number of cases decompactifying as a function of ’0 and �0 for different choices of growing dimensions d.
For d ¼ 4; . . . ; 9 the z axis is clipped at 200 to make the fewer decompactifying cases visible.

6When integrating the equations of motion we need to be
careful not to produce more radiation than energy conservation
allows. If at some point E ¼ EK þ EW , that is, all the oscillators
decay, we set hKi ¼ ðE� EWÞe�=ð2dÞ.

7In practice this would be hWi< 0:5. We round W to zero and
not hWi.
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of dilution is more dramatic and strongly (exponentially)
suppresses interactions for d > 3.

A comment on the choice _’0 ¼ �1. We could have
considered smaller (absolute) values for _’0, still valid
within supergravity. This can be compensated by a small
(logarithmic) shift in the initial dilaton to smaller values
such that the initial energy remains the same. The qualita-
tive results should be unaltered.

V. SUMMARYAND DISCUSSION

The Brandenberger-Vafa mechanism relies on a classi-
cal dimension-counting argument, namely, that the world
volumes of one-dimensional objects will generically inter-
sect in at most three spatial dimensions. To see the mecha-
nism at work one needs to be in a regime where strings
behave as semiclassical one-dimensional objects. That is,
one needs their length to be much larger than their effective
quantum thickness, and also their thickness to be much
smaller than the size of the transverse directions (the space
is compact). We realized these conditions in a simple
isotropic setup where the length of the string R was the
same as the size of the compactification manifold. With

oscillators excited, as in the Hagedorn phase, strings have a
significant spread in all directions and the classical picture
fails. But when oscillators decay, as in the radiation phase,
the thickness of strings grows as�x� ffiffiffiffiffiffiffiffiffiffi

logR
p

. Thus strings
begin to behave classically as R=

ffiffiffiffiffiffiffiffiffiffi
logR

p
grows. To model

string interactions in this regime we developed an impact
parameter representation of the string scattering amplitude.
This allowed us to show that in this regime the BV mecha-
nism indeed operates and favors decompactification of
three spatial dimensions.
To enter this regime we had to consider departures from

equilibrium, often large. Clearly in the radiation phase this
is necessary since the equilibrium number of winding
strings is zero. In the Hagedorn phase strings rapidly
come to equilibrium and the pressure vanishes. This means
the universe tends to remain stuck in the Hagedorn phase,
and for some number of dimensions to decompactify a
large fluctuation is needed, either in the Hubble rate or in
the initial volume, to send the system to a regime where the
equilibrium winding number is zero. As the distribution
(19) typically allows for only small fluctuations in the
Hubble rate, we had to consider large fluctuations in the
volume to realize the BV mechanism. An important next
step would be to understand the likelihood of such a
fluctuation taking place in the early universe.
One shortcoming of our framework was that, even

though we considered a dilute gas of winding strings, we
modeled the resulting pressure as a homogeneous term in
the gravity equations of motion. This led us to consider
their backreaction on spacetime in an all-or-nothing man-
ner, in which any amount of winding would oppose expan-
sion while zero winding would not. As far as testing the
interactions and eventual annihilation of strings, which was
our focus, this should not be a concern. But a more detailed
investigation of string gas cosmology should address the
issue of spatial inhomogeneity. Finally it would be inter-
esting to extend the analysis of this paper to the more
general context of M theory, taking into account the effects
of the full p-brane spectrum.
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APPENDIX: ROOT-MEAN-SQUARE VELOCITYOF
WINDING MODES

Thermodynamic quantities can be calculated using
string distributions derived by Deo, Jain, and Tan [22,23]
in the microcanonical ensemble. They show that the aver-
age number of strings with winding charge vector w,
Kaluza-Klein charge vector k, and energy 
 on a D-torus

Trapped in Hagedorn

d 3

Hagedorn Radiation 0 0, d 3

Hagedorn Radiation 0 0, d 4

d 4

d 6

d 9

No Winding

Equilibriate out of Hagedorn

for 0 10

1 2 3 4 5

10

8

6

4

2

FIG. 2 (color online). A plot of the ð�0; ’0Þ plane contrasting
the cases d ¼ 3, 4, 6, 9. If the initial equilibrium winding number
in the Hagedorn phase is nonzero, the system typically stays
trapped in the Hagedorn phase, unless the initial Hubble rate is
large and the initial winding number is small (thin dark region
labeled ‘‘Equilibriate out of Hagedorn for _�0 ¼ 10�’’). If the
initial equilibrium winding number is zero in the Hagedorn
phase, then the universe typically decompactifies in any number
of dimensions (regions in the upper left corner, labeled by
dimension). But if the universe begins in a radiation phase
with a dilute gas of winding strings, then only d ¼ 3 will
decompactify (orange region to the right of the grey line).
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with total energy E is given by

Dð
;w;k; EÞ ¼ N



uDe�uqTA�1q=4; (A1)

where

u ¼ E


ðE� 
Þ ; q ¼ ðw;kÞ; N ¼ ð2 ffiffiffiffi
�

p Þ�2Dffiffiffiffiffiffiffiffiffiffi
detA

p ;

A ¼
1

4�2R2
i

�ij 0

0
R2
i

4�2 �ij

0
@

1
A:

One can consider a unit winding mode, w1 ¼ ð1; 0; . . .Þ,
along one of the d large dimensions (Ri ¼ R, i ¼ 1; . . . ; d

and Rj ¼ 1, j ¼ dþ 1; . . . ; D) and calculate the mean

momentum squared of the string.

hk2i ¼
R
E
0 d


R
dDkk2Dð
;w ¼ w1;k; EÞR

E
0 d


R
dDkDð
;w ¼ w1;k; EÞ

¼ dR2

2�2

R
E
0
d


 uD=2�1e�u�R2

R
E
0
d


 uD=2e�u�R2 : (A2)

Given the total energy E and the radius R, the two integrals
above can be evaluated with saddle point methods or
numerically. For a heavy winding mode (large R) we

have hv2i ’ hk2i
R4 and vrms ¼

ffiffiffiffiffiffiffiffiffihv2ip
.
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