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We have a well-known equation in cosmological perturbation theory which appeared only by several

simple algebraic errors made in many textbooks. There have been attempts to modify Newtonian

equations aiming to reproduce that incorrect equation. We clarify why such attempts are wrong, present

the correct equation to try in the modification, and explain its own limitation as well. We show that any

form of density perturbation equation is possible by a suitable gauge condition.
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The well-known equation in the literature we would like
to address in this work is this one:

€� x þ 2H _�x �
�
4�G�ð1þ wÞð1þ 3wÞ þ c2s

�

a2

�
�x ¼ 0;

(1)

where � � ��=� a relative energy-density fluctuation, a
the cosmic scale factor, H � _a=a, w � p=� and c2s �
_p= _�. The subindex x indicates a certain gauge condition
chosen. In order to make our argument simple we consider
w ¼ constant, thus c2s ¼ w, and a flat background with
vanishing cosmological constant, K ¼ 0 ¼ �.

Our main point is that Eq. (1) is a wrong equation for
w � 0. Wewill show that it is possible to derive Eq. (1) in a
certain class of gauge conditions. However, we will show
that in relativistic perturbation theory by a suitable gauge
choice one can derive any form of differential equation for
�x. In the literature, Eq. (1) was derived merely by alge-
braic errors. There have been attempts to modify Newton’s
gravity in an ad hoc way in order to include effects of
pressure. The modifications, unfortunately, were designed
to reproduce Eq. (1). The correct equation one should aim
in such modifications must be Eq. (4) to be presented later.
We decide to clear the issue especially because Eq. (1) is
quite popular in cosmology textbooks.

Equation (1) appears in several textbooks.
Equation (15.10.57) in [1], Eq. (10.118) in [2], problem
(6.10) in [3], Eq. (11.65) in [4], Eq. (15.25) in [5], and
Eq. (10.9.2) in [6] are in error. All these errors are due to
fallible algebraic mistakes made in the synchronous gauge.
In the presence of pressure the equation for � in that gauge
becomes a third-order differential equation even in the
large-scale limit. In the synchronous gauge, we have [7,8]

€�� þ 2H _�� �
�
4�G�ð1þ wÞð1þ 3wÞ þ c2s

�

a2

�
��

¼ 3c2sð1þ wÞ�
a
Hv�; (2)

_v � þ ð1� 3c2sÞHv� ¼ 1

a

c2s
1þ w

��; (3)

where �� and v� are the same as � and v, respectively, in
the synchronous gauge (� � 0). If we ignore the right-
hand side of Eq. (2) we recover Eq. (1). Notice, however,
that for w � 0 the term in the right-hand side cannot be
ignored even in the large-scale limit (despite the presence
of the Laplacian!). Thus, for w � 0 we inevitably have a
third-order differential equation for ��; this is because the
synchronous gauge fails to fix the gauge mode completely
[9–11].
The truncated second-order equation in [1] picks up a

gauge mode instead of the physical decaying (in an ex-
panding phase) solution. The error in [2] is based on
imposing the synchronous gauge (� � 0) and the comov-
ing gauge (v � 0) simultaneously, which is not allowed in
the presence of pressure, and happens to end up with Eq.
(1). In [4–6] the authors proposed a simple modification of
the Newtonian theory which was designed to reproduce
Eq. (1). Many works have been published based on this
wrong equation.
We have addressed this issue in Sec. 4 of [7], and Sec. 5

and Appendix A of [8]. Yet another error arriving at Eq. (1)
can be identified in Hawking’s covariant approach in
Sec. VI of [12]; the error was resolved in Sec. III-b-i of
[13]. In the following we will present a remaining issue of
whether Eq. (1) is possible in the relativistic theory and its
possible physical significance.
The correct expression is available in the comoving

gauge as [10,14,15]

€�v þ ð2� 3wÞH _�v �
�
4�G�ð1� wÞð1þ 3wÞ

þ c2s
�

a2

�
�v ¼ 0; (4)

where �v is the same as � in the comoving gauge (v � 0)
or a unique gauge-invariant combination between � and v:
�v � �þ 3ð1þ wÞaHv, see Eq. (6) below. Later we will
explain why we believe this is the equation for density
perturbation in a relativistic context. It can be written in a
compact form [8]
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1þ w

a2H

�
H2

að�þ pÞ
�
a3�

H
�v

���� � c2s
�

a2
�v ¼ 0; (5)

which is valid for general w � pð�Þ=�, and in the pres-
ence of general K and �. For a completely general equa-
tion in the presence of stresses, see Eq. (45) in [8].

Although nontrivial, it is possible to derive Eq. (1) in the
relativistic cosmological perturbation theory; in fact, we
will show that any form of differential equation for � is
possible in Einstein’s gravity by a suitable gauge choice.
One simple way is to use a gauge transformation from the
equation in the comoving gauge. Under a gauge trans-

formation x̂a ¼ xa þ ~�aðxeÞ with ~�0 � �t=a, we have
[11,16]

�̂ ¼ �þ 3ð1þ wÞH�t; v̂ ¼ v� �t=a: (6)

Let us take xa and x̂a as coordinates in the comoving gauge
(v � 0) and the yet unknown gauge (x � 0) used in
Eq. (1), respectively. Thus

�x ¼ �v þ 3ð1þ wÞH�t; vx ¼ ��t=a; (7)

where �t ¼ �t
v!x. Combining Eqs. (1), (4), and (7) we can

derive

ðH�tÞ��þ2HðH�tÞ��
�
4�G�ð1þwÞð1þ3wÞþc2s

�

a2

�
H�t

¼� w

1þw

�
H _�v�8�G

3
�ð1þ3wÞ�v

�
: (8)

As long as the gauge transformation �t satisfies Eq. (8), we
can achieve Eq. (1) in the x-gauge condition. In the large-

scale limit, using the background solution a / t2=½3ð1þwÞ�,
Eqs. (1), (4), and (8) have solutions

�v ¼ cgt
ð½2ð1þ3wÞ�=½3ð1þwÞ�Þ þ cdt

�½ð1�wÞ=ð1þwÞ�; (9)

H�t ¼ wOð�cgÞ þ 1

3ð1þ wÞ ð�cdt
�½ð1�wÞ=ð1þwÞ�

þ �cgt
ð½2ð1þ3wÞ�=½3ð1þwÞ�Þ þ �cdt

�1Þ; (10)

�x ¼ ðcg þ �cgÞtð½2ð1þ3wÞ�=½3ð1þwÞ�Þ þ �cdt
�1: (11)

Equation (8) becomes highly complicated in the case of
general w with K and �. Apparently, it is a nontrivial
matter to explicitly specify the gauge condition x.

Although we showed that Eq. (1) is possible in a certain
class of gauge conditions, this does not imply that the
original errors made in the literature can be accepted.
Nor does this imply that the ad hoc modifications of
Newton’s gravity aiming to reproduce Eq. (1) are sup-
ported. Our above analysis reveals that, in fact, via gauge
transformation we can derive any form of linear differen-
tial equation for � with arbitrary coefficients. Let us write
Eqs. (1) and (4) using differential operators as Lx�x ¼ 0
and Lv�v ¼ 0. Now, using Eq. (6) we can show that as
long as �t � �t

v!y satisfies

L y½3ð1þ wÞH�t� ¼ �Ly�v; (12)

we have an equation Ly�y ¼ 0 in the y-gauge for an

arbitrary linear differential operator Ly. For y ¼ x we

have Eq. (8). By a suitable gauge condition we could
even have Ly ¼ 0, so that we have �y ¼ 0 in that gauge

condition: in fact, this is the well-known uniform-density
gauge introduced in [11]. Therefore, existence of an equa-
tion like Eq. (1) does not guarantee its physical signifi-
cance. The point is that Eq. (1) is nothing other than a
wrong equation derived by errors made in the literature.
We would like to note that these popular but common

errors found in the synchronous gauge are only due to
simple algebraic errors made, and are not due to any
esoteric aspect of the gauge choice available in the rela-
tivistic perturbation theory, see [7,8]. Wewish to recall that
although one may need to do more algebra in tracing the
remnant gauge mode in the synchronous gauge this was
done carefully in the original study by Lifshitz [9].
As we mentioned above one should aim to reproduce

Eq. (4) in any heuristic pseudo-Newtonian attempt. We
have the following reasons: (i) All the original derivations
of Eq. (1) were based on algebraic errors made in the
synchronous gauge; (ii) using gauge transformation we
can derive an arbitrary form of differential equation for
�; (iii) in the zero-pressure case the comoving gauge and
the synchronous gauge are the only fundamental gauge
conditions used in the literature which reproduce the
Newtonian density perturbation equation [8,10,11];
(iv) in the presence of pressure the synchronous gauge fails
to produce a second-order differential equation; and (v) in
the zero-pressure case, the density perturbation equation in
the comoving gauge coincides exactly with the one known
in Newton’s gravity even to the second-order perturbations,
see Sec. VII.C in [17,18].
By modifying the Newtonian hydrodynamic equations

to include pressure we can easily reproduce the cosmologi-
cal background equations; see [19] for an early attempt.
According to Sachs and Wolfe in [20], ‘‘When these modi-
fied equations were perturbed to first order, their solutions
did not agree with the relativistic results, even qualita-
tively.’’ As yet we do not have the modification which
reproduces the proper relativistic result in Eq. (4).
Moreover, even in the case we succeed to get such a
modification valid to the linear order, it is not justified to
use that equation in nonlinear situations; for the density
perturbation equation in the presence of pressure to the
second order, see Sec. VI and particularly Eq. (132) in [21].
It is dangerous to rely on pseudo-Newtonian equations
without proper confirmation in the relativistic gravity.
Then, we do not see the use of such modifications except
for the heuristic purpose of understanding the already
known results in the relativistic theory. Currently, no
such a modification is available even to the linear order
in the cosmological perturbation.
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