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Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived

time-dependent field configurations emerge dynamically during symmetry breaking in an expanding

de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an

SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configu-

rations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe.

We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this

effect is a result of parametric resonance. For the SU(2) case, we see about 4% of the final energy density

in oscillons.
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I. INTRODUCTION

Spontaneous symmetry breaking plays a key role in our
current understanding of particle physics and is expected to
have been a major factor in determining the physical
properties of the early Universe [1]. In cosmology, two
aspects of symmetry breaking are of great interest: it
typically happens far from thermal equilibrium and it is
inherently nonlinear. In the context of the electroweak
phase transition, for example, an initially thermalized state
is tossed out of equilibrium as the Higgs evolves to acquire
a nonzero expectation value. In inflation, a nonthermal
state thermalizes to reheat the Universe with an explosive
energy transfer from the inflaton to other field modes. It is
thus of great interest to study the dynamics of symmetry
breaking in an expanding background numerically in order
to isolate key features that may escape analytical
techniques.

Here, we report results on three-dimensional simulations
for two situations: a single, self-interacting scalar field with
a double-well potential, and an SU(2) non-Abelian Higgs
model. In Refs. [2,3] results have been obtained for the
case of a single scalar in one dimension. It was shown that
long-lived, time-dependent field configurations known as
oscillons [4–6] emerged spontaneously and contributed an
amazing 50% of the total energy density. These initial
results triggered the present study in the context of more
realistic models. There are two broad classes of scalar field
oscillons that have been studied in the literature, small and
large-amplitude. Small-amplitude oscillons do not probe

the highly nonlinear domain of the potential, and typically
have large spatial widths [3,7,8]. Their small amplitude
makes it possible to study them using linearization tech-
niques. Large-amplitude oscillons are harder to investigate
analytically [9–11]. Simulations of scalar models in static
two-dimensional and three-dimensional backgrounds [12]
and expanding one-dimensional backgrounds [2,3] indi-
cate that mostly large-amplitude oscillons are excited dur-
ing symmetry breaking. As we show next, this is also the
case for an expanding three-dimensional spacetime. The
situation is different for SU(2) models, as we explain
below.
This paper is organized as follows: in the next section,

we introduce the scalar field model in an expanding
Universe and discuss its lattice implementation. We report
our results for a double-well potential, showing that oscil-
lons contribute about 1.2% of the energy density. In
Sec. III, we show that, contrary to naive expectation, for
certain values of the expansion rate oscillons may have
their lifetimes enhanced. We explain this result analytically
by making use of parametric resonance. In Sec. IV, we
introduce the SU(2) non-Abelian Higgs model and discuss
its lattice implementation in an expanding Universe. In
Sec. V, we discuss the results for this model. In particular,
we show that, as in the case of a real scalar field, oscillons
contribute a nontrivial percentage of the total energy den-
sity. Furthermore, our results indicate that the cosmologi-
cal expansion seems to favor the formation of oscillons for
a wider range of parameters as compared to the static case,
where oscillons were found only in a 2:1 mass ratio for the
Higgs and gauge boson. In Sec. VI, we briefly discuss
possible application of oscillons in cosmology, which we
hope to explore in forthcoming work, and conclude with a
summary of our results.
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II. SCALAR FIELD MODEL

We consider a scalar field �ðx; tÞ propagating in
(3þ 1)-dimensional de Sitter spacetime with Hubble
constant H ¼ _a=a and a double-well potential Vð�Þ ¼
ð�=4Þ½�2 ��2=��2. Using @ ¼ c ¼ kB ¼ 1 and defining

dimensionless variables � ¼ �ð�=
ffiffiffiffi
�

p Þ�1 and ~x� ¼ �x�

(� ¼ 0, 1, 2, 3), the equation of motion satisfied by � is

€�þ 3
_aðtÞ
aðtÞ

_� ¼ r2�

aðtÞ2 þ���3; (1)

where overdot and r denote derivatives with respect to
dimensionless time ~x0 and space ~xi. The expansion rate
becomes H ¼ � ~H, where ~H � d lnðaÞ=d~x0.

Our initial conditions simulate quasithermal states of the
free massive scalar field. The parameters that control the
distribution of the lattice modes are the temperature T and

the mass of the field m ¼ �
ffiffiffi
2

p
. The simulation space

consists of a cube with comoving size L and volume V ¼
L3 discretized on a regular lattice with spacing �xi ¼ �r
(i ¼ 1, 2, 3). We apply periodic boundary conditions and
label the free field’s normal modes by k ¼ ð2�ni=LÞ,
where n ¼ ðnx; ny; nzÞ and the ni are integers ni ¼
�N=2þ 1 . . .N=2. Here N ¼ L=�r is the number of
lattice points per side. Each free mode is described by
a harmonic oscillator with frequency !2

k ¼ð2 sinðk�r=2Þ=�rÞ2 þm2, where k ¼ jkj. The initial con-
ditions for the field � are then given by

�ðr; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p X
k

ffiffiffiffiffiffiffiffiffi
@

2!k

s
½�ke

ik�r þ ��
ke

�ik�r�;

_�ðr; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p X
k

ffiffiffiffiffiffiffiffiffi
@!k

2

s
½�ke

ik�r � ��
ke

�ik�r�;
(2)

where �k is a random complex variable with phase
distributed uniformly on ½0; 2�Þ and magnitude drawn
from a Gaussian distribution such that hj�kj2i ¼
½cothð@!k=2TÞ � 1�=2. This is the amplitude distribution
for a quantum harmonic oscillator [13] with the zero-point
motion subtracted. On average, modes with @!k & T get
assigned energy T, in agreement with equipartition, while
the energy per mode goes rapidly to zero for @!k * T. We
thus need a lattice fine enough to resolve the high k modes
that are excited at high temperatures. Using a value of �r0
that is at least 10 times smaller than the wavelength of the
mode satisfying @!k � T is enough to provide a good
continuum limit.

We discretize the equation of motion using second-order
space derivatives with lattice spacing �r in all directions.
We then step forward in time using a fourth-order Rünge-
Kutta method. By the Courant condition, we need to keep
�t < aðtÞ�r at all times. We impose a maximum physical
lattice spacing �rmax that is fine enough to resolve field

configurations at physical sizes that we expect for oscil-
lons. When aðtÞ�r � �rmax, we refine the lattice by bring-
ing the lattice spacing back to�rmax=2 and inserting points
by polynomial interpolation. We pick �rmax and �t small
enough so that any further reduction does not significantly
affect the final configuration of a run. All our simulations
maintain energy conservation to a part in 103 or better.
We evolve the field �ðx; tÞ in a box with 2563 lattice

points and �r0 ¼ 0:05��1. We keep �t ¼ 0:01��1 con-
stant throughout the simulation. As the lattice spacing
increases to �rmax ¼ 0:5��1, we insert points in the lat-
tice, bringing the spacing down to �rmax=2. We vary the
values of the expansion factorH and the initial temperature
T and evolve the field until it cools down to T=aðtÞ ¼
0:3�. After the Universe has expanded and cooled, we
observed persistent localized structures as peaks in the
energy density. We show a typical sequence of snapshots
in Fig. 1.
By isolating these peaks individually, we find that they

all share the typical signatures of spherically symmetric
oscillon configurations: their centers oscillate with the
typical oscillon frequency, as shown in the inset of
Fig. 2, and their energies coincide with the plateau energies
found in detailed oscillon studies [5,6,10]. The energy of a
configuration is calculated by integrating the field’s total
energy around its peak using a radius r ¼ 10��1. We
consistently found Eosc ’ 45�=�. We then measured the
fraction of energy in oscillons (Fig. 2) and the number of
oscillons nucleated as a function of temperature, which
scales simply as Nosc / V ¼ L3 / T3.
Although we quote results for H ¼ 0:01�, we have

performed simulations for a slower expansion rate of H ¼
0:005� obtaining similar qualitative behavior: for a wide
range of initial temperatures, �osc=�tot ¼ �osc � 1:2%.
Smaller values of H require impractical computation
time, but we do not expect any qualitative changes. We
note that since the simulations end with fairly large values
of �r ¼ 0:5��1, our results are lower bounds on �osc. Of
course, scalar field oscillons are not stable in three dimen-
sions and will decay after �osc � 104��1. Nevertheless,
during their lifetime, they may be responsible for several
important effects, as we discuss in section VI. We also note
that oscillons are prevented from forming if the horizon
size 1=H is of the order of the oscillon size, Rosc � 4��1.
For H * 0:1�, which fortunately is not very realistic,
large-amplitude fluctuations are flattened out before the
stabilizing effect of nonlinearities can kick in. In other
words, for oscillons to be cosmologically viable, we must
have Rosc=�H ¼ ~Rosc

~H � 1, where �H ¼ H�1 is the ho-
rizon length. This condition is easily satisfied for physics
below the Planck scale.

III. LIFETIME ENHANCEMENT

Having established that oscillons emerge dynamically in
an expanding background, we need to examine how the
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expansion affects their lifetime. For numerical efficiency,
we exploit the spherical symmetry of the final oscillon
configuration and reduce our system to an effectively
one-dimensional problem by letting r2� ! @2�=@r2 þ
ð2=rÞ@�=@r in Eq. (1). We find oscillons by setting the
initial field configuration to be Gaussian, �ðr; 0Þ ¼
2 expð�r2=R2

0Þ � 1, with boundary conditions �ðr !
1; tÞ ¼ �1, �0ð0; tÞ ¼ 0, and _�ðr; 0Þ ¼ 0 [5,6]. In the
absence of expansion, Gaussians with 2:4 & R0� & 4:5
settle into long-lived oscillon configurations.
We follow the same procedure as in three dimensions so

that as soon as the lattice spacing becomes �rmax ¼
0:1��1, Lmax * 2=H, we insert points via polynomial
interpolation, and bring the lattice spacing back to �r ¼
0:05��1. We then truncate the box to L * 1=H, which
cannot affect the oscillon at r ¼ 0. We always use a box of
initial size L0 ¼ 1=H þ 50��1 in natural units, and we
have verified that any run with L0 * 1=H gives identical
results. In Fig. 3, we show the effects of expansion for a
sample of initial configurations. There is a clear symmetry
about R0 ¼ 2:86��1, the longest-lived oscillon in the

FIG. 2 (color online). Fraction of energy in oscillons as a
function of temperature in units of �. Here �r0 ¼ 0:05��1,
�rmax ¼ 0:5��1, and H ¼ 0:01�. Error bars denote ensemble
averages over 10 runs. The inset shows the near-harmonic
oscillations of the oscillon core. A simulation of a typical run
can be viewed at [14]

FIG. 1 (color online). Sequence of time snapshots of the energy density. Time increases from left to right and top to bottom at times
t� ¼ 0, 50, 100, 150, 200, 250, H ¼ 0:01�, and T ¼ 6:0�. All snapshots show the energy density u with an isosurface at u ¼ 0:2�4.
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absence of expansion: radii to both sides of R0 ¼ 2:86��1

experience an increase in lifetime for a range ofH, with the
increase being more pronounced for shorter lifetimes. The
longest-lived oscillon, in turn, does not experience any
noticeable enhancement. The inset of Fig. 3 shows the
maximum fractional increase in lifetime ð�max � �0Þ=�0
as a function of initial radius R0. The lifetime enhancement
follows an approximate scaling law around R0 ¼ 2:86��1,
�osc�� jR0�� 2:86j0:05.

To understand the origin of the lifetime enhancement
caused by the expansion, we decompose the field as
�ðx; tÞ ¼ �avðtÞ þ 	�ðx; tÞ, where �av is the volume
averaged field. Linearizing Eq. (1) with respect to
	�ðx; tÞ and taking the Fourier transform, we obtain (for
k > 0)

	 €�ðk; tÞþ 3H	 _�ðk; tÞþ
�

k2

aðtÞ2þV 00ð�avðtÞÞ
�
	�ðk; tÞ ¼ 0:

(3)

Once the Gaussian has settled into the oscillon stage,
V 00ð�avðtÞÞ can be approximated by V00ð�avðtÞÞ ¼
�0 cosð!tÞ þ C, where �0 and C vary very slowly during
an oscillon’s lifetime and depend on the value of the initial
radius R0 and the Hubble constant H. Here !<m is the
oscillon’s frequency of oscillation. Introducing new varia-
bles !t ¼ 2z� �, and 	� ¼ expð�3Hz=!Þ
, Eq. (3)
becomes


00 þ ½Ak � 2q cos2z�
 ¼ 0; (4)

where Ak ¼ 1
!2 ½4k2=a2 þ 4C� 9H2�, q ¼ 2�0=!

2, and

prime denotes differentiation with respect to the new vari-
able z. Equation (4) is the Mathieu equation, which is
known to exhibit parametric resonance when Ak ’ l2, l ¼
1; 2; . . . [15]. Thus, particular combinations of values of C,

H and ! can lead to exponential amplification in the
oscillations of 
, and consequently 	�ðk; tÞ, at certain
modes k=a. Because C is a positive number, the Ak ’ 1
resonance window occurs for real values of k=a only for
very large values of H, which destabilize the oscillon
before it can lead to resonance. The Ak ’ 9 and higher
windows lead to resonances that are too weak to overcome
the damping due to the expansion. The Ak ’ 4 window,
however, can lead to parametric amplification of the domi-
nant oscillon wave vectors for the values ofH that generate
the observed lifetime enhancement depicted in Fig. 3.
The Ak ’ 4 resonance window leads to exponential am-

plification to the oscillations in 
 / e�z, where � ’ffiffiffi
5

p
q2=48 [16]. For small values of H, the amplification

overcomes the damping due to expansion. For higher
values of H, the damping overcomes the amplification,
and the oscillon decays. An example is shown in Fig. 4.

IV. SU(2) MODEL: IMPLEMENTATION

Because the SU(2) model is considerably more expen-
sive numerically to simulate, the range of experiments we
can carry out is limited. However, these experiments show
very similar behavior to the scalar model. We begin from
the Lagrangian density in the absence of expansion,

L ¼ �1
4F�� � F�� þ ðD��ÞyðD��Þ � �ðj�j2 ��2Þ2;

(5)

where the boldface vector notation refers to isovectors.
Here the Higgs field � is an SU(2) doublet, and the
SU(2) field strength and covariant derivatives are

FIG. 3 (color online). Lifetime, in units of ��1, for oscillons
formed from Gaussians with 2:4 	 R� 	 4:4, as a function of
expansion rate H in units of �. The inset shows the maximal
fractional increase in oscillon lifetime for different radii at Hmax.

FIG. 4 (color online). Oscillations in 	�ðk; tÞ for an oscillon
with R0 ¼ 2:5��1 and expansion rate H ¼ 0:006�, at times
3200 	 t� 	 3700. Here we plot a mode which starts at k=a ’
1:4� and gets redshifted to k=a ’ 0:1�. As k=a gets smaller, the
mode enters the resonance window, and its Fourier component
gets amplified and then redshifted away. In this case, ! ’ 1:4�
(<m ¼ ffiffiffi

2
p

�) and C ¼ 1:8�2, with Ak ¼ 4 for k=a ’ 0:4�,
which is the dominant wave vector of this oscillon (R ’ 2:9��1).
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F �� ¼ @�W� � @�W� � gW� 
W�; (6)

D�� ¼
�
@� þ i

g

2
� �W�

�
�; (7)

D�F�� ¼ @�F�� � gW� 
 F��; (8)

where � represents the weak isospin Pauli matrices. We
obtain the equations of motion

D�F
�� ¼ J�; D�D�� ¼ 2�ð�2 � j�j2Þ�; (9)

where the gauge current is J� ¼ g ImðD��Þy�� and we
work in the gauge W0 ¼ 0. With this choice, the covariant
time derivatives become ordinary derivatives and we can
apply a Hamiltonian formalism. The Wj fields have mass

mW ¼ g�=
ffiffiffi
2

p
, and the Higgs field has massmH ¼ 2�

ffiffiffiffi
�

p
.

To include the effects of expansion, we again work in
comoving coordinates with a scale factor aðtÞ. We now
have the action

S ¼
Z

d3raðtÞ3
�
1

2

X
j¼x;y;z

ðEj �Ej �Bj � BjÞ þ _�y _�

� 1

aðtÞ2
X

j¼x;y;z

ð@j�yÞð@j�Þ � �ðj�j2 ��2Þ2
�
;

(10)

where

Ej ¼ _Wj and

Bj ¼ � 1

2

X
j0;j00¼x;y;z

�jj0j00
�

1

aðtÞ@j0Wj00 � gWj0Wj00

�
: (11)

Here the dot indicates time derivative and Latin indices run
over space dimensions.

For numerical computation we put the theory on a
lattice, following the conventions and techniques used in
[17]. The field variables are the values of the�p field at the
lattice sites p and the spacelike Wilson lines

Up
j ðtÞ ¼ eigW

p
j ðtÞ��aðtÞ�x=2; (12)

emanating from lattice site p in the spacelike direction j.
Since the lattice equations are second order, we will find
each field at the next time slice based on the previous two.
We let t be the time for the current set of lattice points and
spacelike links and define tþ ¼ tþ�t and t� ¼ t� �t to
be the subsequent and previous times, respectively. We also
take tþ=2 ¼ tþ�t=2 and t�=2 ¼ t��t=2 to be the times

in between, which will be the times at which we evaluate
the timelike links.

We define the Wilson line for the link emanating from
lattice site p in the negative jth direction to be the adjoint
of the corresponding Wilson line emanating in the positive

direction from the neighboring site, Up
�jðtÞ ¼ Up�j

j ðtÞy,
where the notation p� j indicates the adjacent lattice

site to p, displaced from p in direction �j. At the edges
of the lattice we use periodic boundary conditions. We
define the elements of the field strength tensor, which are
centered on the timelike and spacelike plaquettes of the
lattice,

� �Ep
j ðtþ=2Þ ¼ 2

igaðtþ=2Þ�x�t logU
p
j ðtþÞUp

j ðtÞy and

� �Bp
j ðtÞ ¼

i

gðaðtÞ�xÞ2
X

j0;j00¼x;y;z

�jj0j00U
p
hðj0;j00ÞðtÞ; (13)

where Up
hðj;j0ÞðtÞ ¼ Up

j ðtÞUpþj
j0 ðtÞUpþjþj0

�j ðtÞUpþj0
�j0 ðtÞ, and

we have defined the logarithm of a 2
 2 matrix in the
form of Eq. (12) as

logUp
j ðtÞ ¼

igaðtÞ�x
2

Wp
j ðtÞ � �: (14)

We note that logXY � logX þ logY when the matrices
do not commute. The logarithms and exponentials needed
to convert between the group and the algebra can be
computed efficiently using

ei
n̂� ~� ¼ cos
þ in̂ � ~� sin


¼ cos
þ in̂z sin
 in̂x sin
þ n̂y sin

in̂x sin
� n̂y sin
 cos
� in̂z sin


� �
;

(15)

where n̂ is a unit vector and the link matrices have n̂
 ¼
Wp

j ðtÞgaðtÞ�x=2. For efficiency, we replace sin
 ! 
 and

cos
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
when computing both the logarithm and

the corresponding exponential. This discretization then is
equivalent (without expansion) to what is used in other
numerical studies of electroweak symmetry-breaking dy-
namics [18–21].
We find the equation of motion for the Higgs field

�pðtþÞ ¼ 1

1þ 3H�t
2

�
2�pðtÞ �

�
1� 3H�t

2

�
�pðt�Þ

þ�t2 €�pðtÞ
�
; (16)

where H ¼ _aðtÞ
aðtÞ is the Hubble constant and

€�pðtÞ ¼ X
j¼�x;�y;�z

Up
j ðtÞ�pþjðtÞ ��pðtÞ

aðtÞ2�x2
þ 2�ð�2 � j�pðtÞj2Þ�pðtÞ: (17)

For the gauge fields, we have
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Up
j ðtþÞ ¼

�
exp

�
logðUp

j ðtÞUp
j ðt�ÞH�t=2�1Þ

�
�X
j0�j

�logUp
hðj;j0ÞðtÞ þ logUp

hðj;�j0ÞðtÞ
aðtÞ2�x2

�

þ iaðtÞ�x
2

gJp
j ðtÞ � �

�
�t2

�
Up

j ðtÞ
�
1=ðH�t=2þ1Þ

;

(18)

where the gauge current is

J p
j ðtÞ ¼ g Im

�pðtÞy�Up
j ðtÞ�pþjðtÞ

aðtÞ�x ; (19)

and the logarithm in Eq. (14) is used to compute the
exponents in Eq. (18).

Assuming it is obeyed by the initial conditions, time
evolution preserves the Gauss’s law constraint,

X
j¼x;y;z

Ep
j ðtþ=2Þ þEp

�jðtþ=2Þ
aðtþ=2Þ�x ¼ Jp

0 ðtþ=2Þ; (20)

where the charge density is given by

J 0ðtþ=2Þ ¼ g Im

�
�pðtþÞ ��pðtÞ

�t

�y
��pðtÞ: (21)

Energy is not conserved because in the expanding back-
ground we have dU ¼ �pdV, where p is the pressure. In
the lattice model we then have

dU

dt
¼ �ðaðtÞ�xÞ3HX

p

�
1

2

X
j¼x;y;z

ðEp
j �Ep

j þ Bp
j �Bp

j Þ

þ 3j _�j2 � X
j¼x;y;z

��������
Up

j �
pþj ��p

aðtÞ�x
��������

2

� 3�ðj�pj2 ��2Þ2
�
: (22)

We have verified that both the Gauss’s law and energy
constraints are well obeyed throughout our simulation.

We set initial conditions for the first two time-slices,
which we denote as t0 and t1, by occupying the modes of
all the components of the Higgs and gauge fields at tem-

perature T, as in the case of a single scalar field. Then we
modify these initial conditions to make them obey Gauss’s
law, by the following steps:
(i) First, since we have periodic boundary conditions,

the total charge should be zero. To enforce this
constraint, we shift the �p field on both of the first
two time slices t0 and t1 by the same constant,

�p ! �p � i

gj _��j2
ð �J0 � �Þ _��; (23)

where �J0 and
_�� are the average values of J0 and

_�
over the lattice at time t1=2, respectively.

(ii) Next, we fix the longitudinal component of the
gauge fields, as described in Ref. [19]. We take a
discrete Fourier transform of the initial charge

Jp
0 ðt1=2Þ and gauge field Jp

j ðt1=2Þ to obtain ~J
~k
0ðt1=2Þ

and ~W
~k
jðt1=2Þ for the initial time step, where ~k labels

the Fourier transformed lattice. We then modify the
initial time derivative of Wp

j (by changing its value

on one of the first time slices but not the other) by
sending

_~W
~k
jðt1=2Þ ! _~W

~k
jðt1=2Þ

�
� X
j0¼x;y;z

~kj0
_~W
~k
j0 ðt1=2Þ þ i ~J

~k
0ðt1=2Þ

� ~kj

j ~kj2
(24)

and then inverting the discrete Fourier transform to
obtain the modified gauge fields, which in turn give
the modified Wilson loops. Note that we do not

make any modification for ~k ¼ ~0, where this trans-
formation breaks down; that case was already
handled by the previous step.

(iii) Finally, while in an Abelian theory the subtraction
of the longitudinal component would be sufficient
to implement Gauss’s law, for a non-Abelian theory
the nonlinear term in the field strength makes this
agreement only approximate. As a result, we adjust
the phase of �pðt1Þ,

�pðt1Þ ! j�pðt1Þj
j�pðt0ÞjU

pðt1=2Þ�pðt0Þ with Upðt1=2Þ ¼ exp

�
� X

j¼x;y;z

logUp
j ðt1ÞUp

j ðt0Þy þ logUp
�jðt1ÞUp

�jðt0Þy
g2ðaðt1=2Þ�xÞ2j�pðt1Þjj�pðt0Þj=2

�
; (25)

leaving �p
0 ðt0Þ unchanged, in order to assure that Gauss’s

law is satisfied.

V. SU(2) MODEL: RESULTS

We begin with a universe of size Laðt ¼ 0Þ ¼ 4=�,
temperature T ¼ 4�, lattice spacing aðt ¼ 0Þ�x ¼
1=ð224�Þ, and use a time step �t ¼ 1=ð448�Þ. We allow

the universe to expand at a constant rate, with Hubble
constant H ¼ �ðlog2Þ=12 � 0:06�, and expand the uni-
verse by a factor of 224, so that the final lattice spacing is
aðtfinalÞ�x ¼ 1=�. We measure the fraction of energy in
oscillons by including those points whose energy density is
4 times the average energy density. Under ordinary thermal
expansion this fraction would stay constant, and during the
initial stages of the expansion it is identically zero. At the
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end of the expansion, approximately 4% of the energy is
found in oscillons by this measure. The energy density is
shown in Fig. 5, and the evolution of the energy over time
is shown in Fig. 6. Compared to the scalar model, oscillons
in the SU(2) model have smaller amplitude and larger
spatial extent, requiring a larger simulation volume. The
simulation is thus considerably more expensive numeri-
cally, especially given the cost of evolving a total of 13 real
degrees of freedom per lattice site instead of one.

We note that similar results are seen both for g ¼ ffiffiffi
2

p
,

� ¼ 1, in which the Higgs and gauge fields are in the 2:1

mass ratio found in [17,22], and for g ¼ ffiffiffi
2

p
, � ¼ 1:1,

where the masses are not in this ratio. Because of the
high numerical costs associated with the expanding back-
ground simulation, we are not able to track the stability of
oscillons formed in this way over long time scales, but
these results suggest that the expansion may broaden the
range of parameters for which oscillons are stable. Also, by
allowing oscillons to form from a thermal background
rather than a fixed ansatz, this simulation is capable of
scanning a wider range of configuration space (and our
results clearly show that oscillon configurations represent
attractors in this space). Work is currently underway to
investigate these questions in greater detail.

FIG. 5 (color online). Energy density in units of �4 at the end of the expansion for g ¼ ffiffiffi
2

p
with � ¼ 1:0 (left panel) and � ¼ 1:1

(right panel). To implement the standard model coupling of gSM ¼ 0:624 with the same mass ratio, this energy would be scaled up by a
factor of ðg=gSMÞ2.
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FIG. 6 (color online). Fraction of energy in oscillons (solid line) and total energy (dashed line) as a function of time. Energy is given
in units of � and time in units of 1=�, with g ¼ ffiffiffi

2
p

and � ¼ 1:0 (left panel) and � ¼ 1:1 (right panel). To implement the standard
model coupling of gSM ¼ 0:624 with the same mass ratio, this energy would be scaled up by a factor of ðg=gSMÞ2.
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VI. POSSIBLE IMPACT ON COSMOLOGYAND
SUMMARY

Our results indicate that oscillonlike configurations
emerge dynamically during spontaneous symmetry break-
ing in expanding cosmological backgrounds. Furthermore,
they contribute a significant fraction of the total energy
density. They are thus poised to play an essential role in the
dynamics of the early Universe, be it during post-
inflationary reheating or during symmetry-breaking phase
transitions.

In order to briefly address the impact oscillons may have
on cosmology, it is best to consider different energy scales
separately. For the sake of illustration, we focus on the
grand unified theory (GUT) and electroweak scales, which
differ by roughly 13 orders of magnitude. Also, it is
important to differentiate between real scalars and
Abelian and non-Abelian Higgs models. Thus, before we
start, it may be useful to summarize what is known of
oscillon lifetimes in these models.

As we mentioned before, for real scalar fields in three
dimensions, the oscillon lifetime–with or without the en-
hancement from the expansion reported here–is typically
�osc � 103–4��1 [5,10]. For models with gauge fields, the
evidence at hand points to very large lifetimes. Studies for
Abelian-Higgs models in two dimensions have not seen
oscillons decaying, and report lifetimes in excess of
105��1 [23]. Studies of Abelian-Higgs models in three
dimensions obtained similar results: oscillons have been
observed to persist for times t * 7
 105��1 without
decaying [24]. For non-Abelian Higgs models, the situ-
ation is similar: the data at hand indicates that once formed,
oscillons live for extremely long times. Those in the
gauged-SU(2) Higgs model have not been observed to
decay after t * 5
 105��1 [17,22]. Thus, although a
more detailed study of Abelian and non-Abelian Higgs
oscillons and their stability is clearly warranted, results
so far indicate that they may be extremely long-lived, even
perturbatively stable. Of course, the key question is
whether their lifetime can be longer than the cosmological
time scale at their formation. If that’s the case, they behave
as stable, localized defects.

At the GUT scale, it is clear that the oscillon lifetime is
at least of order of the cosmological time scale, ~H�1 �
ðMPlanck=�Þ � 103–4. Thus, for all practical purposes at
GUT scales oscillons behave as stable localized defects.
As has been shown elsewhere, in the context of first-order
phase transitions, long-lived bubblelike configurations
such as oscillons can either become a critical bubble or
coalesce to become one. In both cases, the decay of the
false vacuum is greatly accelerated, changing from expo-
nentially suppressed to power-law [25]. It has been sug-
gested that oscillons may accelerate the decay of the false
vacuum during inflation, potentially solving the bubble

coalescence problem of old inflation. This has been re-
cently illustrated within the context of a modified hybrid
inflation model [26].
Oscillons may also have a key impact during post-

inflationary reheating. As coherent field configurations,
they naturally delay the approach to equilibrium, acting
as bottlenecks for equipartition [27]. As such, they may
influence (decrease) the reheating temperature, a possibil-
ity we are currently investigating. An interesting open
question is how these nonequilibrium results apply in the
context of gauge models.
Moving on to the electroweak scale, since ~Hew � 10�16,

we are on a realm which is very distant from our numerical
range of ~H � 10�2. Still, we suggest that there are at least
two ways in which oscillons may play a role at these
relatively low energy scales. Both depend on their lifetime.
If non-Abelian oscillons live for t� 1016��1, that is, if
they are perturbatively stable, they will remain active at
cosmologically relevant time scales. As at the GUT scale
discussed above, they may speed up vacuum decay in the
context of a first-order transition (which is ruled out in the
Standard Model but not in all of its extensions) or they may
delay thermalization. If they persist for even longer, they
may even be relevant to dark matter or baryogenesis.
On the hand, if they live for shorter times 104 < t�<

1016, their presence may still affect the dynamics of sym-
metry breaking. As is well-known, most phase transitions
are initiated due to the presence of inhomogeneities or
‘‘seeds’’ [13]. If oscillons are present in sufficient quanti-
ties, they will modify the effective potential nonperturba-
tively, affecting the dynamics of the transition [28].
Although much work remains to be done to investigate
such nonperturbative effects in more detail, these mecha-
nisms suggest that even relatively short-lived oscillons will
have important effects during cosmological symmetry
breaking.
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