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We place functional constraints on the shape of the inflaton potential from the cosmic microwave

background through a variant of the generalized slow-roll approximation that allows large amplitude,

rapidly changing deviations from scale-free conditions. Employing a principal component decomposition

of the source function G0 � 3ðV0=VÞ2 � 2V00=V and keeping only those measured to better than 10%

results in 5 nearly independent Gaussian constraints that may be used to test any single-field inflationary

model where such deviations are expected. The first component implies <3% variations at the 100 Mpc

scale. One component shows a 95% CL preference for deviations around the 300 Mpc scale at the �10%

level but the global significance is reduced considering the 5 components examined. This deviation also

requires a change in the cold dark matter density which in a flat �CDM model is disfavored by current

supernova and Hubble constant data and can be tested with future polarization or high multipole

temperature data. Its impact resembles a local running of the tilt from multipoles 30–800 but is only

marginally consistent with a constant running beyond this range. For this analysis, we have implemented a

�40� faster WMAP7 likelihood method which we have made publicly available.

DOI: 10.1103/PhysRevD.82.043513 PACS numbers: 98.80.Cq, 98.70.Vc, 98.80.Es

I. INTRODUCTION

Under the assumption that cosmological perturbations
were generated during an inflationary period from quantum
fluctuations in a single scalar field, features in the cosmic
microwave background (CMB) temperature and polariza-
tion power spectra constrain features in the inflaton poten-
tial Vð�Þ.

The usual slow-roll assumption of a small and nearly
constant dimensionless slope ðV 0=VÞ2 and curvature
ðV 00=VÞ of the inflaton potential leads to featureless power
law initial curvature fluctuations. Breaking any of these
assumptions leads to features in the initial spectrum.
Indeed glitches in the observed temperature power spec-
trum of the CMB [1] have led to recent interest in exploring
models with strong features in the potential (e.g. [2–9]).
The significance at which such models are favored is
difficult to address due to the a posteriorimanner in which
they were chosen.

Here we take a more model independent approach to
constraining the shape of the inflaton potential. We have
recently shown that even in the presence of large local
changes in the curvature of the inflaton potential that can
explain the glitches, there is to excellent approximation
only a single function of the inflaton potential that the
observations constrain [8]. Moreover, this function is ap-
proximately the same combination of slope and curvature
that enters into the calculation of the scalar tilt in the
ordinary slow-roll approximation. In this generalized
slow-roll (GSR) formalism this quantity need not be small

or constant [10–12]. With it, one can bypass a parametri-
zation of the initial curvature power spectrum (e.g. [13–
19]) and the problem that not all spectra correspond to
possible inflationary models.
In this paper, we take a principal components approach

[20] to functional constraints on the inflaton potential
under the GSR formalism. Principal components con-
structed a priori from a noise model of the WMAP CMB
measurements determine the theoretically best constrained
deviations from a featureless potential before examining
the actual data. Constraints from the low-order principal
components thus efficiently encapsulate the expected in-
formation content of the data and may be used to test a
variety of inflationary models without a reanalysis of the
data.
We begin in Sec. II with a brief review of the GSR

formalism. In Sec. III B we develop the principal compo-
nent analysis of the GSR source function and apply it to the
WMAP 7 yr (WMAP7) data in Sec. IV. In Sec. V we
consider applications of these derived constraints on the
inflaton potential and discuss these results in Sec. VI. In the
Appendix, we present the fast likelihood approach to the
WMAP7 data employed in these analyses.

II. GENERALIZED SLOW ROLL

Given a specific model for the inflaton potential, the
initial curvature fluctuation spectrum can always be nu-
merically computed by solving the linearized scalar field
equation. The slow-roll approaches, however, provide
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model independent mappings from the inflaton potential to
the curvature spectrum provided that the requisite approx-
imations hold.

The generalized slow-roll (GSR) formalism was origi-
nally developed to consider cases where the usual slow-roll

parameters �H � ð _�=HÞ2=2 and �H � � €�=H _� are small
but �H is not necessarily constant [10–12]. Here � is the
inflaton field and overdots represent derivatives with re-
spect to coordinate time t. In a previous paper [8], we have
shown that a variant of GSR works well for cases where�H

becomes of order unity for a fraction of an e-fold.
In this variant of the GSR approximation, the curvature

power spectrum is a nonlinear functional

ln�2
RðkÞ � Gðln�minÞ þ

Z �max

�min

d�

�
Wðk�ÞG0ðln�Þ

þ ln

�
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which is related to the inflaton potential through the back-

ground solution f ¼ 2� _�a�=H. Primes here and below

denote derivatives with respect to ln� and � ¼ Rtend
t dt0=a

is the conformal time to the end of inflation. We require
kmax�min � 1 and kmin�max � 1 for the range in k that we
are calculating the spectrum. Integrating G0 gives
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(4)

define the linear and nonlinear response of the curvature
spectrum to G0 respectively. For the models we consider,
the nonlinear response is small compared with the linear
one.

The key property of Eq. (1) is that deviations from scale
invariance in the curvature spectrum depend only on a
single function of time G0. Moreover, to good approxima-
tion, this function is related to the inflaton potential as [8]

G0 � 3

�
V;�

V

�
2 � 2

V;��

V
; (5)

so long as j�0
Hj � j�Hj when �H is large, i.e. that �H

remains large only for a fraction of an e-fold [8]. Finally, if
the ordinary slow-roll approximation where �H and �H are

both small and nearly constant holds, then G0 may be
evaluated at horizon crossing � � k�1 and taken out of
the integrals in Eq. (1). As we shall see below, under this
approximation G0 ¼ 1� ns. By allowing G0 to be both
time varying and potentially large, we recover ordinary
slow-roll results where they apply but allow the data them-
selves to test their validity.

III. PRINCIPAL COMPONENTS

The GSR approximation allows us to go beyond specific
models of inflation in examining how the data constrain the
inflaton potential. The data directly constrain the function
G0 and hence the derivatives of the inflaton potential
through Eq. (5).
Given thatG0 is related to the curvature spectrum�2

R by

an integral relation and the curvature spectrum itself is
related to the observable CMB power spectra by a line-
of-sight integration, not all aspects of the function G0 are
observable even with perfect data.
We therefore seek a basis for an efficient representation

of observable properties of G0. We begin in Sec. III Awith
a general description of a basis expansion for G0 and its
relationship to the usual normalization and tilt parameters.
We then turn in Sec. III B to principal components (PCs) as
the basis which best encapsulates expected deviations from
scale-free conditions [20].

A. Basis expansion

In general, we seek to represent the function G0 as

G0ðln�Þ ¼ XN
a¼0

maSaðln�Þ; (6)

where the basis functions Sa for a > 0 are assumed to have
compact support in some region between ln�min and
ln�max corresponding to the range probed by the data.
We assume S0 ¼ 1 so that within this range m0 represents
a constant tilt in the spectrum.
We seek functions that obey the orthogonality and com-

pleteness relations

1

� ln�

X
a

Saðln�ÞSaðln�0Þ ¼ �ðln�� ln�0Þ;

1

� ln�

Z
d ln�Saðln�ÞSbðln�Þ ¼ �ab;

(7)

where � ln� ¼ ln�max � ln�min. From these relations, the
ma amplitudes are related to G0 as

ma ¼ 1

� ln�

Z
d ln�Saðln�ÞG0ðln�Þ: (8)

Note that our normalization differs from that of Ref. [20] in
that unit amplitude ma corresponds to unit variance in G0
averaged over the whole range in ln�.
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Substituting this model into the power spectrum expres-
sion (1) yields

ln�2
RðkÞ � Gðln�minÞ þm0C�m0 lnðk�minÞ

þ XN
a¼1

maWaðkÞ þ ln

�
1þ 1

2

�XN
a¼0

maXaðkÞ
�
2
�
;

(9)

where C ¼ 7
3 � �E � ln2 � 1:06297 with �E as the Euler-

Mascheroni constant, X0 ¼ �=2. The k-space responses to
the modes are characterized by

WaðkÞ ¼
Z �max

�min

d ln�Wðk�ÞSaðln�Þ;

XaðkÞ ¼
Z �max

�min

d ln�Xðk�ÞSaðln�Þ;

where k�min � 1 and k�max � 1. Note that if ma ¼ 0 for
a > 0

�2
RðkÞ ¼ eGðln�minÞþm0C

�
1þ �2

8
m2

0

�
ðk�minÞ�m0 (10)

from which we infer that the model is a pure power law
spectrum. We can therefore choose instead to represent
Gðln�minÞ and m0 by ns and As bringing our parameteri-
zation of the power spectrum to

ln�2
R ¼ ln

�
As

�
k

kp

�
ns�1

�
þ XN

a¼1

maWaðkÞ

þ ln

�
1þ 1

2

�
�

2
ð1� nsÞ þ

XN
a¼1

maXaðkÞ
�
2
�
: (11)

Note that this replacement ensures that the normalization
and tilt parameters are defined at a scale kp that is well-

constrained by the data. Hence any small and unobservable
running of G and G0 from �min to �� 1=kp is absorbed

into As and ns respectively. Nonzero values of ma>0 re-
quired by the data thus represent a deviation from purely
scale-free initial conditions.

We hereafter consider Eq. (11) as the definition of the
parametrized curvature power spectrum. In practice we
choose kp ¼ 0:05 Mpc�1, and for reference note that k �
0:02 Mpc�1 for modes contributing to the well-measured
first acoustic peak.

B. Principal component basis

We choose here to construct the basis functions Sa from
the principal components (PCs) of the projected WMAP7
covariance matrix for perturbations in G0. To define the
PCs, we begin with a fiducial flat �CDM model with a
scale-free initial spectrum. We take the baryon density to
be �bh

2 ¼ 0:02268, cold dark matter density �ch
2 ¼

0:1080, cosmological constant �� ¼ 0:7507, optical
depth � ¼ 0:089, As ¼ 2:41� 10�9, ns ¼ 0:96 and

ma>0 ¼ 0. This model corresponds to a constant G0 ¼
0:04.
We then construct the PCs as the theoretically best con-

strained nonconstant deviations in G0 around this fiducial
model. We start by adding a set of perturbations in
G0ðln�iÞ ¼ 0:04þ pi at 50 equally spaced intervals in
ln� between 1<�=Mpc< 105. From this set, we define
the functionG0ðln�Þ by a cubic spline. This sampling of 10
per decade or � ln� ¼ 0:23 across � ln� ¼ 11:5 is suffi-
cient to capture the observable properties of G0 barring
unphysical models with both high frequency and high
amplitude perturbations. The spline ensures a smooth in-
terpolation between the samples.
To these parameters pi we add the cosmological pa-

rameters

p� ¼ fpi; As; ns; �;�bh
2;�ch

2; 	g; (12)

where the angular extent of the sound horizon 	 takes the
place of ��, and construct the Fisher matrix

F�
 ¼ X‘max

‘¼2

X
XY; ~X ~Y

@CXY
‘

@p�

C�1
XY ~X ~Y

@C
~X ~Y
‘

@p


; (13)

where the XY pairs run over the observable power spectra
TT, EE, TE. For the data covariance matrix, we take

C XY ~X ~Y ¼ 1

ð2‘þ 1Þfsky ½ðC
X ~X
‘ þ NX ~X

‘ ÞðCY ~Y
‘ þ NY ~Y

‘ Þ

þ ðCX ~Y
‘ þ NX ~Y

‘ ÞðCY ~X
‘ þ NY ~X

‘ Þ�; (14)

where the WMAP7 noise power NX ~X
‘ ¼ �X ~XN

XX
‘ is in-

ferred from the temperature power spectrum errors from
the LAMBDA site [21] and the assumption that NEE

‘ ¼
2NTT

‘ . We set ‘max ¼ 1200 and fsky ¼ 1.

We then invert the Fisher matrix to form the covariance
matrix C ¼ F�1. Next we take the sub-block Cij and

decompose it with the orthonormal matrix Sja,

Cij ¼ � ln�

� ln�

X
a

Sia�
2
aSja (15)

rank ordered from lowest to highest �a. Each eigenvector
defines a discrete sampling of the basis function Sa via

Saðln�iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln�

� ln�

s
Sia; (16)

with the normalization of Eq. (7). The full functions
Saðln�Þ are defined by taking a cubic spline through the
samples. The first 5 PC components are shown in Fig. 1.
In the Fisher approximation �a represents the WMAP7

expected errors for ma

hmambi ¼ �ab�
2
a; (17)

for a zero mean fiducial model hmai ¼ 0.
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These errors are shown in Fig. 2. Note that the noise rises
by a factor of 4 across the first 5 components and then
increases to order unity by the 20th component. Given that
the peak amplitudes of Sa lie in the �4 range, a �2:5%
error corresponds to a �10% peak variation in G0 or the
effective tilt. By keeping the first 5 PCs, we retain all of the
constraints on deviations in G0 in the 10% range. In this
sense, these 5 modes represent the best set for examining
deviations from a scale-free power law model. Note that no
actual WMAP7 data goes into the construction and so that
the modes are chosen a priori rather than a posteriori.

For the first 5 PC components, the Sa basis functions are
centered near � � 102 Mpc and reflect the strong WMAP
sensitivity to the first peak at ‘ � 200 or k� 0:02 Mpc�1

in the fiducial model. The first 5 components resemble a

local decomposition of G0 in the decade surrounding this
scale. This fact can be seen more directly by examining the
sensitivity of the curvature and temperature power spectra
to the 5 PC amplitudes (see Figs. 3 and 4, respectively).
As an example of the utility of retaining only the first 5

PCs, consider a linear model for G0

G0ðln�Þ ¼ 1� ns þ � lnð�=�0Þ: (18)

The local slope in the power spectrum in the GSR approxi-
mation is

d ln�2
R

d lnk
¼ ns � 1þ � lnðk�0Þ; (19)

and so � ¼ dns=d lnk and is equivalent to the running of
the tilt. This linear model can be projected onto the first 5

FIG. 2. Predicted RMS error on the PC amplitudes as a func-
tion of mode number for WMAP7 data. PCs are rank ordered
from lowest to highest error with the first 5 describing modes
with better than �10% constraints on G0.

FIG. 3 (color online). Sensitivity of the curvature power spec-
trum to the first 5 PC parameters. Low-order PCs mainly change
the power spectrum at wave number in the decade around k�
10�2 Mpc�1. The red dashed line represents the zero PC ampli-
tude fiducial power law model.

FIG. 1 (color online). The first 5 principal components (PCs)
of G0 as a function of conformal time based on the WMAP7
specifications. The power law model with zero amplitude PCs is
shown in red dashed lines. The first 5 PCs represent a local
expansion of G0 around �� 102 Mpc.

FIG. 4 (color online). Sensitivity of the temperature power
spectrum to the first 5 PC parameters. Low-order PCs represent
slowly varying features around the first peak ‘� 200. The red
dashed line represents the zero PC amplitude fiducial power law
model.

CORA DVORKIN AND WAYNE HU PHYSICAL REVIEW D 82, 043513 (2010)

043513-4



PCs. The variance of � is then given by

1

�2ð�Þ ¼ Xamax

a¼1

1

�2
a

�
@ma

@�

�
2
; (20)

where

@ma

@�
¼ 1

� ln�

Z
d ln�Saðln�Þ lnð�=�0Þ: (21)

By virtue of the marginalization of ns in the construction of
the PCs, the Sa functions have nearly zero mean and
@ma=@� does not depend on the scale �0 where the
effective tilt is defined as G0ðln�0Þ ¼ 1� ns.

Figure 5 shows the predicted RMS error on � as a
function of the maximum PC mode retained. With 5 PCs,
�ð�Þ ¼ 0:0355, while the fully-saturated value of the error
with 50 PCs is �ð�Þ ¼ 0:0327. This should be compared
with the projected error using � itself as a Fisher matrix
parameter, �ð�Þ ¼ 0:0328. These results verify the com-
pleteness of the 50 PC basis as well as show that most of
the information for j�j � 1 is expected to come from the
first 5 PCs.

In fact most of the information comes from a single
mode, the 4th. This mode corresponds to a local variation
in the effective tiltG0 with a null near 300 Mpc (see Fig. 1),
or in the power spectrum near�0:003 Mpc�1 (see Fig. 3),
and an extent spanning 1–2 decades. Even though the 1st
mode has smaller overall errors and better constrains peak
variations in G0, it is not the most effective mode for
constraining running of the tilt given its extremely local
form.

This caveat applies more generally. A given model may
have large deviations in G0 in a region where the data does
not best constrain G0. In this case the first 5 PCs no longer

represent a complete or efficient representation. We return
to this point in Sec. V.

C. MCMC

We use a Markov Chain Monte Carlo (MCMC) like-
lihood analysis to determine joint constraints on the first 5
PC amplitudes and cosmological parameters

p� ¼ fm1; . . . ; m5; As; ns; �;�bh
2;�ch

2; 	g: (22)

On top of this basic set we also examine the impact of
spatial curvature �K and tensor-scalar ratio r and the
amplitude of a Sunyaev-Zel’dovich contaminant ASZ on a
case-by-case basis.
The MCMC algorithm samples the parameter space

evaluating the likelihood LðxjpÞ of the data x given each
proposed parameter set p (e.g. see [22,23]). The posterior
distribution is obtained using Bayes’ theorem,

P ðpjxÞ ¼ LðxjpÞP ðpÞR
d�LðxjpÞP ðpÞ ; (23)

where P ðpÞ is the prior probability density. We
place noninformative top-hat priors on all parameters in
Eq. (22). For example, for the PC amplitudes we take
P ðma>0Þ ¼ 1 for �1 	 ma>0 	 1 and 0 otherwise.
The MCMC algorithm generates random draws from the

posterior distribution that are fair samples of the likelihood
surface. We test convergence of the samples to a stationary
distribution that approximates the joint posterior density
P ðpjxÞ by applying a conservative Gelman-Rubin crite-
rion [24] of R� 1< 0:01 across four chains. We use the
code CosmoMC [25] for the MCMC analysis [26].
For the WMAP7 data [27], we optimize the likelihood

code available at the LAMBDAweb site as detailed in the
Appendix. The net improvement in speed on an 8-core
desktop processor is a factor of �40 which should enable
future studies with 20 or more PCs or other initial power
spectrum parameters.

IV. CONSTRAINTS

In this section we present the constraints on the 5 best
measured principal components of the GSR source func-
tion G0 and implicitly the inflaton potential Vð�Þ. We first
examine constraints using the WMAP7 data only and then
joint with a variety of cosmological constraints to remove
residual parameter degeneracies.

A. WMAP

We begin by considering the WMAP7 data in a flat
�CDM cosmological context. We show the probability
distributions of the first 5 PCs and cosmological parame-
ters in Fig. 6. Table I shows the mean, standard deviation of
the posterior probabilities as well as the maximum like-

FIG. 5. Predicted RMS errors on running of tilt � as a function
of the maximum number of PC components included. Note that
the errors cease to improve after the first 4 components and most
of the improvement comes from the 4th component.
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lihood parameter values for the power law models vs the
5PC models.

For visualization purposes we show in Fig. 7 the func-
tional posterior probability of

G0
5ð�Þ � 1� ns þ

X5
a¼1

maSað�Þ; (24)

which should be interpreted asG0 filtered through the first 5
PCs and not a reconstruction of G0 itself.
All 5 PCs are tightly constrained, with errors that are

comparable to the Fisher matrix projection, nearly
Gaussian posteriors and little covariance with each other.
The correlation coefficients between two different ma’s,
jCmamb

=�ðmaÞ�ðmbÞj< 0:2. The first component m1 in

FIG. 6 (color online). Posterior probability distributions of the cosmological and 5 PC parameters using WMAP7 data. The red
dashed line represents the power law results where the first 5 PC parameters are held fixed to ma ¼ 0.

TABLE I. Means, standard deviations (left subdivision of columns) and maximum likelihood
values (right subdivision of columns) with likelihood values for �CDM and the 5 PCs model
with WMAP7 data.

Parameters Power Law (PL) Principal Components (PC)

100�bh
2 2:220
 0:055 2.217 2:040
 0:196 2.067

�ch
2 0:1116
 0:0053 0.1130 0:1308
 0:0127 0.1284

	 1:0386
 0:0026 1.0387 1:0361
 0:0049 1.0365

� 0:088
 0:014 0.088 0:089
 0:017 0.088

ns 0:9650
 0:0136 0.9622 0:9916
 0:0233 0.9877

ln½1010As� 3:083
 0:034 3.088 3:119
 0:041 3.105

m1 0 0 0:0014
 0:0077 0.0021

m2 0 0 0:0015
 0:0132 0.0068

m3 0 0 �0:0253
 0:0197 �0:0264
m4 0 0 0:0339
 0:0175 0.0337

m5 0 0 �0:0033
 0:0315 0.0023

H0 70:13
 2:38 69.50 61:41
 6:08 62.18

�� 0:726
 0:028 0.720 0:581
 0:116 0.614

�2 lnL 7474.97 7469.82
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particular is consistent with zero and places the tightest
constraints of & 3% local variations in G0 around � �
102 Mpc. Interestingly, the power law prediction of m4 ¼
0 lies in the tails of the posterior with as extreme or more
values disfavored at 94.8% CL.With the Gaussian approxi-
mation m4 ¼ 0 is 1:9� from the mean and disfavored at
94.5% CL.

In Fig. 8, we show joint posteriors of the PCs with other
parameters. Notably, for the anomalous m4 component
there is a degeneracy with �ch

2, �bh
2 and ns which is

also reflected in the broadening of the cosmological pa-
rameter posteriors in Fig. 6 and the shift in means and
maximum likelihood values in Table I. The maximum
likelihood (ML) model found by the chain is an improve-
ment over the power law case of 2� lnL � 5 which is
marginal considering the addition of 5 parameters.

The intriguing aspect of the ML model, like the ma

posteriors, is that the improvement is concentrated in the
m4 component. Note that the finite m4 component allows
ns ¼ 1 to be a good fit to the data implying that the data
can be marginally better fit by a local deviation from scale
invariance rather than tilt.

An examination of the ML model helps illuminate the
degeneracies with cosmological parameters. Figure 9 (top)
shows the temperature power spectra of the 5 PC ML
model compared to the power law ML model (upper
panel), and the fractional difference between the two
(lower panel). Note that in the well-constrained ‘�
30–800 regime the two spectra agree to �1% or better.
This accidental degeneracy is not preserved beyond ‘ ¼
1000. Furthermore the E-mode polarization power spectra

shown in Fig. 9 (bottom) reveal substantially larger frac-
tional deviations of up to�10% that break the degeneracy
in the temperature spectra.
Indeed the main improvement of the PC model relative

to the PL model actually comes from the ‘ � 24 polariza-
tion cross correlation part of the likelihood (MASTER
TETE), where 2� lnL ¼ 3:5, with half of this contribution
coming from ‘ < 200. The low-‘ temperature part of the
likelihood has an improvement of 2� lnL ¼ 1:8 relative to
the PL model, and there is a smaller improvement coming
from the high-‘ (MASTER TT) part with 2� lnL ¼ 1:1.
Finally, the PC model is worse than the PL model by
2� lnL ¼ �1:3 for the low ‘ < 24 polarization.
The intermediate ‘ temperature degeneracy exhibited by

the two models is further explored in Fig. 10. We show the
impact of the cumulative parameter variations between the
PL and PC ML models. The addition of m4 carries almost
all of the impact of the PCs and is mainly compensated by
variations in �ch

2 to adjust the relative heights of the
peaks and ns to tilt the spectrum to small scales. The
change in�ch

2 also changes the physical size of the sound
horizon which must be compensated by a change in the
distance to recombination reflected in a lower value for H0

and �� to leave the angular scale 	 compatible with the
data.
These results are robust to marginalizing �K given any

reasonable prior on H0, an SZ component through ASZ, or
tensors within the B-mode measured limits of the BICEP
experiment r ¼ 0:03þ0:31

�0:26 [28]. Through an explicit

MCMC analysis of these separate cases, we have verified
that the shift in the means and change in the errors for all 5
PCs are much smaller than 1�. The largest effect is from
marginalizing tensors where for example m4 ¼ 0:042

0:20. A small improvement in the B-mode limits would
eliminate this ambiguity entirely.

B. Joint constraints

The results of the previous section suggest that other
data which measure the high-‘ temperature spectrum, po-
larization spectrum, or pin down the cosmological parame-
ters that control the distance to recombination and baryon
density can eliminate the remaining degeneracies and en-
able WMAP7 to better constrain the inflaton potential.
We start with adding more CMB information from the

QUAD experiment. QUAD helps mainly by reducing the
m5 ��bh

2 degeneracy. Interestingly, most of the impact
comes from the polarization measurements rather than the
extended range of the temperature constraints.
Adding in non-CMB cosmological information helps

even more, especially with m4. We take the UNION2
supernovae data set [29], the SHOES H0 ¼ ð74:2

3:6Þ km=s=Mpc measurement [30] and a big bang nucleo-
synthesis constraint of �bh

2 ¼ 0:022
 0:002. In a flat
�CDM cosmology, the degeneracy between m4 and

FIG. 7 (color online). The 5 PC filtered G0
5 posterior using

WMAP7 data. The shaded region encloses the 68% CL region
and the upper and lower curves show the upper and lower 95%
CL limits. The maximum likelihood (ML) G0

5 is shown as the

thick central curve, and the power law ML model is shown in red
dashed lines. Structure in this representation mainly reflects the
form of the PC modes and is dominated by the modes with the
largest uncertainties.
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�ch
2 is nearly eliminated yielding m4 ¼ 0:0191


0:0163, i.e. consistent with power law initial conditions.
Of the additional data it is the supernovae that drive this
improvement by disfavoring the low �� values required
by the increase in �ch

2.
On the other hand, these improvements require an as-

sumption that the dark energy is a cosmological constant
and the Universe is spatially flat. For example if �K is

marginalized,m4 ¼ 0:0384
 0:0197. The addition of spa-
tial curvature allows the freedom to adjust the relative
distance to the high-z supernova and recombination. A
better measurement of H0 could resolve this degeneracy
since the constraints on �K are already limited by the
SHOES data.
Table II summarizes these results for the constraints on

the PC amplitudes.

FIG. 8. Joint probability distributions of the principal component amplitudes and the cosmological parameters from MCMC analysis
of WMAP7 data (68% and 95% CL contours).
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V. APPLICATIONS

The model independent results of the previous section
can be used to test a wide variety of inflationary deviations
from scale-free conditions. Moreover given that the con-
straints on the PC amplitudes are uncorrelated and approxi-
mately Gaussian, these tests are straightforward to apply.

As the simplest example, take the running of the tilt
model defined by � ¼ dns=d lnk through Eq. (18). Using

Eq. (8), we obtain

m1 ¼ 0:048�; m2 ¼ �0:079�; m3 ¼ 0:054�;

m4 ¼ �0:576�; m5 ¼ �0:034�: (25)

We can then construct the effective 2 statistic

2ð�Þ ¼ X5
a¼1

�
mað�Þ � �ma

�a

�
2
: (26)

With the means and variances taken from Table I for
WMAP7 we obtain � ¼ �0:057
 0:029. When we take
into account the covariance between the PC amplitudes, we
obtain a 3% shift in the mean with the same error: � ¼
�0:059
 0:029. Likewise we have verified that using
Eq. (25) in a separate MCMC analysis gives consistent
results � ¼ �0:058
 0:030.
This result should be compared with the direct analysis

of the running of the tilt which gives � ¼ �0:034
 0:027
consistent with the analysis from [27]. The mean is shifted
from the PC derived mean by �0:8� while the errors are
7% higher.
The small shift in the mean is driven mainly by the

truncation to 5 PC components. This is in spite of the
Fisher expectation in Sec. III that for an infinitesimal �
the first 5 PC components contain nearly all the informa-
tion. A running of the tilt model where� ¼ �0:057, which
fits the intermediate ‘� 30–800 range well, implies a large
change across the extended observable range from ��
20–5000 Mpc of j�G0j � j�nsj � 0:3. In particular, it
overpredicts the suppression of the ‘ < 30 temperature
multipoles. For the same amplitude and tilt at the first
peak, the amplitude at the horizon is suppressed by

�eð�=2Þln2ð100Þ ¼ 0:55. This suppression can only be par-

FIG. 9 (color online). Power spectra of the 5 PCs maximum
likelihood model (black curve) compared to power law (PL)
maximum likelihood model (red dashed curve) in the upper
panel, and the difference ðPC� PLÞ=PL in the lower panel.
Top: temperature power spectrum. Bottom: polarization power
spectrum.

FIG. 10 (color online). Decomposition of the fractional differ-
ence between the PC and power law (PL) maximum likelihood
models (ML) shown in Fig. 9 into contributions from specific
parameters. Curves show the cumulative effect of adjusting the
PL ML parameters to the PC ML values. The main effects come
from the change in m4, �ch

2, and ns.
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tially compensated by red tilting the spectrum without
oversuppressing the high ‘ > 800 multipoles. Note that
cosmic variance completely dominates the uncertainties
in the ‘ < 30 region and decreases with the predicted
signal, an effect that is not represented in the Fisher matrix.

In other words, the 2� preference for finite m4 is not
completely consistent with a constant running of the tilt but
rather points to a more local deviation from scale-free
conditions. When we eliminate this preference by adding
in the additional SN, H0 and BBN constraints the inferred
limits on � from the first 5 PC amplitudes become � ¼
�0:033
 0:027. Note however that the direct constraints
on � also improve with the addition of these data sets to
� ¼ �0:013
 0:021.

In Fig. 11 we plot an � ¼ �0:033 model for the 5 PCs
filtered G0

5 against the posterior constraints from the

WMAP7 data and additional SN, H0 and BBN constraints
in a flat universe. We overplot the original unfiltered G0 for
this � and note that even with the reduced value the
deviations become large outside of the region probed by
the first 5 PCs.
This example points out a caveat to the use of the first 5

PCs as general constraints on models. For a model with
features that are substantially larger in a regime away from
the well-constrained first acoustic peak, the first 5 PCs may
not be the best constraints in terms of signal-to-noise. One
can check whether this is the case by examining the
predicted G0 or by projecting the model onto the full 50
PC space and checking for large amplitude components.
Indeed if the higher components are extremely large com-
pared with the low components, nonlinear effects can break
the orthogonality of PCs and lead to larger allowed varia-
tions in the low components when compensated by the
high components.

FIG. 11 (color online). The 5 PC filtered G0
5 posterior using

WMAP7 data and additional SN, H0 and BBN constraints in a
flat universe. The shaded region encloses the 68% CL region and
the upper and lower curves show the upper and lower 95% CL
limits. A model with running of the tilt � ¼ �0:033, the mean
value given these constraints, is shown as the thick solid blue
curve and the ML PL model as the dashed red curve. The
unfiltered G0 of the same � is shown in blue dashed lines for
comparison (arbitrary offset). Note that outside the range probed
by the first 5 PCs the model deviations continue to grow linearly
and oscillating features in G0

5 do not necessarily imply features

in the underlying G0.

TABLE II. Means and standard deviations of the posterior probabilities of the PC amplitudes
with different data sets added to the WMAP7 data. For supernovae (SN) we used the UNION2
data set, and for H0 the SHOES measurement.

PC þQUAD þBBNþ SNþH0, flat þBBNþ SNþH0, w=�K

m1 0:0000
 0:0072 0:0045
 0:0071 0:0027
 0:0073
m2 0:0033
 0:0123 0:0091
 0:0121 0:0045
 0:0125
m3 �0:0261
 0:0184 �0:0120
 0:0166 �0:0208
 0:0178
m4 0:0296
 0:0168 0:0191
 0:0163 0:0384
 0:0197
m5 0:0149
 0:0250 0:0187
 0:0249 0:0091
 0:0256

FIG. 12. Principal component amplitudes for the step function
potential model [5] that best fit the glitches in the temperature
spectrum at ‘� 20–40 (upper panel), and projected cumulative
ðS=NÞ2 ¼ Pðma=�aÞ2 (lower panel). Given the large values of
ma in the high-order PC components, �20 PCs are required to
completely characterize this model.
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As an example, the full 50 PC decomposition of the step
function potential model from [5] which fits the ‘ ¼ 20–40
glitches in the temperature power spectrum is shown in
Fig. 12. Interestingly, m4 ¼ 0:0266 in the step model and
has the highest amplitude of the first 5 components. On the
other hand, a complete analysis based on signal-to-noise
would require �20 PC components. By keeping only 5
components, the improvement compared with the ML PL
model is only �2 ¼ �1:7. In other words, the step func-
tion model is certainly allowed by our 5 PC constraint and
even marginally favored but the majority of the improve-
ment is not captured by the truncated analysis.

Nevertheless, when interpreted as an upper limit on
deviations from scale-free conditions, the 5 PC approach
works as a general, albeit typically conservative, method to
constrain a wide variety of possible deviations from a
single analysis. As the running of the tilt example shows,
the results are remarkably close to a direct analysis and
differences can be used to expose the self-consistency of
the model inferences with independent parts of the data.

VI. DISCUSSION

We have employed a variant of the generalized slow-roll
approximation (GSR) that allows large amplitude devia-
tions from scale-free conditions to place functional con-
straints on the GSR source function and implicitly on the
inflaton potential. By employing a principal component
(PC) decomposition, we isolated the 5 best functional
constraints imposed by the WMAP7 data. The analysis is
greatly facilitated by our optimization of the WMAP7
likelihood code which we have made publicly available
[31].

These 5 PCs provide incisive constraints on the inflaton
potential around the e-folds of inflation when the scales
associated with the first acoustic peak were crossing the
horizon. Nonzero values for their amplitudes represent
deviations from slow-roll and power law initial spectra.
The first component implies that deviations are less than
�3% near �� 102 Mpc and the first 5 represent con-
straints around that scale at better than the 10% level.
The result is 5 nearly independent Gaussian constraints
that can be applied to any inflationary model where this
level of deviation is expected. We have also made the
eigenfunctions, which are required to project a given
model onto the PC amplitudes, publicly available. These
limits are robust to the inclusion of tensor contributions
allowed by current B-mode limits, spatial curvature and
Sunyaev-Zel’dovich contamination from unresolved
clusters.

Interestingly, for the 4th principal component the null
prediction of scale-free initial conditions is disfavored at
the 95% CL. However, given the 5 added parameters, this
result does not rule out a power law initial spectrum at a
significant level. Moreover, the relatively large deviations
implied by this anomalous mode are allowed only through

correspondingly large variations in the cosmological pa-
rameters, mainly the cold dark matter and its effect on
the sound horizon and by inference the distance to
recombination.
Further information from the CMB polarization and

high-‘ temperature power spectrum can break this degen-
eracy. The QUAD polarization data already have some
impact on the constraint and the Planck satellite should
definitively resolve this issue. External data also can break
this degeneracy. In particular in a flat �CDM cosmology,
the distance to high redshift supernovae reduce the prefer-
ence for finite m4 from 1:9� to 1:2�. However this im-
provement disappears if spatial curvature is marginalized.
This anomalous 4th PC resembles a local running of the

tilt around scales of �� 300 Mpc. Direct analysis of a
global constant running of the tilt shows that this prefer-
ence is mainly local, i.e. the low and high multipoles prefer
a different and smaller running than the intermediate multi-
poles that the first 5 PCs probe. The running of the tilt
example illustrates the use of the PC constraints both as a
technique to constrain inflationary parameters arising from
different models with a general analysis and as a method
for examining what aspects of the data drive the
constraints.
The running of the tilt example also illustrates that for

models where deviations from scale-free conditions be-
come much larger than �10% away from the well-
constrained region of the acoustic peaks, more principal
components are required to ensure a complete and incisive
description. We intend to examine these issues in a future
work.
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APPENDIX A: FAST WMAP LIKELIHOOD
EVALUATION

In this Appendix, we describe the optimization of the
WMAP likelihood code and fast approximate techniques
for describing the low-‘ polarization information. Changes
in the initial power spectrum do not require recomputation
of the radiation transfer function and are so-called fast
parameters for CosmoMC. Hence the WMAP7 likelihood
computation is the main bottleneck for the MCMC
analysis.
We first OpenMP parallelize the likelihood code and

remove bottlenecks in the computation of the temperature
and high-‘ polarization likelihood. We obtain a �2:6Ncore

speedup of those parts of the likelihood where Ncore is the
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number of cores in a shared memory machine. These
changes exactly preserve the accuracy of the likelihood
evaluation.

In place of the computationally expensive low-‘ polar-
ization pixel likelihood, we seek a fast but accurate ap-
proximation. The WMAP team has shown that most of the
information in the power law �CDM parameter space lies
in multipoles ‘� 2–7 as essentially an overall amplitude
of power [27]. However, in the broader parameter space
allowed by the PCs ofG0, we find that a single amplitude is
insufficient to describe the information content of the pixel
likelihood.

Instead we fit the likelihood function to a two-band
approximation

pEi ¼
�

1

�‘i

X‘imax

‘¼‘imin

‘ð‘þ 1ÞCEE
‘

2�

�
1=2

; (A1)

where the first band i ¼ 1 has ‘1min ¼ 4, ‘1max ¼ 6 and
the second band i ¼ 2 has ‘2min ¼ ‘2max ¼ 8 and �‘i ¼
‘imax � ‘imin þ 1 normalizes the parameter to reflect the
average bandpower. We find that the pixel likelihood is
well approximated by a Gaussian in these two bands for the
models under consideration

� 2 lnL‘<24
pol � Aþ ðpE � �pEÞTC�1ðpE � �pEÞ (A2)

with the parameters pE1 ¼ 0:2614 �K, pE2 ¼
0:01955 �K, A ¼ 1645:84

C�1 ¼ 498:31 �214:23
�214:23 190:23

� �
�K�2: (A3)

In Fig. 13 we show the accuracy of the fit compared with
the pixel likelihood for both power law models and models
with additional 5 PCs of G0. Note that the power law
models lie on a 1D curve in this space and can be well
parametrized by a single amplitude whereas the 5PC mod-
els do not. In fact, in the two-band space models with low
pE1 and high pE2 that populate a direction nearly orthogo-
nal to the power law models are more strongly constrained
than the total power at low ‘ would suggest. Since this
approximation has trivial computational cost, the net im-
provement in speed is approximately �5Ncore.
For the cases of interest, the approximation works re-

markably well. As an example, we have run an MCMC
chain with the exact pixel likelihood for the 5PC chain with
WMAP data only. In Fig. 14, we compare the posterior

FIG. 13 (color online). Comparison of the low-‘ polarization
pixel likelihood �2 lnL‘<24

pol and the approximate fit as a func-

tion of E-mode polarization amplitude in two multipole bands
pE1 (‘ ¼ 4–6), pE2 (‘ ¼ 8). Models from a power law chain (red
crosses) and from a 5 PCs chain (black crosses) with likelihood
relative to the minimum 1645.84 (within 
0:1) of 2.29 (68.27%
CL) and 6.18 (95.45% CL) are shown with the contours from the
fit overplotted (blue curves).

FIG. 14 (color online). Posterior probability distribution of the
optical depth � and the fourth PC amplitude using the exact
likelihood (black curves) and the approximation (blue dashed
curves) with WMAP data only.
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probability distribution of the optical depth � and m4 using
the full likelihood and the approximation. The difference
between the pixel likelihood and the approximation for the
5 PCs maximum likelihood model with WMAP data is
likewise negligible: j2� lnLj ¼ 0:05.

We have also checked that the likelihood approximation

remains valid to 10% or better in the ð2� lnLÞ1=2 signifi-
cance of differences between models with varying reioni-
zation history as parametrized by ionization principal
components [32].

Larger differences can occur for models with sharp,
order unity, initial power spectrum features at the horizon
scale. These project onto the temperature and polarization
spectra differently and lead to qualitatively different results
for the temperature-polarization cross spectrum. In this
case one can get discrepancies of order unity in 2� lnL
that err on the side of allowing discrepant models. Even
these differences can typically be taken into account via
importance sampling at a much smaller computational cost
than evaluating the exact pixel likelihood during the
MCMC run itself.
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