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This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave

anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to

position-space solutions which only depend on the sources of anisotropies inside the past light cone of the

observer. This foretold manifestation of causality in position (real) space happens order by order in a

series expansion in powers of the visibility � ¼ e��, where � is the optical depth to Thomson scattering.

We show that the contributions of order �N to the cosmic microwave background (CMB) anisotropies are

regulated by spacetime window functions which have support only inside the past light cone of the point

of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the

temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to

compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence

of the fact that the visibility function becomes exponentially small at redshifts z � 103, effectively cutting

off the past light cone and introducing a finite radius inside which initial conditions can affect physical

observables measured at our position ~x ¼ 0 and time t0. Hence, for each multipole ‘ there is a discrete

tower of momenta ki‘ (not a continuum) which can affect physical observables, with the smallest momenta

being k1‘ � ‘. The Fourier-Bessel modes take into account precisely the information from the sources of

anisotropies that propagates from the initial value surface to the point of observation—no more, no less.

We also show that the physical observables (the temperature and polarization maps), and hence the

angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel

expansion is the optimal scheme with which one can compute CMB anisotropies.
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I. INTRODUCTION

The cosmic microwave background (CMB) is the ear-
liest, cleanest observation that reveals what the Universe
looked like at the very beginning. A remarkable string of
observations of the CMB temperature fluctuations over the
last 20 years, most notably by COBE-DMR [1] and
WMAP [2–4], has shown that the typical initial conditions
of the Universe when it was under 400 000 years old can be
characterized by extreme homogeneity and isotropy, only
slightly perturbed by small, Oð10�5Þ fluctuations with a
nearly scale-invariant spectrum. More recently, the small
degree of polarization that is imprinted on the CMB radia-
tion by anisotropic Thomson scattering has also started to
become detectable [5–7], and may hold the key to unravel
the mystery of the birth of our Universe—see, e.g., [8–11].

The remarkable success of the CMB as probably the
most powerful tool in observational Cosmology can also be
traced to the simplicity of its underlying mechanisms:
Thomson scattering and linear perturbation theory. The
basic theory, which is an application of the relativistic
radiative transfer equations [12], was initially developed

in connection with the CMB by Peebles and Yu [13], and
the first to write down the full collisional Boltzmann
equations for temperature and polarization were Bond
and Efstathiou [14,15].
However, even if the main mechanisms driving acoustic

oscillations in the baryon-photon fluid were basically
understood early on, crucial features such as neutrinos,
gravitational waves, spatial curvature and the effects of
lensing on polarization remained puzzling. It was not until
the 1990’s that the theory reached full maturity, when the
complete separation of radial and angular modes allowed
by the use of spin angular momentum eigenfunctions for
polarization cleared the way for our current understanding
of CMB physics [16–24].
One particularly significant step forward was achieved

with the line-of-sight solution to the collisional Boltzmann
equations [25]. The idea is that photons travel along null
geodesics, hence the comoving distance �x between two
successive collisions is equal to the conformal time interval
�� between those collisions (as usual, we assume that the
Born approximation is valid.) This means that, given a line
of sight n̂, we know that a photon detected at time �
travelling along that line of sight was at the position ~x0 ¼
n̂ð�� �0Þ at time �0, if no collisions occurred between*abramo@fma.if.usp.br
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those times. The more general case of an ensemble of
photons can be easily accommodated in this picture, since
the probability that a photon scatters with free electrons is
given in terms of the optical depth for Thomson scattering,
which to a very good approximation is a smooth function
of time, �ð�Þ. The final state of the ensemble is then
obtained through integration over time of the sources of
temperature and polarization anisotropies, appropriately
weighted by the optical depth at each time.

The power of the line-of-sight integral solution is that it
separates, as much as it is possible, the (free) propagation
of photons from the ultimate sources of anisotropies (mat-
ter and metric perturbations)—so, it is similar in spirit to a
Green’s function for the temperature and polarization of an
ensemble of photons. However, there is one feature of the
generation of anisotropies which makes it impossible to
completely separate the sources and the anisotropies: an-
isotropic Thomson scattering is itself a source of both
temperature and polarization, so the process is, in some
sense, nonlocal.

When photons scatter at a given place and time, the
fluctuations in temperature and polarization that are gen-
erated as a consequence of those scatterings depend also on
the quadrupole of the temperature and the polarization of
the photons that were incident at that place and time.
Therefore, the fact that those incident photons typically
propagated to the location of the scattering from far away
implies that the process is nonlocal—hence the line-of-
sight solution is actually a set of integral equations, at least
for the lowest multipoles (‘ � 2). The higher multipoles
(‘ � 3), however, can be completely determined from the
lowest multipoles, which makes the line-of-sight solution a
vastly superior method compared to the usual hierarchy of
Boltzmann equations. Of course, for the low multipoles the
integral equations are impractical, and the preferred
method to compute them is to revert back to the hierarchy
of Boltzmann equations, which is then truncated at a
relatively low multipole that is sufficient to accurately
compute the multipoles ‘ � 2.

Nevertheless, despite the fact that the generation of
anisotropies is a nonlocal mechanism, it is still completely
causal: photons propagate along light cones between scat-
terings (which are basically instantaneous within the cos-
mological time scales.) The main drive behind this work is
to clarify how causality and nonlocality are manifested in
the generation of the CMB.We are interested, in particular,
in describing the generation of the CMB in position (real)
space, since Fourier space can sometimes obfuscate the
causal nature of the physical mechanisms.

We will show that, in position space, the nonlocal an-
isotropies can be resolved into explicitly causal pieces by
iterating the integral line-of-sight equations. The smallness
parameter in this perturbative expansion (which is remi-
niscent of the Dyson series of quantum electrodynamics
[26]) is the total visibility � ¼ e��, where � is the optical

depth to Thomson scattering. The first term in that series
corresponds to the last scattering of the photons before they
were detected; the second term corresponds to the last two
scatterings before detection; and so on.
In this series over the number of scatterings, causality is

manifested at each order in terms of radial integrals corre-
sponding to spacetime window functions which are only
nonzero inside the past light cone (PLC) of the observation
point. The spacetime dependence of the �N-order term is
given in terms of integrals of N þ 1 spherical Bessel
functions, which we demonstrate to have support only
inside the PLC. The first term of the series, Oð�1Þ, corre-
sponds simply to the Sachs-Wolfe (SW), Doppler and
integrated Sachs-Wolfe (ISW) contributions to the tem-
perature fluctuations from the last scattering [27], and
evidently it is only nonzero at the surface of the light
cone. The second-order terms for temperature and polar-
ization carry the memory of the last two scatterings, and
can be nonzero anywhere inside the volume of the PLC
(not only on its surface). Figure 1 illustrates the structure of
the light cones for one, two and three scatterings. Hence,
we have shown that the line-of-sight integrals are actually
retarded Green’s functions for the temperature and polar-
ization, and we found analytical expressions for them in
position space.
The second result of this paper follows from this causal

structure. The expansion in successive scatterings (or,
equivalently, in orders of the visibility function) makes it
clear that what matters for the CMB observables are not
simply the source fields and the anisotropies as functions of
position and time, fð ~x; �Þ, but the fields multiplied by
powers of the visibility, �ð�ÞNfð ~x; �Þ. Since the visibility
vanishes for very early times (say, zi � 103), for all prac-
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FIG. 1 (color online). Past light cones for photons experienc-
ing one, two, and three scatterings since the time of decoupling
from matter (denoted as the base of the cone.) The terms
corresponding to these interactions are, respectively, of order
�1, �2, and �3, where � ¼ e�� is the visibility.
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tical purposes that have to do with the CMB, our PLC is cut
off at �i ¼ �ðziÞ, and all the sources are effectively zero
outside the radius corresponding to that time (which in a
typical flat �CDM model is approximately ri � 5H�1

0 .)

The fact that the physical fields are exponentially sup-
pressed at the boundaries of the PLC means that the best
basis for expanding the fields, as well as the anisotropies, is
not the Fourier basis, which is most convenient for plane
waves in R3, but the Fourier-Bessel basis [28], which
expands functions fð ~xÞ inside a 3D sphere of finite radius
R into spherical harmonics Y‘mðx̂Þ and spherical Bessel
functions j‘ðki‘xÞ, with ki‘R being the ith root of j‘. Both
sets of basis functions are eigenvectors of the Laplacian

operator in flat space, with eigenvalues � ~k2 or �k2i‘, but
they differ most significantly in that the Fourier-Bessel
series establishes a discrete tower of momenta for each
multipole ‘, so that the smallest momentum mode is k1‘ �
‘=ri. Therefore, there is a clearly defined minimal mode
that can contribute to CMB observables, and the modes
above it are all discretized. The drawback is that, if the
underlying fields are Gaussian in nature, the Fourier-Bessel
modes, as opposed to the Fourier modes, are not statisti-
cally independent, so their covariance matrix is not diago-
nal. However, dynamics is one thing, statistics is another,
and we will show how these issues can be separated so that
we can easily recover angular power spectra which have
precisely the same statistical properties as the power spec-
tra computed in Fourier space.

The first part of this work takes an approach which is
similar to that used to make constrained simulations of
CMB temperature and polarization maps by Liguori,
Matarrese, and Moscardini [29] and by Komatsu,
Spergel, and Wandelt [30]—see also [31–33]. However,
while those simulations make use of several approximation
schemes in order to produce numerically viable codes, our
expressions are exact and analytical. In particular, our
results show that the transfer functions of [29,30] have an
invariant (or geometrical) piece which is described by our
spacetime window functions, so that the transfer functions
can be obtained by integration of these window functions
over time with some visibility function. Another work
close in spirit to ours was done by Bashinsky and
Bertshinger [34,35], who calculated the Green’s function
for the evolution of linear cosmological perturbations in
position space but did not compute the Green’s functions
for the anisotropies.

A quick note on our conventions: the Fourier transform

of a function fð ~xÞ is fð ~kÞ ¼ ð2�Þ�3=2
R
d3xe�i ~k� ~xfð ~xÞ; unit

vectors expressing lines-of-sight or other directions are
denoted by a hat, so ~x ¼ xx̂; the perturbed Friedman-
Robertson-Walker metric is ds2 ¼ a2ð�Þ½�ð1þ
2�Þd�2 þ ð1� 2�Þd~x2�; and the relationship between
the rotation matrices and the spin spherical harmonics is

D‘
m;�sð�;�; � ! 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�=ð2‘þ 1Þp
Y	
‘mð�;�Þs, so that

sY	
‘m ¼ ð�1Þm�s�s Y‘;�m. Finally, everything we will say in

this paper concerns scalar (spin-0) density perturbations—
we will consider lensing and gravitational waves in future
work.

II. CMB ANISOTROPIES IN A NUTSHELL

The main channel of electron-photon interactions during
recombination is elastic Thomson scattering. The likeli-
hood of a photon interacting with free electrons between
times �1 and �2 can be determined in terms of the optical
depth for Thomson scattering:

�ð�1; �2Þ ¼
Z �2

�1

d�að�Þ�Tneð�ÞXeð�Þ; (1)

where að�Þ is the Friedman-Robertson-Walker scale fac-
tor, �T ¼ 6:65
 10�25 cm2 is the Thomson cross section,
ne is the total number density of electrons, and Xe is the
ionized fraction. The probability per unit time that a photon
observed at �2 had last interacted at time �1 is called the
visibility function:

gð�1; �2Þ ¼ d

d�1

e��ð�1;�2Þ; (2)

where gð�1; �2Þ is a positive-definite function, normalized
to unity if the limits are taken such that� ! 0 and� ! 1
at late and early times, respectively. It is customary to
define the visibility function today simply by gð�Þ ¼
gð�;�0Þ. In this work we will also define the total visibility
(or unscattered fraction) as:

�ð�1; �2Þ ¼ e��ð�1;�2Þ: (3)

Notice that the total visibility is the probability that a
photon will not scatter after �1 before it is detected at
�2, and in fact we defined it such that it is related to the
visibility function by gð�1; �2Þ ¼ d=d�1½�ð�1; �2Þ�.
At very early times, the optical depth is extremely large,

so the Universe is effectively opaque and the visibility
vanishes exponentially. Photons and electrons are interact-
ing so often that the photons can spend enough time in
some small region so that inelastic processes lead to ther-
malization with the electrons and, by extension, with the
baryons. Hence, at very early times (much before recom-

bination) the photon distribution �ð ~x; �; l̂Þ ¼ �T=T was
essentially in equilibrium with baryonic matter, and only

the monopole �0ð ~x; �Þ ¼
R
d2l̂=ð4�Þ�ð ~x; �; l̂Þ ¼ 	�=4

was significant (here 	� is the density contrast of photons.)

However, as soon as recombination starts, the optical
depth plummets, scatterings between photons and elec-
trons become sparser, and as a result the radiation incident
on any given scattering source can be increasingly aniso-
tropic, since photons arriving to a scattering source from
distant over- or underdense regions have different equilib-
rium temperatures. Thomson scattering with anisotropic
radiation then generates polarization (and vice versa), and
the process becomes quite intricate.
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Let us assume for a moment that the photons decoupled
from matter instantly, at some time �R, and propagated
freely from that time down to our detectors at ~x ¼ 0, �0.
Then direct integration of the geodesic equation (with the
help of the Born approximation) tells us that the tempera-

ture from a given line of sight l̂ in fact reflects the density,

gravitational potential and velocities at the position ~xl ¼
ð�0 � �RÞl̂ and time �R, as well as any time-varying
gravitational potentials along that light cone [27]:

�ð ~x ¼ ~0; �0; l̂Þ ¼ ½�0 þ�þ l̂ � ~rVb�ð ~xl; �RÞ
þ

Z �0

�R

d�ð�0 þ�0Þð ~xl; �RÞ; (4)

where Vb is the baryon velocity potential. This equation
shows that the primary (and ultimate) sources of anisotro-
pies are the inhomogeneities in the matter and metric fields
of the Universe (�0, �, �, and Vb.)

Now let us relax the assumption of instant recombina-
tion, but still require that the photons did not scatter again
after decoupling. This is the same as saying that the visi-
bility function is not assumed to be proportional to a delta
function 	ð�� �RÞ anymore, but is still a positive, nor-
malized function, highly peaked at the time of recombina-
tion. In that case the photons will carry the average
temperature of the location where they last scattered, along
with the local gravitational potential� and baryon velocity
Vb, and this signal will be affected by the time-varying
metric perturbations only after that last scattering.
Considering that the probability that a photon will scatter
between some time �0 and the some time � is given by the
visibility function gð�0; �Þ, but the probability that they
will not scatter anymore after the time �0 is given by the
total visibility �ð�0; �Þ, the line-of-sight solution becomes

�ð1Þð~0; �; l̂Þ ¼
Z �

0
d�0fgð�0; �Þ½�0 þ�þ l̂ � ~rVb�


 ð ~xl; �0Þ þ �ð�0; �Þð�0 þ�0Þð ~xl; �0Þg;
(5)

where now ~xl ¼ ��l̂, with �� ¼ ð�� �0Þ. The super-
script 1 is used to denote that this contribution is linear
with in the total visibility � (as well as the visibility
function, g ¼ d�=d�).

Equation (5) tells us that, in a first approximation, to
obtain the temperature anisotropies one should simply
average the sources over the PLC ~xl, with weights given
either by the visibility function (for the SW and Doppler
terms) or by the total visibility (for the ISW term.) This
approximation would correspond to the ‘‘one scattering’’
diagram of Fig. 1.

The next level of complexity leads to polarization. Let us
assume that the approximation above is still true for the
temperature, but that photons can scatter a second time
after decoupling. Then, the incident radiation at the loca-
tion of that scattering will in general be anisotropic, simply

because of the inhomogeneities in the Universe at the time
of decoupling. If that incident radiation has a quadrupole,
then Thomson scattering will excite the linear polarization
degrees of freedom of the Stokes parameters Q and U.
Clearly, then, polarization is of at least second order in the
visibility, since it enters once when the photons first de-
couple from the matter, and then a second time when the
anisotropic ensemble of photons scatter off free electrons,
generating the polarization.
The assumptions above are too simplistic, of course: as

we go back in time the number of scatterings per Hubble
time rise steeply, which means that the problem that must
be solved is one of successive scatterings of a polarized,
inhomogeneous and anisotropic temperature distribution
which is, moreover, coupled to baryons and dark matter.
The result of taking into account the anisotropy and

polarization of the incident radiation in Thomson scatter-
ing leads to corrections to Eq. (5) and to the generation of
polarization [8,10,11,14,23,36,37]. The polarization at any
given point in space and time is best given in terms of the
(dimensionless) spin þ2 eigenstate combination:

Qþ iU

4I
� Pð ~x; �; l̂Þ

¼
ffiffiffiffiffiffiffiffiffi
3

40�

s Z �

0
d�0gð�0; �Þ½�2ð ~x0; �0Þ

� ffiffiffi
6

p
p2ð ~x0; �0Þ�; (6)

where �2 and p2 are the quadrupole of the temperature and
of the polarization, which we will define in more detail

below. The integration above is along the line of sight l̂, so
the sources that contribute to the polarization at the posi-

tion ~x come from ~x0 ¼ ~xþ ��l̂, at times �0. A similar
equation applies for the temperature anisotropies, and it
should be clear that these equations are only a closed set
with the addition of the perturbed Einstein equations, as
well as the continuity and Euler equations for baryons,
dark matter and neutrinos—see, e.g., [8,11,16].
It should be evident from the symmetries of the problem

that it is natural to break this system of equations into

spherical coordinates with respect to the lines of sight l̂
around an observer at the origin. For temperature, which is
a scalar under rotations, the spherical harmonic decompo-
sition reads

�ð ~x; �; l̂Þ ¼ X
‘m

�‘mð ~x; �ÞY‘mðl̂Þ: (7)

Polarization, on the other hand, is such that the Stokes
parameters Q and U change sign if we perform a rotation
of � over the line of sight, which means that they are
components of a spin-2 field. In fact, the complex combi-
nation in Eq. (6) was chosen such that it is a spin þ2
eigenstate. Hence, polarization in this form can be ex-
panded in terms of the spin þ2 eigenfunctions, or spin
þ2 spherical harmonics [22,23]:
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Pð ~x; �; l̂Þ ¼ X
‘�2;m

P‘mð ~x; �Þ2Y‘mðl̂Þ: (8)

In Fourier space the dependence on l̂ can be easily

isolated, since ei
~k� ~x0 ¼ ei

~k� ~xei�� ~k�l̂. We then employ

Rayleigh’s expansion, ei
~k� ~x ¼

4�
P

‘mi
‘j‘ðkxÞY	

‘mðk̂ÞY‘mðx̂Þ, and the line-of-sight inte-

grals determining anisotropies can be written in the form
[23,25]:

�‘mð ~x; �Þ ¼ 4�i‘
Z d3k

ð2�Þ3=2 e
i ~k� ~xY	

‘mðk̂Þ�‘ð ~k; �Þ; (9)

P‘mð ~x; �Þ ¼ 4�i‘
Z d3k

ð2�Þ3=2 e
i ~k� ~xY	

‘mðk̂Þp‘ð ~k; �Þ; (10)

where the temperature and polarization momenta, �‘ and
p‘, are derived from the geodesic equation for photons in
the presence of Thomson scattering:

�‘ð ~k; �Þ ¼ �ð1Þ‘ ð ~k; �Þ þ 1

4

Z �

0
d�0gð�0; �Þ½�2ð ~k; �0Þ

� ffiffiffi
6

p
p2ð ~k; �0Þ�

�
1þ 3

@2

@ðk��Þ2
�
j‘ðk��Þ;

(11)

�ð1Þ‘ ð ~k; �Þ ¼
Z �

0
d�0

�
gð�0; �Þ

�
�0ð ~k; �0Þ þ�ð ~k; �0Þ

þ Vbð ~k; �0Þ @

@�

�
þ �ð�0; �Þð�0 þ�0Þ


 ð ~k; �0Þ
�
j‘ðk��Þ; (12)

p‘ð ~k; �Þ ¼ � 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0; �Þ½�2ð ~k; �0Þ

� ffiffiffi
6

p
p2ð ~k; �0Þ� j‘ðk��Þðk��Þ2 : (13)

For the derivation of the polarization term for the tempera-
ture quadrupole, including the radial function, see also
[38].

Therefore, in this form the structure of the interactions is
more clear than in the hierarchy of Boltzmann equations,
but at the price of stating the problem in terms of integro-
differential equations. This complexity is just apparent,
though, since all higher-order source terms have angular
momenta ‘ � 2, and if we solve for the low ones, all the
higher multipoles can be computed with the help of the
integrals above [25].

III. CMB IN POSITION SPACE AND CAUSALITY

The integral equations (11)–(13) should be solved, in

principle, for all momenta ~k so that the temperature and

polarization anisotropies in Eqs. (9) and (10) can be com-
puted. This includes the modes with k � H0, which cor-
respond to arbitrarily large wavelengths and can contribute
to the zero mode of the fluctuations. Now, does this mean
that perturbations outside the horizon can contribute any-
thing to the CMB that we observer? In fact, they do not: we
will show that the temperature and polarization of the
CMB which are observed at any spacetime point ð ~x; �Þ
only include information from inside the PLC of that point.
This statement is true at each order in the visibility �, and
for each spherical mode ð‘;mÞ.
The first step to recover the causal structure which

underlies the temperature and polarization is to go from
Fourier space back to position space. The most direct way
to go back to position space without relinquishing the
spherical harmonic decomposition is to use the fact that
the Fourier- and position-space harmonics are simply re-
lated by a Hankel transform:

fð ~xÞ ¼ X
LM

fLMðxÞYLMðx̂Þ; fð ~kÞ ¼ X
LM

fLMðkÞYLMðk̂Þ;

(14)

fLMðxÞ ¼
ffiffiffiffi
2

�

s
iL
Z 1

0
dkk2jLðkxÞfLMðkÞ;

fLMðkÞ ¼
ffiffiffiffi
2

�

s
ð�iÞL

Z 1

0
dxx2jLðkxÞfLMðxÞ:

(15)

If fð ~xÞ is a real function, then the harmonic coefficients
obey the conjugation relations f	‘mðrÞ ¼ ð�1Þmf‘;�mðrÞ in
position space and f	‘mðrÞ ¼ ð�1Þ‘þmf‘;�mðrÞ in Fourier

space.
The relations above between fLMðxÞ and fLMðkÞ are

quite remarkable: they tell us that the spherical harmonic
phases do not mix at all. This is a consequence [39] of the
fact that angular momentum is the same operator in posi-

tion and in Fourier space, L ¼ i ~x
 ~@x ¼ i ~k
 ~@k. It is
worth noting that apparently this technique were first used
in Cosmology in connection with redshift space distor-
tions—see, e.g., [39–41]. In connection with the CMB,
the spherical decomposition has been used in simulations
[29,30], and as a tool to study polarization from clusters of
galaxies by [38,42].

A. �1 term: �ð1Þ in position space

Now we can easily substitute the sources in terms of this

spherical harmonic decomposition into �ð1Þ‘ . In the follow-

ing subsections we show how this prescription can be
extended to the remaining terms in the expressions (11)
and (13).
Let us then express the monopole �0, newtonian poten-

tial � and baryon velocity potential Vb in terms of spheri-
cal harmonics YLMðx̂Þ, and use them to compute the
temperature anisotropies at our location (assuming that
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we occupy the origin of the spherical coordinate system, at
~x ¼ 0), to first order in the visibility. Substituting the
spherical harmonic decomposition in ~x into Eq. (12) for

�ð1Þ, inserting that expression in Eq. (7) and integrating

over d2k̂ (which makes L ¼ ‘ and M ¼ m), leads to

�ð1Þ
‘mð~0; �Þ ¼

2

�

Z 1

0
dkk2

Z �

0
d�0 Z 1

0
dxx2S‘mðx; �; �0Þ


 j‘ðk��Þj‘ðkxÞ; (16)

where we have collected the sources in the term

S‘mðx; �; �0Þ ¼ gð�0; �Þ
�
�0;‘mðx; �0Þ þ�‘mðx; �0Þ

� Vb;‘mðx; �0Þ @

@�0

�

þ �ð�0; �Þð�0 þ�0Þ‘mðx; �0Þ: (17)

Notice that we have defined the sources in an unusual way,
including a factor of the visibility function for the Sachs-
Wolfe and Doppler terms, and a factor of the total visibility
for the integrated Sachs-Wolfe term. The matter and metric
fields are actually just functions of ðx; �0Þ, but we include
the extra dependence on � that comes from the visibility
into the definition of the source term in order to simplify
the notations.

Now the integral over k in Eq. (16) can be computed, and
in fact that happens to be exactly the orthogonality condi-
tion for spherical Bessel functions:

Z 1

0
dkk2j‘ðkxÞj‘ðkx0Þ ¼ �

2
x�2	ðx� x0Þ: (18)

This implies that Eq. (16) can be simplified to

�ð1Þ
‘mð~0; �Þ ¼

Z �

0
d�0 Z 1

0
dxS‘mðx; �; �0Þ	ðx� ��Þ

¼
Z �

0
d�0fgð�0; �Þ½�0;‘mð��;�0Þ

þ�‘mð��;�0Þ þ V 0
b;‘mð��;�0Þ�

þ �ð�0; �Þð�0 þ�0Þ‘mð��;�0Þg;
(19)

which is just the harmonic decomposition of Eq. (5).

Notice that in Eq. (5) x̂ ¼ l̂, so the gradient in the
Doppler term can be written as a time derivative, which
after integration by parts with the derivative of the delta
function becomes the derivative of the baryon velocity in
the expression above. This warm-up exercise is useful to
check that all sources which contribute to temperature
anisotropies at this level come from the light cone (its
surface, in this case), which here appears explicitly as
	ðx� ��Þ.

Another remarkable fact, which already shows up in this
lowest-order approximation but which is true to all orders,
is that the phases ð‘;mÞ of the CMB observables are the

same as the phases of the sources. The only conditions for
this to hold are, first, that we keep to linear perturbation
theory, and second, that the optical depth is a function of
time only. We will see next that this holds true to higher
orders in the total visibility �.

B. �2 terms in position space

The expressions (11)–(13) are integral equations for the
temperature and polarization momenta �‘ and p‘. We can
iterate these equations and organize the series into powers
of the total visibility, similarly to what is done for the
Dyson series of quantum electrodynamics [26]—except
that the fields in the integral equations for the CMB are
coupled to a set of ordinary differential equations (the
Einstein, continuity, and Euler equations for metric and
matter perturbations.)
In the previous subsection we computed the first term of

this series, which is of order �1 (since the source term is
itself linear in �). Consider now the next terms of this
series, which are of order �2.
For polarization, we have that, to order �2, the only term

which contributes is the temperature quadrupole to order
�1. By substituting Eq. (12) into Eq. (13) and expressing
the sources in terms of their spherical harmonic decom-
positions, like was done in the previous subsection, we
obtain after some algebra:

Pð2Þ
‘mð~0; �Þ ¼ � 3

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0; �Þ



Z �0

0
d�00 Z 1

0
dxS‘mðx; �0; �00Þ



Z 1

0
dkðkxÞ2j‘ðkxÞ j‘ðk��Þðk��Þ2 j2ðk��0Þ;

(20)

where ��0 ¼ �0 � �00. A simplified version of Eq. (20)
was first written in this form by [38], for the case of the
polarization from a galaxy cluster—where the visibility
function after decoupling can be thought of being propor-
tional to a Dirac 	-function, gcð�; ~xÞ ¼ �c	ð ~x� n̂��Þ,
where �c is a cluster’s optical depth and n̂ is the line of
sight to the cluster.
Physically, this contribution to polarization corresponds

to the photons that decoupled at some radius x and time�00,
are scattered at time �0, and then end up as a polarized
beam at time �. The geometry is shown in Fig. 2. We will
show now that the integral over k at the end of Eq. (20) has
exactly that meaning: it vanishes unless the distances x,
��, and ��0 form a triangle, and such a triangle does not
exist unless the sources are inside the PLC of the last
scattering point, and the point of last scattering lies inside
the PLC of the observation point. We will give a general
expression for integrals such as this in Appendix A, but
here is the result [28], which also defines our spacetime
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window function W3
‘ :

W3
‘ ðr1; r2; r3Þ ¼

r21
r22

Z 1

0
dkj‘ðkr1Þj‘ðkr2Þj2ðkr3Þ

¼ �

4

r31
r2r

3
3

Pð�2Þ
‘ ðcos�12Þsin2�12; (21)

where

cos�12 ¼ r21 þ r22 � r23
2r1r2

(22)

is the cosine of the angle between the sides r1 and r2 in the
triangle of sides r1, r2, and r3. The window function W3

‘ is

zero if that triangle does not exist, which means that it is
nonzero only if the following set of conditions are satisfied:

r1 � r2 þ r3; r2 � r3 þ r1; r3 � r1 þ r2; (23)

or, equivalently, jr1 � r2j � r3 � r1 þ r2—see the left
panel of Fig. 2. Notice how these triangular conditions
mimic precisely the ones that appear in the addition of
angular momentum eigenstates.

The window function (21) was first computed in
Ref. [38]. We show plots for some of those window func-
tions in the Appendix, Figs. 5–7.

Hence the momentum integral in Eq. (20) is
W3

‘ ðx;��; ��0Þ, which means that it is a spacetime win-

dow function that vanishes unless the inequalities above are
satisfied. What this result implies to our Eq. (20) is that a
source at radius x and time �00 can only contribute to

Pð2Þ
‘mð�Þ if j��� ��0j � x � ��þ ��0 ¼ �� �00. As

the right panel of Fig. 2 shows, this spacetime window
function limits the contributions of the sources to the PLCs
of the last scatterings, and the scatterings themselves to the
PLC of the observation point. Obviously, this means that

the sources that contribute to Pð2Þ
‘m must also be inside the

PLC of the observation point—which in this case is ��
�00.

Let us summarize this result for the lowest-order con-
tribution to polarization in position space:

Pð2Þ
‘mð~0; �Þ ¼ � 3

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0; �Þ

Z �0

0
d�00



Z ���00

0
dxS‘mðx; �0; �00ÞW3

‘ ðx;��; ��0Þ
(24)

Notice that, among other restrictions, the window function
above cuts off the spatial integral at radius x at �� �00,
which is where the PLC of the observation point lies at
time �00.
In [38], Eq. (24) was used as the starting point to show

how to invert the polarization data from galaxy clusters in
order to reconstruct the three-dimensional map of the
sources at the time of decoupling. That constitutes the
solution (to lowest order in visibility) to a conjecture by
Kamionkowski and Loeb about how to get around cosmic
variance using cluster polarization [43].
Therefore, just as happened in the previous subsection

with �ð1Þ
‘m, the integral over k in effect guarantees that the

sources will only be taken into account if the scattering
processes happen on the light cones. As before, the integral
over x in Eq. (20) is cut off at xmax ¼ �� �00, eliminating
sources which lie outside the PLC of the observation point

ð~0; �Þ. But now there is another feature: since xmin ¼
j��� ��0j, sources which were too close to the observa-
tion point at time �00 also cannot contribute to the CMB at
time � if last scattering happened at time �0—see the
middle and right panels of Fig. 2. This additional constraint
on the volume of the PLC which is integrated applies for
times of last scattering (�0) which are both close and far
from the observation time �.
Before we turn to the order �3 terms, we write down the

order �2 contribution to the temperature anisotropies,

which comes from inserting �ð1Þ2 into Eq. (11). After a

calculation very similar to the one done above for polar-
ization, we obtain that:

�ð2Þ
‘mð~0; �Þ ¼

1

4

Z �

0
d�0gð�0; �Þ

Z �0

0
d�00



Z 1

0
dxS‘mðx; �0; �00Þ

Z 1

0
dkðkxÞ2j‘ðkxÞ



�
1þ 3

@2

@ðk��Þ2
�
j‘ðk��Þj2ðk��0Þ: (25)

The integral over k on the last line of the previous equation
can be recast in terms of W3

‘ if we use the recursion

relations for the derivatives of spherical Bessel functions:

z
‘ d

dz
½z�‘j‘ðzÞ� ¼ �j‘
1ðzÞ: (26)

The momentum integral then becomes:

rr

r

α12
η

η'

η''
x

∆η

∆η'

2
1

3

η

η'

η'' x

∆η

∆η'

FIG. 2. Left panel: if the triangle of sides r1, r2, and r3 exists,
then the window function W3

‘ is nonzero. Middle and right

panels: spacetime diagrams for the scatterings, where time
runs up, and space (radial coordinates) runs horizontally from
the center to the sides. The diagrams show sources which
decoupled at �00, then scatter off free electrons at time �0, and
end up contributing to the polarization Pð2Þ

‘m at time (�). The
minimal and maximal values of x for which the sources can
contribute to polarization are given by xmin ¼ j�����0j and
xmax ¼ ��þ��0 ¼ �� �00.
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ðx��Þ�‘�1 d

dx

d

d��
½x‘�1��‘þ3W3

‘þ1ðx;��; ��0Þ�

þ 3
@2

@��2

�
��2

x2
W3

‘ ðx;��; ��0Þ
�
;

which shows that, just as happened for polarization, the
contribution of order �2 to the temperature is also modu-
lated by the same spacetime window function.

C. �3 and higher-order terms in position space

The iteration process is trivial, but the higher order terms
become lengthy. We present the result for the simplest �3

term that contributes to polarization:

Pð3Þ
‘mð~0; �Þ ¼ � 27

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0; �Þ



Z �0

0
d�00gð�00; �0Þ



Z �00

0
d�000 Z 1

0
dxS‘mðx; �00; �000Þ



Z 1

0
dkðkxÞ2j‘ðkxÞ j‘ðk��Þðk��Þ2


 j2ðk��0Þ
ðk��0Þ2 j2ðk��00Þ; (27)

where ��00 ¼ �00 � �000. We will show in Appendix A that
the integral over k can be resolved into

W4
‘ ðr1; r2; r3; r4Þ ¼

r21
r22r

2
3

Z 1

0
dkk�2j‘ðkr1Þj‘ðkr2Þj2ðkr3Þ


 j2ðkr4Þ

¼ 1

2

Z
dðcos�34Þ r

2
4

r2
Pð�2Þ
2


 ðcos�34Þsin2�34 
 �

4

r31
r2r

3
Pð�2Þ
‘


 ðcos�12Þsin2�12; (28)

where now r is defined as the common side of two tri-
angles, of sides ðr1; r2; rÞ and ðr3; r4; rÞ, such that
r2 ¼ r21 þ r22 � 2r1r2 cos�12 ¼ r23 þ r24 � 2r3r4 cos�34—

see Fig. 3. It is trivial to show that all the remaining terms
of order �3 that contribute to the CMB temperature and
polarization can be written in terms of the window function
W4

‘ by using the recursion relations of spherical Bessel

functions.
The window function vanishes unless all four sides can

form a (flat) polygon, so inequalities similar to those found
for W3

‘ apply here as well:

r1 � r2 þ r3 þ r4; r2 � r3 þ r4 þ r1;

r3 � r4 þ r1 þ r2; r4 � r1 þ r2 þ r3:
(29)

Again, these are exactly the same conditions that appear in
the addition of three angular momentum eigenstates.
The conditions stated above imply once again that the

sources can only contribute to the observable at time � if
each successive PLC lies inside the previous PLC, all the
way from the observation point back to the sources. The
constraints on the positions of the sources are now more
complicated than the case of two scatterings, but the dia-
grams in Fig. 4 show which values of x (measured from the
origin, at the middle of the bases of the cones) are allowed
by the window functions. In three spatial dimensions, these
ranges of radii correspond to concentric spherical shells—

rr

r

α12 21

3

γ 2γ1 γ 3 γ 4

r1

r2

r3

r4 r

r1

r2
r3

r4

r5

r1 r2

α12

α34
r34

r12

FIG. 3. Diagrammatic representation of the series in the visi-
bility. In all diagrams, the filled dot corresponds to the point and
time of observation of the CMB temperature and polarization.
The �1 term (the two lines beginning and ending at the same
points) corresponds to a window function 	ðr1 � r2Þ. The �2 and
�3 terms (respectively the triangle and 4-side polygon) corre-
spond to the window functions W3

‘ of Eq. (21) and W4
‘ of

Eq. (28). For all diagrams the window functions vanish unless
the sides are such that the polygon can be closed. The main
physical implication is that sources (which by default are located
at r1 with respect to the observation point) outside the PLCs of
the last scatterings do not contribute to the CMB. In particular,
sources outside the PLC of the point of observation are thrown
out of the integration of the physical observables. See the
Appendix for a full discussion of these geometrical properties.

η

η'

η''

η

η'

η''

η'''

η
η'

η''

η
η'

η''

η'''

FIG. 4. Structure of the successive PLCs for two (left dia-
grams) and three (right diagrams) scatterings. The values of x
for which the window functions W3

‘ ðx; �;�0Þ and

W4
‘ ðx; �;�0; �00Þ are nonzero are indicated as the thick lines at

the bases of the cones. Here the radius x should be measured
from the origin of the spatial coordinates, which in these space-
time diagrams lie along the dashed lines. Notice that the region
in the vicinity of the PLC of the observation point (the outermost
PLC) always contributes to the integral, the origin is always
excluded, and intermediate regions may or may not contribute to
the CMB observables.

ABRAMO, REIMBERG, AND XAVIER PHYSICAL REVIEW D 82, 043510 (2010)

043510-8



in the case of two scatterings, there is one spherical shell;
in the case of three scatterings, two spherical shells; and so
on. The outermost spherical shell always includes the edge
of the PLC of the observation point.

It is easy to recover W3
‘ from W4

‘ by taking r3 ! 0. In
fact, we can also recover the orthogonality condition for
the spherical Bessel functions, Eq. (18), fromW3

‘ by taking

r3 ! 0. This can be made by noticing that, inW3
‘ the limit

r3 ! 0 leads to r2 ¼ r1, and in W4
‘ the limit r3 ! 0 leads

to r4 ¼ r. Then, using the expansion of the Bessel func-
tions for small arguments, j2ðzÞ � z2=15þOðz4Þ, we ob-
tain that

lim
r3!0

W3
‘ ðr1; r2; r3Þ ¼

r23
15


 �

2
r�2
1 	ðr1 � r2Þ; (30)

lim
r3!0

W4
‘ ðr1; r2; r3; r4Þ ¼ 1

15 
W3
‘ ðr1; r2; r4Þ: (31)

The first identity just shows that the PLC delta function is
the spacetime window function for two scatterings (order
�1.) The second identity can also be verified by noticing
that in the r3 ! 0 limit, cos�34 is unconstrained, so we can
integrate out the dependence on that angle, which gives a
factor of 2=15.

The procedures outlined above can be extended once
again to the next order in the visibility, �4. The geometrical
interpretation is given by the right-most diagram in Fig. 3.
Again, we see the role played by the spacetime window
functions, of regulating the volume of the PLC in each
scattering so that the information from the sources is
propagated causally all the way to the observer. Notice
also that by taking r3 ! 0 we recover W4

‘—in fact, all the

spacetime window functions obey the relation

lim
r3!0

Wn
‘ ðr1; r2; r3; . . . ; rnÞ ¼ 1

15W
n�1
‘ ðr1; r2; r4; . . . ; rnÞ

D. Interpretation of the series in �

In this Section we have shown, first, that the contribution
of order �1 from sources at positions x and times of last
scattering �0 to the temperature which is observed at time
� is modulated by a delta-function, 	ðx� ��Þ—and this
is nothing but the surface of the PLC of the observation
point, x ¼ �� ¼ �� �0. Then we showed that the con-
tributions of order �2 to temperature and polarization are
modulated by the spacetime window function
W3

‘ ðx;��; ��0Þ, where now �� denotes the interval be-

tween observation and the last scattering, and ��0 denotes
the interval between that last scattering and the second-to-
last scattering. We presented the simplest contribution of
order �3, which sums over sources modulated by the
window function W4

‘ , and indicated how the order �4

term is also modulated by a window function W5
‘ . Notice

that we have been labeling each term of the series in terms
of �, which in this notation stands both for the total

visibility � ¼ e�� and for the visibility function g ¼
d�=d�. However, even though the total visibility is always
smaller than unity, the visibility function is highly peaked
at the time of recombination and during reionization, so it
would be incorrect to characterize our series over visibility
as a perturbative series—it is rather more like an asymp-
totic series.
The series over visibility has the diagrammatic repre-

sentation shown in Fig. 3. Perhaps it is not so surprising
that the spherical Bessel functions play a key role in
regulating the volume inside the PLC, since they are asso-
ciated with the matrix elements of E3—the Euclidean
group in three dimensions [44]. E3 is a noncompact group
consisting of the set of transformations under which dis-
tances are invariant, which may explain why the spherical
Bessel functions modulate the (invariant) distances on each
equal-time hypersurface.
Another check on our results is the fact that all the

window functions are real. Since the sources Sð ~x; �; �0Þ
are themselves real, this means, in particular, that
P	
‘m ¼ ð�1ÞmP‘;�m—i.e., the polarization that is gener-

ated from scalar perturbations is made up purely of
E-modes. If we had included gravity waves or lensing,
these window functions would have acquired an imaginary
piece as well, which would have ‘‘magnetic’’ (instead of
‘‘electric’’) parity and therefore generate B-modes.
The spacetime window functions to any order in �

vanish unless each scattering lies in the PLC of the follow-
ing scattering, all the way from the sources to the obser-
vation point. The order �N contributions to CMB
observables hold the information from the Nth last scatter-
ings, and are modulated by the window function
WNþ1

‘ ðx;��; ��1; . . . ;��N�1Þ. In terms of the diagrams

of Fig. 3, there are always two spherical Bessel functions of
order ‘, corresponding to the source (x) and the last scat-
tering before observation (��), and N � 1 spherical
Bessel functions of order 2, corresponding to the N � 1
intermediate scatterings for which the quadrupoles of the
temperature and polarization served as sources in the iter-
ations of the line-of-sight integrals. The computation of
these spacetime window functions, as well as the restric-
tions they impose on the sources that can contribute to the
CMB (in particular the fact that they all vanish outside the
PLC of the observation point) are shown in Appendix A.
Therefore, in position space the line-of-sight integral

equations have a simple interpretation in terms of succes-
sive Thomson scatterings happening along the successive
PLCs. These expressions should still be coupled to the
Einstein, continuity, and Euler equations through the tem-
perature dipole and quadrupole, but those are local equa-
tions so their causal structure is trivial (nevertheless, the
Green’s function in position space for the cosmological
matter and metric perturbations can also reveal very inter-
esting features [34,35].)
Going back to the hierarchy of Boltzmann equations,

which are obtained directly from the line-of sight integrals
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in Fourier space, there is one full hierarchy which holds
separately for each mode fk; ‘;mg. Hence, what we have
shown is an explicit demonstration that the line-of-sight
formalism can also be seen as the solution to an initial
values problem, where the initial conditions only need to
be specified inside the PLC of the observer, at some initial
time when the visibility was small enough that the series
converges quickly. In other words: we have explicitly
shown that the line-of-sight integrals in Fourier space are
essentially the Fourier transform of a retarded Green’s
function for the CMB observables. These retarded Green
function for anisotropies in position space are expressed at
each order in the series over visibility through spacetime
window functions, which are ultimately the objects respon-
sible for enforcing causality and regulating which inhomo-
geneities are able to affect anisotropies, and how.

The results of this section have an interesting connection
with schemes to simulate constrained maps of CMB tem-
perature and polarization [29–33]. These simulations are
extremely important to predict the types and levels of non-
Gaussianity in the CMB which are generated at the very
early Universe, since distinct inflationary models can be
differentiated on that basis [45]. In those simulations, the
temperature and polarization transfer functions, which
transform the inhomogeneities (the sources) into anisotro-
pies, are computed numerically assuming some visibility
function. Moreover, some approximations are typically
made, such as considering only the curvature perturbation
in the source term. Our expressions, on the other hand, are
exact and analytical, but it is not immediately clear how (or
if) they could be used to facilitate a simulation. However,
our results show that the transfer functions of [29,30] are
made up of invariant (or geometrical) pieces which can be
factored from the purely time-dependent visibility func-
tion. These invariant parts are given by our spacetime
window functions, which do not depend on the cosmologi-
cal scenario or on the history of recombination. The trans-
fer functions relevant for the simulations can, therefore, be
obtained by integrating our spacetime window functions
over time with some visibility function.

IV. CMB WITH THE FOURIER-BESSEL
EXPANSION

We have seen that the line-of-sight integrals for the
CMB temperature and polarization, when framed in posi-
tion space, lead to spacetime window functions that con-
strain the positions of the sources SðxÞ that are eventually
integrated over. These constraints, valid at each order in the
visibility, imply, in particular, that the sources must all lie
inside the PLC of the observer that measures the CMB. But
this is not the only constraint that is relevant for this
problem.

The physics of recombination is such that the visibility is
exponentially small for z � 103. Since all the terms of the
series over visibility are linear on the sources, the fact that

they are always multiplied by powers of the visibility
implies that the sources which are relevant in the line-of-
sight integrals are those that lie inside the PLC of the
observer at some time late enough that the visibility is
nonvanishing. So, the sources which are actually summed
into the CMB anisotropies are not simply the sources in the
PLC of the observer, but the sources in the PLC of the
observer at times such that the visibility is not totally
negligible. Since for a typical flat �CDM cosmology the
lookback distance from today to those early times saturates
near R� 5H�1

0 for z � 103, it makes little difference

whether we choose that initial instant (when � ! 0 and
g ! 0) to be z ¼ 104, 105, or 1010.
This means that the integration of the sources is not

simply limited to the PLC of the observer, as implied by
the window functions WN

‘ , but that the relevant spacetime

volume is that of the PLC, cut off at some initial time �i

such that �ð�;�iÞ and gð�;�iÞ are sufficiently small. Since
the unperturbed spacetime is symmetric around the source,
there is in effect a maximal radius away from the observer,
R ¼ �� �i, such that outside that radius, the sources are
effectively zero by virtue of the powers of � that multiply
them at each order in the series. Notice that we could even
choose R to be bigger than this lookback time, but that
would unnecessarily include sources which are eventually
discarded in the integration of the physical observables.
Hence, we can fix some boundary R and set all fields to

zero at that boundary and beyond: the result of solving the
initial values problem through the line-of-sight integrals
will be exactly the same, order by order in the series over
the visibility.
If that is the case, then we should ask what would be the

best way to represent the sources, considering that they are
zero at and above some radius R from the origin. The
appropriate expansion in that case is clearly the Fourier-
Bessel series [28], for which the fields are expanded in
spherical harmonics and spherical Bessel functions, but
instead of the continuum of momenta that appears in
Fourier space, Eq. (15), the modes are discretized: they
are given by the roots of the spherical Bessel functions. A
function that obeys Dirichlet boundary conditions at r ¼ R
is expanded as

fð ~xÞ ¼ X
‘m

f‘mðxÞY‘mðx̂Þ ¼
X
‘m

X1
i¼1

fi‘mj‘ðki‘xÞY‘mðx̂Þ;

(32)

where the last sum is over the ith root of j‘, so that for all
i’s the Bessel functions vanish at the boundary, j‘ðki‘RÞ ¼
0. The coefficients fi‘m can be obtained by using the
orthogonality relation of the Fourier-Bessel basis:

Z 1

0
dzz2j‘ðqi‘zÞj‘ðqj‘zÞ ¼ 1

2
½j‘þ1ðqi‘Þ�2	ij; (33)

where qi‘ is the ith root of j‘ðzÞ. This expression leads
immediately to
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fi‘m ¼ 2R�3

j2‘þ1ðki‘RÞ
Z R

0
dxx2j‘ðki‘xÞf‘mðxÞ; (34)

where ki‘ ¼ qi‘=R.
The most important feature of the Fourier-Bessel series

is that its basis functions, like the plane waves of the
Fourier expansion, are eigenvectors of the Laplacian op-
erator in flat space, r2j‘ðki‘xÞY‘mðx̂Þ ¼ �k2i‘j‘ðki‘xÞ

Y‘mðx̂Þ. This means that the Einstein, continuity and
Euler equations for matter are exactly the same as in the
usual Fourier expansion—except that the momenta ki‘ are
now discretized. Moreover, the lowest eigenmode of the
Fourier-Bessel series that can contribute for a given multi-
pole ‘ is k1‘ � ‘=R. If the spatial sections are curved, the
only difference is that the radial functions are the so-called
ultraspherical Bessel functions—see, e.g., [24]—however,
the fact that the radial and angular modes can be separated
in the linear theory remains an exact statement, and the fact
that the momenta are discretized in a Fourier-Bessel type
of expansion also remains true.

Notice that there is nothing fundamental about the radius
R of the spherical box inside which we define initial
conditions for the CMB observables: we could have chosen
to cut off the light cone at an earlier time, for instance,
which would make R larger. This would mean that the
modes would be shifted by a factor ki‘ ! Rold=Rnewki‘—
however, the hierarchy between the different modes would
remain exactly the same, i.e., the fractions ki‘=ki0‘0 ¼
qi‘=qi0‘0 are invariant under a scaling of R. This tells us
that it is this hierarchy between the discretized momenta
that is responsible for the optimization of the information
that eventually gets transferred to the CMB.

Finally, we could have also chosen Neumann boundary
conditions for the functions expanded inside that spherical
box. This choice would lead to a different set of modes �qi‘,
corresponding to the roots of the equations j0‘ðqi‘Þ ¼ 0.
Still there is a minimum mode, and a tower of discretized
modes above that minimum. In practical applications it
may turn out to be convenient to use either one of these sets
of modes—or perhaps even both sets.

A. Fourier-Bessel modes of CMB observables

Now we can go back to the CMB and translate the
equations and methods presented in the previous Sections
to the Fourier-Bessel basis. The most important difference
between the two expansions can be grasped by comparing
Eqs. (15), (32), and (34). Basically, when going from the
Fourier basis to the Fourier-Bessel basis, the angular de-
pendence is still expressed in terms of spherical harmonics,
but the radial coordinate is expressed by a sum, not an
integral:

ffiffiffiffi
2

�

s
i‘
Z 1

0
dkk2 ! R�3

X
i

; (35)

which just tells us how to go from the continuum of
momenta appropriate for fields in R3 to the discrete tower
of momenta ki‘ that encapsulates all the information for
fields limited to the finite volume inside a sphere of radius
R.
In particular, this means that now the CMB temperature

and polarization are given in terms of the momenta not by
Eqs. (9) and (10), but by

�‘mð�Þ ¼
X
i

�i‘mð�Þ; (36)

P‘mð�Þ ¼
X
i

Pi‘mð�Þ: (37)

In these sums �i‘m � �‘;i‘m and Pi‘m � p‘;i‘m are given

by the solutions of integral equations analogous to
Eqs. (11)–(13), which for each multipole L and for each
mode fi‘mg read

�L;i‘mð�Þ ¼ �ð1ÞL;i‘mð�Þ þ
1

4

Z �

0
d�0gð�0; �Þ½�2;i‘mð�0Þ

� ffiffiffi
6

p
p2;i‘mð�0Þ�

�
1þ 3

@2

@ðki‘��Þ2
�
jLðki‘��Þ;

(38)

�ð1ÞL;i‘mð�Þ ¼
Z �

0
d�0Si‘mð�;�0ÞjLðki‘��Þ; (39)

pL;i‘mð�Þ ¼ � 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0; �Þ½�2;i‘mð�0Þ

� ffiffiffi
6

p
p2;i‘mð�0Þ� jLðki‘��Þðki‘��Þ2

; (40)

and where the sources in Eq. (39), which were defined in
Eq. (17), have been expanded in the Fourier-Bessel basis as
well. Notice that only the generalized modes fL; i; ‘; mg
with L � 2 really need to be calculated from the integral
equations (or, equivalently, from the associated Boltzmann
equations), since all the higher modes (L � 3) can be
computed from the former, and only the pieces L ¼ ‘
actually get summed into the CMB observables,
Eqs. (36) and (37). This is just a restatement of the fact
that the sources of anisotropies are the matter and metric
inhomogeneities, plus the dipole and quadrupole of tem-
perature and polarization—which, again, underpins the
vast superiority of the line-of-sight formalism compared
to the full hierarchy of Boltzmann equations.
An important check of consistency is to reobtain the

temperature and polarization anisotropies in position space
that were derived in Sec. III. To first order in �, the
temperature anisotropies are given by
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�ð1Þ
‘mð�Þ ¼

X
i

�ð1Þ‘;i‘m

¼
Z �

0
d�0 Z R

0
dxx2

X
i

2R�3

j2‘þ1ðki‘RÞ
j‘ðki‘xÞ


 S‘mðx; �; �0Þj‘ðki‘��Þ; (41)

where the source term S‘mðx; �; �0Þ was defined in
Eq. (17). But now the infinite sum in Eq. (41) can be
resolved through the use of the orthogonality of the
Fourier-Bessel basis in target space (actually, this is a
completeness relation—see [28], Chap. XVIII), which is
just the Fourier-Bessel counterpart of Eq. (18):

X1
i¼1

j‘ðki‘r1Þj‘ðki‘r2Þ
j2‘þ1ðki‘RÞ

¼ 1

2
R3r�2

1 	ðr1 � r2Þ: (42)

This identity leads then automatically to Eq. (19), which
shows that to order �1 the Fourier and Fourier-Bessel
descriptions are identical.

To order �2 it is less obvious that one obtains the same
anisotropies as related to the position-space fields, but it is
true nevertheless. To see that, take the simplest term—the
contribution to polarization that comes from the order �1

quadrupole:

Pð2Þ
‘mð�Þ ¼

X
i

p‘;i‘m

¼�3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ!
ð‘� 2Þ!

s Z �

0
d�0gð�0;�Þ



Z �0

0
d�00Z 1

0
dxx2

X
i

2R�3

j2‘þ1ðki‘RÞ
S‘mðx;�0;�00Þ


 j‘ðki‘xÞ j‘ðki‘��Þðki‘��Þ2
j2ðki‘��0Þ: (43)

Notice that now, making r1 ¼ x, r2 ¼ �� and r3 ¼ ��0
we have on the right-hand side a spacetime window func-
tion given by

~W 3
‘ðr1; r2; r3Þ ¼ �R�3 r

2
1

r22

X1
i¼1

1

k2i‘


 j‘ðki‘r1Þj‘ðki‘r2Þj2ðki‘r3Þ
j2‘þ1ðki‘RÞ

: (44)

Although we have not been able to prove mathematically
that this Fourier-Bessel window function is identical to the
Fourier window function of Eq. (21), we have checked
numerically that they are identical—including the factor of
�which relates the phase spaces of the two basis functions.
Hence, the lowest-order contribution to CMB polarization
that results from using the Fourier-Bessel representation is
again given, precisely, by Eq. (24).

In fact, we can prove (see the Appendix) not only that
the twowindow functionsW3

‘ and
~W3
‘ are equal, but that all

the window functions derived in Sec. III are identical to the
window functions that arise in the Fourier-Bessel expan-

sion, if a certain generalization of the orthogonality rela-
tion, Eq. (42), is valid:

X1
i¼1

j‘0 ðki‘r1Þj‘0 ðki‘r2Þ
j2‘þ1ðki‘RÞ

¼ 1

2
R3r�2

1 	ðr1 � r2Þ: (45)

We have checked numerically that this relation seems to
hold true for a range of ‘ and ‘0, and for any arguments
0 � r1;2 < 1, but as far as we know this has not been

proven anywhere in the literature about Bessel func-
tions—even though it clearly is a fundamental tool for
relating quantities in the Fourier and in the Fourier-
Bessel expansions.
We have also checked that the integral equations (38)–

(40) lead to the usual hierarchy of Boltzmann equations
[16,23,25], where now there is one full independent hier-
archy for each mode fi‘mg. It is curious that, while in the
usual Fourier analysis what generates the hierarchy of
Boltzmann equations are the recursion relations of the

Legendre polynomials in the angular dependence k̂ � l̂, in
our case the generators of the hierarchy are the recursion
relations of the radial modes—the spherical Bessel func-
tions. Since the two special functions are intimately related
by Rayleigh’s expansion of the plane wave (which is
ultimately what regulates the line-of-sight integrals), it is
indeed natural that both bases could be used to generate
that hierarchy.
The crucial difference between the Fourier-Bessel series

and the usual Fourier analysis lies in the discrete momenta
ki‘ that can contribute to the observables �‘m and P‘m in
the Fourier-Bessel expansion. Critically, in this discretized
series the first mode to contribute at each multipole is
k1‘ � ‘=R. Another feature is that the total number of
modes which one needs to compute to obtain anisotropies
up to some ‘max is Nmax � ‘2max=9 (for ‘max � 10).
There is, however, an apparent drawback of the Fourier-

Bessel basis: although it clearly is a superior method to
solve our sort of initial values problem when compared to
the Fourier basis, when the underlying spatial fields are
Gaussian the coefficients of the Fourier-Bessel series do
not obey simple statistics like those of the Fourier modes.
We will now turn to these issues.

B. Statistics and power spectra in the Fourier-Bessel
basis

Take a Gaussian field fð ~xÞ in R3, which is expanded into
spherical harmonics in position and in Fourier space as in
Eqs. (14). If homogeneity and isotropy are unbroken, the
two-point correlation functions in position and in Fourier
space can be expressed in terms of the radial functions as

hf‘mðrÞf	‘0m0 ðr0Þi ¼ 	‘‘0	mm0
f
‘ðr; r0Þ; (46)

hf‘mðkÞf	‘0m0 ðk0Þi ¼ 	‘‘0	mm0k�2PfðkÞ	ðk� k0Þ: (47)

Here the advantage of Fourier space becomes evident:
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translational invariance implies that the covariance matrix
of the Fourier modes is completely diagonal. The relation-
ships between the position-space two-point correlation
function and the power spectrum are given by


f
‘ðr; r0Þ ¼

2

�

Z 1

0
dkk2j‘ðkrÞj‘ðkr0ÞPfðkÞ; (48)

and, conversely, by

PfðkÞ ¼
Z 1

0
drr2

j‘ðkrÞ
j‘ðkr0Þ


f
‘ðr; r0Þ: (49)

From the identity above it is also evident that the two-point
correlation function has a lot of redundant information,
since many different traces of it can lead to the power
spectrum. If the field f is Gaussian, these correlation
functions are the only nontrivial statistical momenta of
that field’s distribution function.

We want to obtain the corresponding relations for the
modes of the Fourier-Bessel series. This can be easily
achieved by taking fields fð ~xÞ in R3 and passing them
through a radial window function WðrÞ, such that
Wðr � RÞ ¼ 0—e.g., the top hat window function:

WTHðrÞ ¼ �ðR� rÞ; WTHðkÞ ¼
ffiffiffiffi
2

�

s
R3

kR
j1ðkRÞ; (50)

where �ðxÞ is the step (Heaviside) function. In this way, the
filtered functions will obey the boundary conditions,
~fðRÞ ¼ WðRÞfðRÞ ¼ 0.
In Fourier space, the effect of a window function is to

couple the different modes

~fð ~kÞ ¼
Z d3q

ð2�Þ3=2 Wð ~k� ~qÞfð ~qÞ: (51)

Hence, the Fourier transform of the filtered function ac-
quires nondiagonal correlations k-space

h~fð ~kÞ~f	ð ~k0Þi ¼
Z d3q

ð2�Þ3 Wð ~k� ~qÞWð ~k0 � ~qÞPfðqÞ: (52)

For a purely radial window function WðrÞ, we obtain
with the help of Eqs. (15) that the spherical harmonic
components of the filtered function are

~f ‘mðkÞ ¼
Z

dqq2f‘mðqÞW‘ðk; qÞ; (53)

whereW‘ðk; qÞ is the (symmetric) mode-coupling kernel of
the radial window function

W‘ðk; qÞ ¼ 2

�

Z 1

0
drr2WðrÞj‘ðkrÞj‘ðqrÞ: (54)

Hence, it is clear that if WðrÞ ! 1 then W‘ðk; qÞ !
q�2	ðk� qÞ and we recover the Fourier modes of the R3

field. For a generic radial window function, however, there
will be mixing of modes, and the covariance matrix will be
nondiagonal. The filtered spectrum is then related to the
physical power spectrum through

h~f‘mðkÞ~f	‘mðk0Þi ¼
Z 1

0
dqq2W‘ðk; qÞW‘ðk0; qÞPfðqÞ:

(55)

In particular, for the Fourier-Bessel modes, which are
related to the (filtered) spherical modes in Fourier space

by fi‘m ¼ ffiffiffiffiffiffiffi
2�

p
i‘j�2

‘þ1ðki‘RÞ~f‘mðki‘Þ, this last identity im-

plies that

hfi‘mf	j‘mi ¼
2�R�6

j2‘þ1ðki‘RÞj2‘þ1ðkj‘RÞ
Z 1

0
dqq2W‘ðki‘; qÞW‘ðkj‘; qÞPfðqÞ

¼
Z R

0
drr2

2R�3j‘ðki‘rÞ
j2‘þ1ðki‘RÞ

Z R

0
dr0r02

2R�3j‘ðkj‘r0Þ
j2‘þ1ðkj‘RÞ


 2

�

Z 1

0
dqq2PfðqÞj‘ðqrÞj‘ðqr0Þ

¼
Z R

0
drr2

2R�3j‘ðki‘rÞ
j2‘þ1ðki‘RÞ

Z R

0
dr0r02

2R�3j‘ðkj‘r0Þ
j2‘þ1ðkj‘RÞ


f
‘ðr; r0Þ; (56)

where we have used the top hat window function from the
first to the second line. These expressions show how to
compute the covariance of the Fourier-Bessel modes from
either the power spectrum or from the two-point correla-
tion function in position space. It is also useful to obtain the
equivalent of Eq. (48) in the Fourier-Bessel representation.
By the completeness relation, Eq. (42), it is easy to see thatX

i

X
j

j‘ðki‘rÞj‘ðkj‘r0Þhfi‘mf	j‘mi

¼ �ðR� rÞ�ðR� r0Þ
f
‘ðr; r0Þ; (57)

where �ðrÞ is the step (Heaviside) function.

The two-point correlation function (as opposed to the
Fourier spectrum) is more directly related to the physical
observables, since it remains invariant as long as we keep
within the causally accessible region (i.e., r � R and r0 �
R.) However, Eq. (56) also tells us that the two-point
function of the Fourier-Bessel modes has nondiagonal
terms (albeit only in k-space.) This does not pose a prob-
lem, because the spectrum is not really an observable: it
can only be estimated (with exactly the same tools and
assumptions as usual) from observables such as the tem-
perature and polarization maps, as well as their derived
products such as the angular power spectra. And since we
saw in the previous section that the observables retain
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exactly the same relations to the sources of anisotropies as
they do in the usual Fourier expansion in R3, we conclude
that the Fourier-Bessel expansion fulfills all the require-
ments to faithfully express the physics of the CMB.

C. Angular power spectra

Most of the useful cosmological information that we get
from the CMB comes from the angular power spectra,
because of their simple relationship with the Fourier power
spectrum. For a function fð ~xÞ, the angular spectrum at

radius r can be defined from Eq. (46), as Cf
‘ðrÞ ¼


f
‘ðr; rÞ. Below we show that in the Fourier-Bessel expan-

sion the angular power spectra assume exactly the same
values as they would if we did not assume that the space
was limited to the sphere r � R.

The argument is simplest for the temperature anisotro-
pies to order �1, and generalizes in a trivial manner to the
higher-order terms. The angular power spectrum for tem-
perature in the Fourier-Bessel case reads

h�ð1Þ
‘m�

ð1Þ	
‘0m0 i ¼

�X
i

�ð1Þ
i‘m

X
i0
�ð1Þ	

i0‘0m0

�
¼ CTTð1Þ

‘ ð�Þ	‘‘0	mm0 :

(58)

Using the orthogonality conditions of the Fourier-Bessel
basis in target space, Eq. (42), we obtain

CTTð1Þ
‘ ð�Þ ¼

Z �
d�0

1

Z �
d�0

2hS‘mðx ¼ ��1; �
0
1Þ


 S	‘mðx ¼ ��2; �
0
2Þi ¼ h �S‘m �S	‘miPLC: (59)

But this is exactly the usual result: to lowest order, the
temperature angular power spectrum is given by the aver-
age over the PLC of the (angular) two-point angular corre-
lation function of the Sachs-Wolfe, Doppler, and integrated
Sachs-Wolfe source terms, properly weighted by the visi-
bility. For the �2 and higher-order terms, the procedure is
precisely the same and leads back to the same relation
between the angular power spectra and the sources as
happened in position space, where the spacetime window
functions regulate which sources contribute to the anisot-
ropies in the space and time integrals. Hence, we have
shown that not only the observables (the temperature an-
isotropies), but also that the statistics of the angular power
spectra in the Fourier-Bessel expansion are identical to the
usual case of the Fourier expansion.

D. Fourier v. Fourier-Bessel

The identity between the spacetime window functions at
all orders in � implies that the source and the observables
(the temperature and polarization maps, or equivalently
their spherical harmonic components �‘m and P‘m) are
related in exactly the same way in the Fourier-Bessel basis
and in the Fourier basis. The statistics of the angular power
spectra, therefore, are also related to the statistics of the

underlying matter and metric fields in precisely the same
way in the two representations.
Hence, the Fourier-Bessel basis is, in some respects,

completely equivalent to the Fourier basis: it represents
the same physics and it expresses the same observables as
its Fourier counterparts—it even has the same statistics.
However, in at least one respect the Fourier-Bessel basis is
superior to the Fourier basis: it has a precise prescription
for the discretized tower of modes that contribute for the
observables at each multipole. These modes take into
account exactly the relevant pieces of information from
the sources, the ones that propagate from the initial value
surface to the physical observables—no more, no less. And
the statistics of the power spectra, as we have demonstrated
above, is related in precisely the same way to the statistics
of the (presumably Gaussian) matter fields, just as happens
in the usual analysis in Fourier space.
Finally, as an initial-value formulation the Fourier-

Bessel expansion is vastly superior to the Fourier repre-
sentation because it does not waste any resources keeping
track of irrelevant variables such as super-Hubble modes or
modes which trace out of the observable. All the informa-
tion is encoded in a discrete series of momenta, and we do
not have to guess how to subdivide the Fourier space in
sufficiently small pieces in order to sample the observables
we want to compute—the Fourier-Bessel modes already
provide the unique, optimal choice.

V. CONCLUSIONS

In this paper we have shown how causality constraints in
position space regulate which sources of anisotropies (the
matter and metric perturbations) can contribute to the
CMB. This causal structure is manifested order by order
in a series of terms corresponding to the number of inter-
actions that photons experienced over the past light cone of
the observer—or, equivalently, a power series on the visi-
bility � ¼ e��.
When expressed in position space, the line-of-sight in-

tegrals acquire an intuitive interpretation in terms of scat-
terings over the light cones of the successive scatterings, all
the way from the sources to the point and time of obser-
vation. In particular, we find that, in position space, only
the sources of anisotropy that are inside our past light cone
are taken into account. This statement is exact to all
orders—as it should be, since the causal nature of the
propagation of photons is the key ingredient in the line-
of-sight integrals from which we started. An interesting
question which we did not have time to address is at what
number of scatterings prior to free streaming we can cut off
this series so that the error in the temperature distribution
is, say, of order 1%.
At each order in the power series on the visibility, the

sources are weighted by spacetime window functions.
These window functions can be complicated for a high
number of scatterings, but they all obey a very simple rule:
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they vanish identically unless some extremely simple sets
of inequalities are satisfied. These inequalities are identical
to the triangle conditions that appear when adding angular
momentum eigenstates, and have a simple geometrical
interpretation: if the position of the source and the radii
of the light cones of the interactions cannot form a flat
polygon, the spacetime window functions vanish.

One of the implications of these causality constraints is
that, whatever the properties of the Universe outside a
limiting radius R, the source fields do not propagate to
the CMB observables—and the line-of-sight integrals both
in Fourier space and in the Fourier-Bessel expansion retain
this property. In practice, this means that we can use the
Fourier-Bessel framework to compute the CMB—even
though it puts the Universe in a ‘‘spherical box,’’ and
discards all the information outside of that box.

In the Fourier-Bessel basis, the fields are decomposed in
spherical harmonics and a series of discrete eingenmodes
ki‘ (as opposed to the continous modes of Fourier space.)
The first eigenmode for each multipole ‘ is k1‘ � ‘=R.
CMB observables are exactly the same as in the Fourier
basis—but the Fourier-Bessel basis is optimal, in the sense
that it does not keep track of irrelevant modes, only the
ones that contribute constructively to the physical
observables.

The previous discussion implies that our results and
methods are suitable for analytical and numerical studies
of CMB temperature and polarization maps in models with
large-scale inhomogeneities, statistical anisotropy or non-
Gaussianities of any kind [29–32]. Our results may be
useful also in simulations of the CMB in the presence of
topological defects. It is not clear whether the methods
described here can be employed to study models with
nontrivial topology [33], since in those cases the Fourier
or Fourier-Bessel basis functions may not be eigenvectors
of the Laplace-Beltrami operator.
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APPENDIX: INTEGRALS OF BESSEL FUNCTIONS

1. Integral of products of spherical Bessel functions

We will now compute the integrals of spherical Bessel
functions that were presented in Sec. III to obtain the
spacetime window functions. Parts of the methods used
here can be found in [28]. The results below also provide
the motivation for the diagrammatic representation of the
window functions shown in Fig. 3.

The spherical Bessel functions are associated with the
matrix elements of the Euclidean group in three dimen-
sions, E3 [44]. The Euclidean group E3 consists of the set

of transformations that leaves spatial distances invariant—
i.e., spatial translations and rotations. The rules of group
multiplication lead to addition theorems for the special
functions which realize the group representation, one ex-
ample of which is the orthogonality condition of Eq. (18).
Although E3 is not compact, the spherical Bessel functions
also obey an addition rule, namely [44]:

jmðkrÞ
ðkrÞm ¼ X1

n¼m

ð2nþ 1Þjnðkr1Þjnðkr2Þ
½ðkr1Þðkr2Þ sin��m PðmÞ

n ðcos�Þ; (A1)

where ðr; r1; r2Þ form a triangle and � is the angle between
sides r1 and r2.

2. Integral of three spherical Bessel functions

We can use Eq. (A1) and the orthogonality of Legendre
polynomials,

Z 1

�1
dxPðmÞ

‘ ðxÞPð�mÞ
‘0 ðxÞ ¼ ð�1Þm 2

2‘þ 1
	‘;‘0 ; (A2)

to reduce the product of two Bessel functions to only one
Bessel function. Choosing m ¼ 2 due to the demands of
our particular problem, we have

j‘ðkr1Þj‘ðkr2Þ ¼
X1
‘0¼2

j‘0 ðkr1Þj‘0 ðkr2Þ	‘;‘0

¼ X1
‘0¼2

2‘0 þ 1

2

Z 1

�1
dðcos�Þj‘0 ðkr1Þj‘0 ðkr2Þ


 Pð2Þ
‘ ðcos�ÞPð�2Þ

‘0 ðcos�Þ
¼ 1

2

Z 1

�1
dðcos�ÞPð�2Þ

‘ ðcos�Þðkr1Þ2ðkr2Þ2


 sin2�
X1
‘0¼2


 ð2‘0 þ 1Þj‘0 ðkr1Þj‘0 ðkr2ÞPð2Þ
‘0 ðcos�Þ

½ðkr1Þðkr2Þ sin��2
:

(A3)

Now we perform a change of variable, calling r the side of
the triangle whose other two sides are r1 and r2, such that�
is the angle between r1 and r2, i.e. r2 ¼ r21 þ r22 �
2r1r2 cos�. Performing this change of variables, we obtain

Z 1

�1
dðcos�Þ !

Z r1þr2

jr1�r2j
dr

r

r1r2
;

and therefore

j‘ðkr1Þj‘ðkr2Þ ¼ 1

2

Z
drk2

r1r2
r

j2ðkrÞPð�2Þ
‘ ðcos�Þsin2�:

(A4)
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Consider, then, the integral that is relevant to us

Z
dkj‘ðkr1Þj‘ðkr2Þj2ðkr3Þ¼ r1r2

2

Z dr

r
Pð�2Þ
‘ ðcos�Þsin2�



Z
dkk2j2ðkrÞj2ðkr3Þ: (A5)

But now we can employ the orthogonality of Bessel func-
tions, Eq. (18), so that the k integral gives ð�=2Þr�2	ðr�
r3Þ and the radial integral can be computed to arrive at the
final expression

Ið3Þ‘ ðr1; r2; r3Þ ¼
Z

dkj‘ðkr1Þj‘ðkr2Þj2ðkr3Þ

¼ �

4

r1r2
r33

Pð�2Þ
‘ ðcos�Þsin2�; (A6)

where r1, r2, and r3 must form a triangle: if they do not, the
radial integral yields zero because then r3 cannot be equal
to some r which, by assumption, forms a triangle together
with r1 and r2. Identifying r1 ! x, r2 ! ��, and r3 !
��0 we obtain the result shown in Eq. (21). This integral is
also computed in [28], in a more general case but employ-
ing other methods.

For the series representation of the window function,
consider Eq. (44). The same trick that was shown above,
i.e., to exchange two spherical Bessel functions for an
integral over a Legendre polynomial, can be used to obtain

X
i

j‘ðki‘r1Þj‘ðki‘r2Þj2ðki‘r3Þ
k2i‘j

2
‘þ1ðki‘RÞ

¼ r1r2
2

Z dr

r
Pð�2Þ
‘ ðcos�Þsin2� 1

r

X
i

j2ðki‘r3Þj2ðki‘rÞ
j2‘þ1ðki‘RÞ

:

(A7)

Using now the conjectured orthogonality relation, Eq. (45),
with ‘0 ¼ 2, we obtain that the window function of Eq. (44)
is indeed identical to the window function of Eq. (21).

3. Integration of four spherical Bessel functions

Consider now the integral that appears in the case of
N ¼ 2 scatterings:

Ið4Þ‘ ¼
Z 1

0
dkk�2j‘ðkr1Þj‘ðkr2Þj2ðkr3Þj2ðkr4Þ: (A8)

To benefit from the results obtained above for the case of
the integral of three Bessel functions, let �12 be the angle
formed by r1 and r2, i.e., r

2 ¼ r21 þ r22 � 2r1r2 cos�12, and
use Eq. (A1) to rewrite Eq. (A8) as

Ið4Þ‘ ¼ r1r2
2

Z r1þr2

jr1�r2j
dr

r
P�2
‘ ðcos�12Þsin2�12



Z 1

0
dkj2ðkr3Þj2ðkr4Þj2ðkrÞ

¼ r1r2
2

Z r1þr2

jr1�r2j
dr

r
P�2
‘ ðcos�12Þsin2�12 
 Ið3Þ2 ðr3; r4; rÞ

(A9)

The integral Ið3Þ2 of three spherical Bessel functions of order

two is a symmetric case of Eq. (A6), and it vanishes unless
r, r3, and r4 are the sides of a triangle. In this case we can
choose any angle in the triangle, so to be consistent let us
choose that to be the angle between r3 and r4, that is, r

2 ¼
r23 þ r24 � 2r3r4 cos�34. Since r1, r2, and r must also form

a triangle, r and the angle �34 will be determined in terms
of r1, r2, r3, r4, and �12. The final answer is, therefore,
given by

Ið4Þ‘ ðr1; r2; r3; r4Þ ¼ �

8
r1r2r3r4

Z
G

dr

r4
Pð�2Þ
‘ ðcos�12Þ


 sin2�12P
ð�2Þ
2 ðcos�34Þsin2�34 (A10)

where G is the range of values allowed for r under the
conditions that both the triangle of sides ðr1; r2; rÞ and the
one with sides ðr3; r4; rÞ exist. These conditions are simply
the set of inequalities that guarantee that the polygon of
sides ðr1; r2; r3; r4Þ can exist, i.e., r1 � r2 þ r3 þ r4 and
the three other cyclical permutations of that inequality. The
two triangles that must be formed so that Eq. (A8) does not
vanish are shown in Fig. 3. This result was used in our
Eq. (28).

4. The general case

Our problem deals with the propagation of signals be-
tween points (events) in spacetime. The first signal prop-
agates freely from the source to the point where the photon
first scatters, and then there is a set of propagations from
one scattering to the next, until finally there is a propaga-
tion term from the point where the photon have last scat-
tered to the point where it is observed. The propagation
from the source to the first scattering correspond to a term
j2ðk��1Þ and each propagation between scatterings to
j2ðk��iÞ=ðk��iÞ2. The propagation from the last scatter-
ing to the observation point corresponds to a term
j‘ðk��NÞ=ðk��NÞ2. Besides these propagation terms, the
Hankel transforms (which were used to go back from
Fourier to position space) introduce a j‘ðkxÞ into our
integral.
Therefore, for N scatterings we will get integrals over k

with an integrand having the following features:
(i) two Bessel functions of order ‘, of arguments kr1

and kr2 (by convention);
(ii) N spherical Bessel functions of order 2, of arguments

kr3; . . . ; krNþ2;
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(iii) a factor of k�2k�2ðN�2Þ ¼ k�2ðN�1Þ
The method that was used above to compute the inte-

grals in the cases N ¼ 1 and N ¼ 2 takes advantage of the
fact that we can exchange pairs of spherical Bessel func-
tions for Legendre polynomials and radial (or angular)
integrals. Now, we can do this for every pair of Bessel
functions in the N-scattering integral: if that number is
even, every Bessel function can be exchanged for an
integral over a Legendre polynomial; if that number is
odd, an extra Bessel function will appear. The final integral
over k can then be computed with the help of the lower
order integrals.

For N ¼ 3 this procedure leads to

Ið5Þ‘ ¼
Z

dkk�4j‘ðkr1Þj‘ðkr2Þj2ðkr3Þj2ðkr4Þj2ðkr5Þ

¼ r1r2r3r4
22

Z dr12
r12

Z dr34
r34

Pð�2Þ
‘ ðcos�12Þsin2�12


 Pð�2Þ
2 ðcos�34Þsin2�34I

ð3Þ
2 ðr12; r34; r5Þ; (A11)

where r34 makes a triangle together with r3 and r4, and the
angles are clearly indicated with respect to their respective
sides. Notice that, as opposed to the case N ¼ 2, when the
sides and the angle �12 uniquely determines the remaining
angle of that four-side polygon, in the case N ¼ 3 the

triangle of sides ðr3; r4; r34Þ is totally free to acquire
many shapes—see also Fig. 3. It is only when both �12

and �34 are given that the angle between r12 and r34 is
fixed.
It is also instructive to look at the case N ¼ 4, for the

integral of six Bessel functions. In that case we have

Ið6Þ‘ ¼
Z

dkk�6j‘ðkr1Þj‘ðkr2Þj2ðkr3Þj2ðkr4Þj2ðkr5Þj2ðkr6Þ

¼ r1r2r3r4r5r6
23

Z dr12
r12

Z dr34
r34

Z dr56
r56


Pð�2Þ
‘ ðcos�12Þ


 sin2�12P
ð�2Þ
2 ðcos�34Þsin2�34P

ð�2Þ
2 ðcos�56Þ


 sin2�56I
ð3Þ
2 ðr12; r34; r56Þ: (A12)

The expressions for Ið7Þ‘ and Ið8Þ‘ can be obtained in terms of

Ið4Þ‘ ; and so on. With these methods it is trivial to compute

the spacetime window functions for an arbitrary number of
scatterings.
The set of conditions under which the integrals above

are different from zero are those that ensure that each
internal triangle (corresponding to each instance where
two Bessel functions were exchanged for a Legendre poly-
nomial and a Bessel function) exist. So, for ‘ ¼ 4 we
would impose

FIG. 5 (color online). Contour plots of the window functions W3
‘ ðx;��; 1Þ for the cases ‘ ¼ 2, 3, 4 (top panels, left to right panels),

and 5, 6, and 7 (bottom panels.) In these plots x (the radial position of the sources) corresponds to the horizontal axes, and �� ¼
�� �0 corresponds to the vertical axes. For visualization purposes we have fixed ��0 ¼ �0 � �00 ¼ 1. Physically, this corresponds to
taking sources at positions x and times �00, and photons which scatter at times �0 before they are observed at time �. For visualization
purposes we plotted logjW3

‘ ðx;��; 1Þj, so large absolute values of the window functions are indicated by darker hues, and the window

functions vanish in the white areas. Each lobe corresponds to intercalating negative and positive values of the window function.
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FIG. 7 (color online). Same as above, but now we fix x ¼ 1, so the contour plots correspond to W3
‘ ð1;��; ��0Þ for the cases ‘ ¼ 2,

3, 4 (top panels, left to right panels), and 5, 6, and 7 (bottom panels.) �� corresponds to the horizontal axes, and ��0 to the vertical
axes.

FIG. 6 (color online). Same as above, but now we fix �� ¼ �� �0 ¼ 1 so the contour plots correspond to W3
‘ ðx; 1;��0Þ for the

cases ‘ ¼ 2, 3, 4 (top panels, left to right panels), and 5, 6, and 7 (bottom panels.) Now ��0 corresponds to the vertical axes, and x
corresponds to the horizontal axes.
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r1 � r2 þ r12; r2 � r12 þ r1; r12 � r1 þ r2;

r3 � r4 þ r34; r4 � r34 þ r3; r34 � r3 þ r4:

With the additional condition that r12 ¼ r34 in the case ‘ ¼
4 (see the discussion in A 3), it is trivial to verify that these
conditions reduce to the inequalities (29).

The set of conditions above simply tells us that the four-
sided polygon of Fig. (3) exists—in other words, that one
can form a closed polygon with those sides. For any ‘ the
resulting set of conditions ensure that a flat polygon with
the sides given by r1; . . . ; rN exists, i.e.

r1 � r2 þ . . .þ rN;

and all cyclical permutations. These inequalities constitute
a simple set of constraints that, if not satisfied, imply that
the spacetime window functions WN

‘ vanish identically.

This simplifies tremendously the integration of the sources
over time in position space. In particular, one of these

inequalities implies that

x � ��1 þ . . .þ��N�1 ¼ �� �N;

which means that all the sources that contribute to the
observables are located at radii x which are inside the
past light cone of the observation point at time �, all the
way to the time �N when those sources were evaluated, N
scatterings prior to the observation.

5. Spacetime window function W3
‘

The spacetime window functions regulate how sources
at some position x contribute to the observables at time �.
For the case of one scattering (order �), the window
function is a 	-function on the PLC, 	ðx���Þ, where
�� ¼ �� �0 and �0 is the time of the scattering.
For two scatterings (order �2), the window function is

nonvanishing inside the PLC. In Figs. 5–7 we show a few
examples of the window functions W3

‘ ðx;��; 1Þ.
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