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The deformed z ¼ 2 Hořava-Lifshitz gravity with coupling constant ! leads to a nonrelativistic

mixmaster cosmological model. The potential of theory is given by the sum of IR and UV potentials

in the ADM Hamiltonian formalism. It turns out that adding the UV potential cannot suppress chaotic

behaviors existing in the IR potential.
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I. INTRODUCTION

Recently, quantum gravity at a Lifshitz point, which is
power-counting renormalizable and hence potentially UV
complete, was proposed by Hořava [1–3]. This theory,
unlike string theory, is not intended to be a unified theory
but quantum gravity. Specific cosmological implications of
z ¼ 3 Hořava-Lifshitz gravity with the Friedmann-
Robertson-Walker metric based on isotropy and homoge-
neity have recently been shown in [4–6], including homo-
geneous vacuum solution with chiral primordial
gravitational waves [7] and nonsingular cosmological evo-
lution with the big bang of standard and inflationary uni-
verse replaced by a matter bounce [8–10]. As far as the
cosmological solutions are concerned, there is no differ-
ence between z ¼ 2 [1] and z ¼ 3 [2] Hořava-Lifshitz
gravities because the Cotton tensor vanishes when using
the Friedmann-Robertson-Walker metric. Furthermore,
one has introduced the deformed z ¼ 3 Hořava-Lifshitz
gravity to find an asymptotically flat background [11,12].

On the other hand, the equations of general relativity
lead to singularities when we look at the equations back-
wards from the origin of time. In particular, we concentrate
on a temporal singularity of the solutions to the Einstein
equations for the mixmaster model (Bianchi IX Universe)
describing an anisotropic and homogeneous cosmology. It
was well known that the approach to singularity shows a
chaotic behavior. The mixmaster universe [13–20] could
be described by a Hamiltonian dynamical system in a 6D
phase space. Belinsky, Khalatnikov, and Lifshitz (BKL)
had conjectured that this 6D phase system could be well
approximated by a 1D discrete Gauss map that is known to
be chaotic as one approaches the singularity [21]. Chernoff
and Barrow suggested that the mixmaster 6D phase space

could be split into the product of a 4D phase space and a 2D
phase space having regular variables [15]. Following
Cornish and Levin [17], Lehner and Di Menza found that
the chaos in the mixmaster universe is obtained for the
Hamiltonian system with potential having fixed walls,
which describes the curvature anisotropy [19]. However,
it turned out that the mixmaster chaos could be suppressed
by (loop) quantum effects [22,23].
Hence it is very interesting to investigate cosmological

application of Hořava-Lifshitz gravity in conjunction with
the mixmaster universe based on the anisotropy and homo-
geneity because the Hořava-Lifshitz gravity is a strong
candidate for quantum gravity. However, we will not
make any quantum operation on the Hořava-Lifshitz grav-
ity. In this work, we will make a progress on this direction.
Getting an associated Hamiltonian within the ADM

formalism [24] of deformed z ¼ 2 Hořava-Lifshitz gravity
[1,11,25], we find two potentials in 6D phase space: IR
potential VIR from 3D curvature R and UV potential VUV

from curvature square terms of R2 and RijR
ij with UV

coupling parameter !. In 4D phase space, we find that the
UV potential cannot suppress chaotic behaviors existing in
the IR potential. After an extended analysis with the mov-
able wall, the chaotic behaviors persist in the 6D phase
space.

II. DEFORMED z ¼ 2 HOŘAVA-LIFSHITZ
GRAVITY

The action of the deformed z ¼ 2 Hořava-Lifshitz grav-
ity [1,11] takes the form in the (1þ 3)D spacetimes

S� ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ þ�3R

þ �2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2�2

8
RijR

ij

�
(1)

with three parameters �,�, and �. In the case of � ¼ 1, the
above action leads to
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S�¼1 ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � K2Þ

þ�3

�
R� 2

!

�
RijR

ij � 3

8
R2

���
(2)

where the UV coupling parameter ! ¼ 16�=�2 is intro-
duced to control curvature square terms [25]. We note that
! is positive and thus, a negative ! is not allowed for the
z ¼ 2 Hořava-Lifshitz gravity. In the limit of ! !
1ð�2 ! 0Þ, S�¼1 reduces to general relativity (GR) with
the speed of light c2 ¼ �2�3=2 and Newton’s constant
G ¼ �2=ð32�cÞ. Also, we would like to mention that the
last line of (2) seems to be similar to the action of 3D new
massive gravity when replacing�3 and! by 1

16�cG andm2,

respectively [26]. However, although a similarity between
them exists, the difference is that in the z ¼ 2 Hořava-
Lifshitz gravity, the curvature R is a nonrelativistic com-
ponent representing the 3D space in (1þ 3)D spacetimes,
while in the 3D new massive gravity, the 3D curvature 3R
is a relativistic one, representing the (1þ 2)D spacetimes.
Accordingly, the 3D new massive gravity provides higher
order temporal derivatives than second-order derivatives.

Let us introduce the metric for the mixmaster universe to
distinguish between expansion (volume change: �) and
anisotropy (shape change: �ij)

ds2 ¼ �dt2 þ e2�e2�ij�i � �j; (3)

where �i are the 1 forms given by

�1 ¼ cosc d�þ sinc sin�d	;

�2 ¼ sinc d�� cosc sin�d	;

�3 ¼ dc þ cos�d	

(4)

on the three-sphere parametrized by Euler angles ðc ; �; 	Þ
with 0 � c < 4�, 0 � � < �, and 0 � 	< 2�. The
shape change �ij is a 3� 3 traceless symmetric tensor

with det[ det½e2�ij� ¼ 1 expressed in terms of two indepen-
dent shape parameters �� as

�11 ¼ �þ þ ffiffiffi
3

p
��;

�22 ¼ �þ � ffiffiffi
3

p
��;

�33 ¼ �2�þ:

(5)

The evolution of the universe is described by giving �� as
function of �. Note that the closed FRW universe is the
special case of �� ¼ 0.

Now we concentrate on the behavior near singularity.
Then, the empty-space is sufficient to display the generic
local evolution close to a singularity because the terms due
to a matter or radiation are negligible near singularity.
Using Eq. (3), the 3D curvature takes the form

R ¼ �12e�2�VIRð�þ; ��Þ; (6)

where the IR potential of curvature anisotropy is given by

VIRð�þ; ��Þ ¼ 1
24½2e4�þ coshð4 ffiffiffi

3
p

��Þ þ e�8�þ�
� 1

12½2e�2�þ coshð2 ffiffiffi
3

p
��Þ þ e4�þ�: (7)

The evolution of this universe is described by the motion of
a point � ¼ ð�þ; ��Þ as a function of � using the time-
dependent Lagrangian. The exponential wall picture of IR
potential implies that a particle (the universe) runs through
almost free (Kasner) epochs where the potential could be
neglected, and it is reflected at the walls, resulting infinite
number of oscillations. This shows that the system under
the IR potential behaves chaotically when the singularity is
approached [27].
Before we proceed, we briefly sketch the IR potential.

We mention that near the point ð�þ; ��Þ ¼ ð0; 0Þ corre-
sponding to the global minimum, the IR potential takes an
approximate form of

VIRð0; 0Þ � �1
8 þ ð�2þ þ �2�Þ: (8)

As is shown in Fig. 1(a), there are three canyon lines

located at �� ¼ 0 and �� ¼ � ffiffiffi
3

p
�þ. We discuss the

asymptotic structure of IR potential. In the case of �� �
1, the IR potential is either VIR � 2e4�þ�2� if �þ ! 1 or
VIR � 1

24 e
�8�þ if �þ ! �1. For �� ¼ 0, one has VIR �

0 if �þ ! 1. The potential is bounded from below and
exhibits discrete Z3-symmetry by permuting the principal
axes of rotation S3. Therefore, it has the shape of an equi-
lateral triangle in the anisotropy space ð�þ; ��Þ and ex-
ponentially steep walls far away from the origin. A particle
can only escape to infinity along the canyon lines where the
potential has the shape shown in Fig. 2 (! ¼ 100). The
smallest deviation from the axial symmetry will turn the
particle against the infinitely walls and thus, lead to a
chaotic motion. Another useful representation of the IR
potential is shown in Fig. 3(a) by drawing equipotential
curves. They extend symmetrically between canyon lines

at �� ¼ 0 and �� ¼ � ffiffiffi
3

p
�þ, which correspond to a

partially anisotropic universe with axial symmetry. The
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FIG. 1 (color online). 3D Potential shapes Vð�þ; ��; !Þ with
three canyon lines located at �� ¼ 0 and �� ¼ � ffiffiffi

3
p

�þ: (a) for
! ¼ 100, it corresponds to the GR mixmaster model (VIR

dominates). (b) For ! ¼ 0:01, it corresponds to the potential
of z ¼ 2 Hořava-Lifshitz gravity.
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fully isotropic case is at the origin (0,0), where the poten-
tial takes the global minimum.

The action (2) provides the time-dependent Lagrangian

L ¼ �3e3�
�
�6ð _�2 � _�2þ � _�2�Þ � 12e�2�VIRð�þ; ��Þ

þ e�4�

16!
VUVð�þ; ��Þ

�
; (9)

where the dot denotes d
cdt . One needs to introduce an

emergent speed of light c in order to see the UV behaviors,
while for the IR behaviors, one chooses c ¼ 1 simply.
Here, the UV potential of curvature square terms takes a
complicated form

VUVð�þ; ��Þ ¼ ½40ðe8�þ coshð4 ffiffiffi
3

p
��Þ þ e2�þ coshð6 ffiffiffi

3
p

��Þ þ e�10�þ coshð2 ffiffiffi
3

p
��ÞÞ � 40e2�þ coshð2 ffiffiffi

3
p

��Þ
þ 4e�4�þ coshð4 ffiffiffi

3
p

��Þ þ 2e8�þ � 20e�4�þ � 42e8�þ coshð8 ffiffiffi
3

p
��Þ � 21e�16�þ�; (10)

which is a key feature of the deformed z ¼ 2 Hořava-
Lifshitz gravity. Note that considering the deformed z ¼
3 Hořava-Lifshitz gravity [11], one would expect to have a
more complicated UV potential because of the presence of
the Cotton tensor [28]. However, we have shown that the
Cotton tensor does not change significantly the situations
[29].

In order to appreciate implications of chaotic approach
to the deformed z ¼ 2 Hořava-Lifshitz gravity, we have to
calculate the Hamiltonian density by introducing three
canonical momenta as

p� ¼ @L

@ _��
¼ 12�3e3� _��;

p� ¼ @L
@ _�

¼ �12�3e3� _�:

(11)

The normalized canonical Hamiltonian in 6D phase space
takes the form

H 6D ¼ 1
2ðp2þ þ p2� � p2

�Þ þ V�ð�þ; ��; !Þ; (12)

where the potential is given by

V�ð�þ; ��; !Þ ¼ e4�
�
VIR � e�2�

192!
VUV

�
: (13)

Here H 6D ¼ 12�3e3�H c using the canonical
Hamiltonian H c. In this case, let us choose the parameter
12�3 ¼ 1 for simplicity. Then, the Hamiltonian equations
of motion are

_�� ¼ p�; _p� ¼ �e4�
@VIR

@��
þ e2�

192!

@VUV

@��
;

_� ¼ �p�; _p� ¼ �4e4�VIR þ e2�

96!
VUV

(14)

in 6D phase space.

III. CHAOTIC BEHAVIORS IN 4D PHASE SPACE

Chernoff and Barrow showed that the mixmaster 6D
phase space could be split into the product of a 4D phase
space showing chaotic behavior and a 2D phase space
showing regular behavior [15]. Hence, we confine the
dynamical system to a 4D phase space. Setting � ¼ 1,
we consider the motion of a particle (the universe) of
coordinates ð�þ; ��Þ under the full potential of
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FIG. 3 (color online). Equipotential curves, developing tri-
angles with corner: (a) for ! ¼ 100 with E ¼ �6:5, �6:0,
�5:0, �4:0, respectively, (b) for ! ¼ 0:01 with E ¼ �15:0,
�13:0, �7:0, �4:0, respectively. Three canyon lines (dashed
lines) are developed along corners at �� ¼ 0 and �� ¼
� ffiffiffi
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FIG. 2 (color online). Potential graphs Vð�þ; ��; !Þ with
�� ¼ 0: the dashed curve is for ! ¼ 100 (GR) and the solid
curve for ! ¼ 0:01 with a local maximum V ¼ Vlm.
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V�¼1ð�þ; ��; !Þ ! Vð�þ; ��; !Þ

¼ e4
�
VIR � VUV

192e2!

�
: (15)

The key to chaos in mixmaster dynamics is that the
potential has been developed ‘‘corners,’’ that is, places
where very special trajectories do not encounter walls.
This leads to sensitive dependence on initial conditions,
because a tiny change in how closely a trajectory ap-
proaches a corner can lead to large changes in the sequence
of bounces off the walls. On the other hand, the behavior of
the potential near the origin has little to do with chaos
because the overall decrease in scale leads to the walls and
the trajectories are moving ever farther outward from the
origin.

Let us describe the z ¼ 2 Hořava-Lifshitz potential
Vð�þ; ��; !Þ intensively. In order to make a connection
to the loop quantum gravity, we first mention that near the
origin ð�þ; ��Þ ¼ ð0; 0Þ which corresponds to the closed
FRW universe, the potential Vð�þ; ��; !Þ takes approxi-
mately the form of

Vð0; 0; !Þ � �
�
e4

8
þ e2

64!

�
þ

�
e4 þ 17e2

4!

�
ð�2þ þ �2�Þ:

(16)

Comparing (16) with (8), the former reduces to the latter up
to e4 in the limit of! ! 1. It turns out that adding the UV
potential makes just the potential well at the origin deeper,
compared to the IR case. At this stage, it is curious to ask
whether the inflection point at the origin of ð�þ; ��Þ ¼
ð0; 0Þ exists, which might show a change from chaotic
behavior to nonchaotic behavior. This point may be deter-
mined by the condition of

V00ð�þ; 0; !Þj�þ¼0 ¼ V00ð0; ��; !Þj��¼0 ¼ 0; (17)

which leads to

2e4 þ 17e2

2!
¼ 0: (18)

However, we have the negative !c

!c ¼ � 17

4e2
’ �0:5752: (19)

This may imply that there is no inflection point which
makes a transition from chaotic behavior to nonchaotic
behavior.

The asymptotic structure of the full potential is given as
follows. For �� ¼ 0, if �þ ! 1, then

e�2Vð�þ; ��; !Þ � 0: (20)

For �� � 1, if �þ ! 1, one finds

e�2Vð�þ; ��; !Þ � 16�2�
!

e8�þ : (21)

For �� � 1, if �þ ! �1, then

e�2Vð�þ; ��; !Þ � 7

64!
e�16�þ : (22)

Therefore, the asymptotic structure is determined by the
UV potential. As is shown in Fig. 1(b), there are three

canyon lines located at �� ¼ 0 and �� ¼ � ffiffiffi
3

p
�þ. The

potential is bounded from below and exhibits discrete
Z3-symmetry by permuting the principal axes of rotation
S3. Therefore, it has the shape of an equilateral triangle in
the anisotropy space ð�þ; ��Þ and exponentially steep
walls far away from the origin. However, for total energy
E< Vlm, a particle cannot escape to infinity along the
canyon lines where the potential has a local maximum V ¼
Vlm as a bump shown in Fig. 2 (! ¼ 0:01). For E< 0, the
smallest deviation from the axial symmetry will turn the
particle against the infinitely walls and thus, lead to a
chaotic motion. Although a local maximum appears along
canyon lines, equipotential curves in Fig. 3(b) are similar
to Fig. 3(a) of IR potential forE< 0. Hence, we expect that
chaotic behavior appears in the z ¼ 2 Hořava-Lifshitz
gravity with small !. The dynamics of particle seems
complicated for 0<E< Vlm and thus, we skip it.
In general, the chaos could be defined as being such that

(i) the periodic points of the flow associated to the
Hamiltonian are dense, (ii) there is a transitive orbit in
the dynamical system, and (iii) there is sensitive depen-
dence on the initial condition. Our reduced system is
described by the 4D Hamiltonian

H 4D ¼ 1
2ðp2þ þ p2�Þ þ Vð�þ; ��; !Þ: (23)

It is well known that the appearance of chaotic behavior in
the mixmaster dynamics is closely related to the appear-
ance of ‘‘corner’’ potential. To make a definite connection,
we choose ! ¼ 100 and ! ¼ 0:01 for the original mix-
master universe of GR and the mixmaster universe of z ¼
2 Hořava-Lifshitz gravity, respectively. As is shown in
Fig. 3, when making equipotential curves, we find that
the corner appears for E ¼ �5:0 and �4:0 for ! ¼ 100
and for E ¼ �7:0 and �4:0 for ! ¼ 0:01, which implies
the appearance of chaos.
Let us perform simulations of the 4D dynamics and

represent Poincaré sections, which describe the trajectories
in phase space ðpþ; �þÞ by varying the total energy E or
H 4D of the system. Actually, we have performed the
analysis for the ! ¼ 100, 1, 0.03, and 0.01 cases. We
have found that the chaotic behavior persists for all !>
0. Figures 4 and 5 present two typical cases, showing that
the intersections of several computed trajectories are dis-
placed in ðpþ; �þÞ with the plane �� ¼ 0 for different
values of energies. In each plot, we choose initial points
which correspond to a prescribed kinetic energy. Also we
confirm that for ! ¼ 0:01, complicated chaotic behaviors
appear for 0< E< Vlm.
The results of Poincaré sections show that considering

lower energies E ¼ �6:5 and �6:0 for ! ¼ 100 and E ¼
�15:0 and �13:0 for ! ¼ 0:01 within the potential well,
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the integrable behavior dominates and the intersections of
trajectories represent closed curves. Importantly, concern-
ing higher energies E ¼ �5:0 and �4:0 for ! ¼ 100 and
E ¼ �7:0 and �4:0 for ! ¼ 0:01 within the potential
well, the closed curves are broken up gradually and the
bounded phase space fills with a chaotic sea. The same
kinds of plots have been obtained for the other phase space
ðp�; ��Þwith the plane�þ ¼ 0. At this stage, we mention
that for ! ¼ 100, the case of E ¼ 0 leads to the corners,
where special trajectories do not encounter walls.
However, for ! ¼ 0:01, the case of E ¼ 0 does not lead
to the corner because of the presence of a local maximum.
For this, see Fig. 2.

Finally, it confirms that the appearance of chaotic be-
havior in the mixmaster dynamics of z ¼ 2 Hořava-
Lifshitz gravity is closely related to the appearance of
corner.

IV. CHAOTIC BEHAVIOR IN 6D PHASE SPACE

Up to now, we have investigated the dynamics at fixed
� ¼ 1 for simplicity. This means that we have never ex-
plored the outer region of the potential which also deter-
mines whether the z ¼ 2 Hořava-Lifshitz gravity is
chaotic. We remind the reader that the true phase space is
6D for the vacuum universe, and thus, we have to consider
a movable billiard with the potential V�ð�þ; ��; !Þ in
Eq. (13) because the walls are moving with time since
the logarithm of the volume change � ¼ 1

3 lnV and its

derivative are entering in the system. In this case, � and
p� are regular variables as functions of time. Therefore,
one should perform a full simulation which includes the
dynamics of � and p�. However, this seems to be a
formidable task and thus, we could not make progress in
this direction.
In this section, instead, we will investigate a possibility

of finding chaotic behaviors by considering the small
volume limit of � ! �1 only. To this end, it would be
better to introduce a new time 
 defined by


 ¼
Z dt

V
; V ¼ e3�; (24)

which makes decoupling of the volume � from the shape
�� explicitly. Starting from the action (2) and integrating
out the space variables, we have

�S �¼1 ¼ �3
Z

d

e3�N

V

�
6ð��02 þ �02þ þ �02�Þ

� V2

�
12e�2�VIRð�þ; ��Þ

� e�4�

16!
VUVð�þ; ��Þ

��
; (25)

where the prime (0) denotes the derivatives with respect to

. Plugging N ¼ 1 into (25), we have the Lagrangian as

�L �¼1 ¼ �3

�
6ð��02 þ �02þ þ �02�Þ

� 12e4�
�
VIRð�þ; ��Þ

� e�2�

192!
VUVð�þ; ��Þ

��
: (26)

The canonical momenta are given by

�p� ¼ @ �L�¼1

@�0�
¼ 12�3�0�;

�p� ¼ @ �L�¼1

@�0 ¼ �12�3�0:

(27)

Then, the canonical Hamiltonian in 6D phase space is
obtained to be

FIG. 4. Poincaré sections for the ! ¼ 100 case with
(a) E ¼ �6:5, (b) E ¼ �6:0, (c) E ¼ �5:0, and (d) E ¼ �4:0.

FIG. 5. Poincaré sections for the ! ¼ 0:01 case with
(a) E ¼ �15:0, (b) E ¼ �13:0, (c) E ¼ �7:0, and
(d) E ¼ �4:0.
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�H 6D ¼ �p��
0 þ �pþ�0þ þ �p��0� � �L�¼1

¼ 1

2
ð �p2þ þ �p2� � �p2

�Þ þ e4�
�
VIR � e�2�

192!
VUV

�
;

(28)

where we have chosen the parameter 12�3 ¼ 1 for sim-
plicity. Then, the Hamiltonian equations of motion are
obtained as

�0� ¼ �p�; �p0� ¼ �e4�
@VIR

@��
þ e2�

192!

@VUV

@��
;

�0 ¼ � �p�; �p0
� ¼ �4e4�VIR þ e2�

96!
VUV:

(29)

We note that comparing Eqs. (29) with Eqs. (14), there is
no change in the Hamiltonian and its equations of motion
except replacing t by 
. The evolution of � is, in particular,
determined by

�00 ¼ 4e4�VIR � e2�

96!
VUV: (30)

Then, we obtain a 6D phase space consisting in the product
of a 4D chaotic one times a 2D regular phase space for the
� and p� variables. As the volume goes to zero near
singularity (e4� ! 0, p� ! 0), one finds the limit

�H 6D ! 1
2ð �p2þ þ �p2�Þ þ K � H 4D: (31)

Hence, we note that the 6D system is not asymptotic in 
 to
the previous 4D system.

Now, we are in a position to show that the presence of
the UV potential does not suppress chaotic behaviors ex-
isting in the IR potential. For this purpose, we have to
introduce two velocities: particle velocity vp and wall

velocity vw defined by

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p2þ þ �p2�

q
; vw ¼ d�wþ

d

; (32)

where the wall location �wþ is determined by the fact that
the asymptotic potential K is significantly felt by the
particle as

�p 2
� � 2K ¼ e4��8�þ

12
þ 7e2��16�þ

32!
(33)

in the limit of �þ ! �1. On the other hand, the particle
velocity is given by

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �H 6D þ �p2

� � 2K

q
: (34)

In the IR limit (! ! 1) of Einstein gravity, the wall
location is determined by

�wþ � �

2
� 1

8
ln½12 �p2

��: (35)

Then, the wall velocity is given by

vIR
w ¼ �d�wþ

d

� �p�

2
þ e4��8�þ

24 �p�

; (36)

which leads to

jvIR
w j � j �p�j

2
: (37)

As a result, we find that the particle velocity is always
greater than the wall velocity as

vIR
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �H 6D þ �p2

� � 2e4�VIR

q
� j �p�j> vIR

w : (38)

Thus, there will be an infinite number of collisions of the
particle against the wall since it will always catch a wall
[19,20].
Next, let us investigate what happens in the UV limit of

! ! 0. In this case, the VUV term dominates. The wall
velocity takes the form

jvUV
w j ¼ j �p�j

8
; (39)

and the particle velocity leads to

vUV
p � j �p�j> jvUV

w j (40)

in the limit of � ! �1. This case is similar to the Einstein
gravity.
Finally, we could not observe a slowing down of the

particle velocity due to the UVeffects. This means that the
chaos persists in the moving wall.

V. DISCUSSIONS

First of all, we point out that for !> 0, there always
exists chaotic behavior. This contrasts to the case of the
loop mixmaster dynamics based on loop quantum cosmol-
ogy [23], where the mixmaster chaos could be suppressed
by loop quantum effects [22]. In the loop quantum cos-
mology, the effective potential at decreasing volume
labeled by ‘‘discreteness j’’ are significantly changed in
the vicinity of (0,0)-isotropy point in the anisotropy plane
��þ. The potential at larger volumes exhibits a potential
wall of finite height and finite extension like Fig. 2. As the
volume is decreased, the wall moves inward and its height
decreases. Progressively, the wall disappears completely
making the potential negative everywhere at a dimension-

less volume of ð2:172jÞ3=2 in the Planck units. Eventually,
the potential approach zero from below. This shows that
classical reflections will stop after a finite amount of time,
implying that classical arguments about chaos inappli-
cable. Once quantum effects are taken into account, the
reflections stop just when the volume of a given patch is
about the size of Planck volume.
To that end, the role of UV coupling parameter ! is

different from the area quantum number j of the loop
quantum gravity. In our case, time variable (related to the
volume of V ¼ e3�) as well as two physical degrees of
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anisotropy �� are treated in the classical way without
quantization. However, in the loop quantum framework,
all three scale factors were quantized using the loop tech-
niques. Hence two are quite different: the potential wells at
the origin did not disappear for any !> 0 in the z ¼ 2
Hořava-Lifshitz gravity, while in the loop quantum gravity
the height of potential wall rapidly decreases until they
disappears completely as the Planck scale is reached.

At this stage, we compare our results with the mixmaster
universe in the generalized uncertainty principle (GUP)
[30]. Considering a close connection between z ¼ 2
Hořava-Lifshitz gravity and GUP [25], there may exist a
cosmological relation between them. Fortunately, the cha-
otic behavior of the Bianchi IX model was not tamed by
GUP effects, which means that the deformed mixmaster
universe is still a chaotic system. This is mainly because
two physical degrees of anisotropy �� are considered as
deformed while the time variable is treated in the classical
way. This supports that our approach without quantization
is correct.

Furthermore, it was shown that adding ð4RÞ2 (and pos-
sibly other) curvature terms to the general relativity leads

to the fact that the chaotic behavior is absent [31]. Hence it
is very curious to see why ð4RÞ2 does suppress chaotic
behavior, but� 2

! ðRijR
ij � 3

8R
2Þ does not suppress chaotic

behavior.
In conclusion, the mixmaster universe has provided

another example that z ¼ 2 Hořava-Lifshitz gravity has
shown chaotic behavior, as other chaotic dynamics of
string or M-theory cosmology models [32]. This may be
because we did not quantize the Hořava-Lifshitz gravity
and we did study its classical aspects.
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