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We reconsider nonminimal ��4 chaotic inflation which includes the gravitational coupling term

�R�2, where � denotes a gauge singlet inflaton field and R is the Ricci scalar. For � � 1, we require,

following recent discussions, that the energy scale �1=4mP=
ffiffiffi
�

p
for inflation should not exceed the effective

UV cutoff scale mP=�, where mP denotes the reduced Planck scale. The predictions for the tensor-to-

scalar ratio r and the scalar spectral index ns are found to lie within the Wilkinson Microwave Anisotropy

Probe 1-� bounds for 10�12 & � & 10�4 and 10�3 & � & 102. In contrast, the corresponding predictions

of minimal ��4 chaotic inflation lie outside the Wilkinson Microwave Anisotropy Probe 2-� bounds. We

also find that r * 0:002, provided the scalar spectral index ns � 0:96. In estimating the lower bound on r,

we take into account possible modifications due to quantum corrections of the tree level inflationary

potential.

DOI: 10.1103/PhysRevD.82.043502 PACS numbers: 98.80.Cq

The idea that the inflaton may be a scalar field having an
additional nonminimal coupling to gravity has received a
fair amount of attention [1–10]. In one of the simplest
scenarios of this kind, the standard model (SM) Higgs
doublet H has a relatively strong nonminimal gravitational
interaction �RHyH, where R is the Ricci scalar and � a
dimensionless coupling whose magnitude is estimated to
be of order 103–104 based on measurements by the
Wilkinson Microwave Anisotropy Probe (WMAP) [11]
and other cosmic microwave background anisotropy ex-
periments. This SM Higgs based inflationary scenario is
currently mired in some controversy stemming from argu-
ments first put forward in [12] that for � � 1, the energy

scale �1=4mP=
ffiffiffi
�

p
during nonminimal SM inflation exceeds

the effective ultraviolet cutoff scale � ¼ mP=�. Here � of
order unity denotes the SM Higgs quartic coupling and
mP ’ 2:43� 1018 GeV represents the reduced Planck
mass. Thus, the ‘‘flat’’ region of the effective potential
lies beyond the region of applicability of the naive approxi-
mation, and so there is no compelling reason to trust the
purported inflationary phase [12–14]. For a different view-
point see Ref. [15].

In this paper we reconsider nonminimal ��4 inflation
and begin by replacing the SM Higgs inflaton with a gauge
singlet scalar field. (The radial component of the axion
field provides a nice example of a gauge singlet field and
axion physics also provides a viable dark matter candi-
date.) We impose from the outset the requirement that the
energy scale of inflation should not exceed the effective
cutoff scale �. We also take into account quantum correc-
tions to the inflationary potential arising from the interac-
tions of the inflaton with other fields. Since one of our main

goals is to obtain a lower bound on r, we only include
corrections arising from the Yukawa interactions which
can decrease r. We find that r * 0:002, provided the scalar
spectral index ns � 0:96. More generally, in this nonmini-
mal ��4 inflation model, the predictions for ns and r lie
within the WMAP 1-� bounds for 10�12 & � & 10�4 and
10�3 & � & 102. Recall that the corresponding tree level
predictions for minimal (� ¼ 0) ��4 chaotic inflation,
namely, ns ’ 0:95 and r ’ 0:26, lie outside the WMAP
2-� bounds.
We begin with the following tree level action in the

Jordan frame:

StreeJ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�
�
m2

P þ ��2

2

�
Rþ 1

2
ð@�Þ2 � �

4!
�4

� 1

2
yN� �NcN

�
; (1)

where � is a gauge singlet scalar field and � is the scalar
self-coupling. In order to keep the discussion simple, we
have introduced only a single right-handed neutrinoN with
Yukawa coupling yN , and we ignore the bare mass term for
N. In a more realistic scenario, at least two right-handed
neutrinos are required for successful leptogenesis and re-
producing neutrino oscillation data.
Using standard techniques [16], the one-loop renormal-

ization group improved effective action can be written as

SJ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�
�
m2

P þ ��2

2

�
Rþ 1

2
ð@�Þ2

� 1

4!
�ðtÞGðtÞ4�4

�
; (2)

where t ¼ lnð�=�Þ and GðtÞ ¼ expð�R
t
0 dt

0�ðt0Þ=ð1þ
�ðt0ÞÞÞ, with �ðtÞ ¼ y2N

ð4�Þ2 being the anomalous dimension

of the inflaton field. We ignore quantum corrections to the
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classical kinetic and gravity sectors in the above action
[3,4]. Moreover, as the inflaton is a gauge singlet field in
our case, we only need to consider the renormalization
group equations of � and yN:

d�

dt
¼ 1

ð4�Þ2 ð3�
2 þ 4�y2N � 24y4NÞ; (3)

dyN
dt

¼ 1

ð4�Þ2
�
5

4
y3N

�
: (4)

The requirement that the energy scale of inflation should
lie below the cutoff scale (� ¼ mP=� for � � 1 and � ¼
mP for � � 1) generates values of the above couplings
small enough to suppress the running of �. Therefore, we
ignore the running of � in our numerical calculations.

In the Einstein frame with a canonical gravity sector, the
kinetic energy can be made canonical with respect to a new
field � [4],

�
d�

d�

��2 ¼
ð1þ ��2

m2
P

Þ2

1þ ð6�þ 1Þ ��2

m2
P

: (5)

The action in the Einstein frame is then given by

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
� 1

2
m2

PRE þ 1

2
ð@E�Þ2 � VEð�ð�ÞÞ

�
;

(6)

with

VEð�Þ ¼
1
4!�ðtÞGðtÞ4�4

ð1þ ��2

m2
P

Þ2
: (7)

To discuss things qualitatively it is convenient to use the
following approximate form of the above potential:

VEð�Þ ¼
1
4!��

4 � ��4 lnð�=�Þ
ð1þ ��2

m2
P

Þ2
; (8)

where we have assumed � � 0, dyN=dt � 0, � � y2N , and
d�=dt � �24�with � ¼ y4N=ð4�Þ2. We have checked that
in the relevant parametric region the above potential can be
considered as a valid approximation. In our numerical
calculations we fix the renormalization scale � equal to
the cutoff scale �.

Before starting our discussion of this model it is useful to
recall here the basic results of the slow-roll assumption.
The inflationary slow-roll parameters are given by

	ð�Þ ¼ 1

2
m2

P

�
V 0
E

VE�
0

�
2
; (9)


ð�Þ ¼ m2
P

�
V 00
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00
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�
; (10)
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P
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00
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000
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; (11)

where a prime denotes a derivative with respect to �. The
slow-roll approximation is valid as long as the conditions
	 � 1, j
j � 1, and �2 � 1 hold. In this case, the scalar
spectral index ns, the tensor-to-scalar ratio r, and the

running of the spectral index dns
d lnk are approximately given

by

ns ’ 1� 6	þ 2
; (12)

r ’ 16	; (13)

dns
d lnk

’ 16	
� 24	2 � 2�2: (14)

The number of e-folds after the comoving scale l has
crossed the horizon is given by

Nl ¼ 1
ffiffiffi
2

p
mP

Z �l

�e

d�
ffiffiffiffiffiffiffiffiffiffi
	ð�Þp

�
d�

d�

�
; (15)

where �l is the field value at the comoving scale l, and �e

denotes the value of � at the end of inflation, defined by
maxð	ð�eÞ; j
ð�eÞj; �2ð�eÞÞ ¼ 1.
The amplitude of the curvature perturbation �R is given

by

�2
R ¼ VE

24�2m2
P	

��������k0

; (16)

where �2
R ¼ ð2:43� 0:11Þ � 10�9 is the WMAP7 nor-

malization at k0 ¼ 0:002 Mpc�1 [11]. Note that, for added
precision, we include in our calculations the first order
corrections [17] in the slow-roll expansion for the quanti-

ties ns, r,
dns
d lnk , and �R.

Using Eqs. (8)–(16) above we can obtain various pre-
dictions of the radiatively corrected nonminimal �4 model
of inflation. Once we fix the parameters � and �, and the

number of e-foldings N0, we can predict ns, r, and
dns
d lnk .

The tree level (� ¼ 0) minimal �4 predictions are readily
obtained as

ns ¼ 1� 24

�2
¼ 1� 3

N0

; (17)

r ¼ 128

�2
¼ 16

N0

; (18)

dns
d lnk

¼ � 192

�4
¼ � 3

N2
0

: (19)

For N0 ¼ 60, we find ns ’ 0:95, r ’ 0:26 and dns
d lnk ’ �8�

10�3. As we mentioned above, this shows that the predic-
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tions of tree level minimal �4 inflation lie outside the 2-�
WMAP bounds [11]. However, the situation improves once
we include the radiative corrections [18] generated from
the Yukawa interaction in Eq. (1). Recently, these radiative
corrections have been shown to have important effects on
the tree level predictions of various inflationary models
[19,20]. The scalar spectral index, the tensor-to-scalar ratio
and the running of the spectral index for the radiatively
corrected minimal �4 inflation are then given by

ns ’ 1�
�
2

�
1� 78�=�

1� 72�=�

�
2 �

�
1� 86�=�

1� 72�=�

��
3

N0

; (20)

r ’
�
1� 78�=�

1� 72�=�

�
2 16

N0

; (21)

dns
d lnk

’ � 3

N2
0

�ð1� 98�=�Þð1� 78�=�Þ
ð1� 72�=�Þ2

�

þ r

2

�
16r

3
� ð1� nsÞ

�
: (22)

The predicted values of ns and r are shown in Figs. 1–3
for N0 ¼ 60 e-foldings. The running of the spectral index
dns
d lnk varies from �3� 10�3 to �8� 10�3. Although with

the inclusion of radiative corrections we obtain a reduction
in r, the predictions of the radiatively corrected minimal
�4 inflation remain outside of the WMAP 1-� bounds. If
we take � and the ratio �=� as our two independent
parameters (instead of � and �), the value of � can be
easily obtained in terms of �=� and N0 by employing
Eq. (16):

� ’ ð3��RÞ2
N3

0

ð�=�Þð1� 78�=�Þ2
ð1� 72�=�Þ3 : (23)
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FIG. 1 (color online). r vs ns for the radiatively corrected nonminimal �4 potential defined in Eq. (8) with the number of e-foldings
N0 ¼ 60. The WMAP 1-� (68% confidence level) bounds are shown in yellow. Along each curve we vary either � (left panel) or �
(right panel), keeping one or the other fixed. The black dots represent the meeting points of the hilltop and the �4 solutions and
correspond, for a given �, to the maximum value of �.
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FIG. 2 (color online). ns vs log10ð�Þ and log10ð�Þ for radiatively corrected nonminimal �4 inflation with the number of e-foldings
N0 ¼ 60.

TENSOR TO SCALAR RATIO IN NONMINIMAL . . . PHYSICAL REVIEW D 82, 043502 (2010)

043502-3



The positive semidefinite condition V � 0 for the po-
tential implies �=� � 1=ð24 lnð�=mPÞÞ ’ 1=72. However,
the WMAP 1-� bounds of the spectral index ns impose a
more stringent bound �=� & 1=79. It is interesting to note
that the above result allows two solutions for each of �=�,
ns and r for a given value of � [18]. These two solutions
meet at �=�	 1=90 and correspond to the maximum value

of �	 10�13:6 as represented by the black dots in Fig. 1
and can be seen explicitly in Figs. 3 and 4. Following
Ref. [18] we call the small �=� solution the ‘‘�4 solution’’
and the other the ‘‘hilltop solution.’’ This hilltop solution
mostly lies on the concave downward part of the potential,
i.e., above the point of inflection whereas the �4 solution
lies below the point of inflection. Moreover, the value of
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FIG. 3 (color online). r vs log10ð�Þ and log10ð�Þ for radiatively corrected nonminimal �4 inflation with the number of e-foldings
N0 ¼ 60.
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FIG. 4 (color online). V1=4=� and log10ð�Þ vs log10ð�Þ and log10ð�Þ for radiatively corrected nonminimal �4 inflation with the
number of e-foldings N0 ¼ 60.
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the inflaton field at the pivot scale �0 remains below the
position of the hilltop in the WMAP 1-� region. In this
paper we mainly restrict our discussion to the WMAP 1-�
bounds.

For � � 0 and in the limit � � 1, the tree level predic-
tions of minimal �4 inflation are modified as follows [21]:

ns ’ 1� 3ð1þ 16�N0=3Þ
N0ð1þ 8�N0Þ ; (24)

r ’ 16

N0ð1þ 8�N0Þ ; (25)

dns
d lnk

’ � 3ð1þ 4ð8�N0Þ=3� 5ð8�N0Þ2 � 2ð8�N0Þ3Þ
N2

0ð1þ 8�N0Þ4

þ r

2

�
16r

3
� ð1� nsÞ

�
: (26)

These results exhibit a reduction in the value of r and an
increase in the value of ns as can be seen in Figs. 1–3. In

particular, from the WMAP 1-� bounds (r	 0:1 and ns 	
0:96), we obtain a lower bound of � * 3� 10�3 with
N0 ¼ 60 e-foldings [2,21]. The tree level prediction for
dns
d lnk receives only a tiny correction in this case. Note the

sharp transitions in the predictions of ns and r in the
vicinity of � � 10�2. This can be understood from the
expression for the inflationary potential given in Eq. (8),
(24), and (25).
In order to discuss nonminimal�4 inflation for � � 1, it

is useful to define the dimensionless field variable c 
ffiffiffi
�

p
�=mP. With �, c � 1, the tree level predictions for ns,

r and dns
d lnk are given by

ns ’ 1� 8

3c 2
¼ 1� 2

N0

; (27)

r ’ 64

3c 4
¼ 12

N2
0

; (28)
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FIG. 5 (color online). r vs ns (first row) and ns and r vs log10ð�Þ (second row) for tree level (� ¼ 0) nonminimal�4 inflation with the
number of e-foldings N0 ¼ 50 (red dashed curve) and N0 ¼ 60 (green solid curve). The WMAP 1-� (68% confidence level) bounds
are shown in yellow.
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dns
d lnk

’ � 32

9c 4
¼ � 2

N2
0

; (29)

with

�2
R ’ �

�2

�
c 4

768�2

�
’ �

�2

�
N2

0

432�2

�
: (30)

The results are shown as a black curve in Figs. 1–3 labeled

� ¼ 0. The running of the spectral index dns
d lnk ’ �5� 10�4

is somewhat smaller in comparison to the prediction of

minimal �4 inflation. The requirement that V1=4 & � with

N0 ¼ 60 e-foldings leads to the upper bounds � & 300 and
� & 10�4 (see Fig. 4).
The inclusion of radiative corrections modifies the tree

level results of nonminimal �4 inflation as follows:

ns ’ 1� 8

3c 2

�
1þ 6�=�ð3� 4 lnð ffiffiffi

�
p

c ÞÞ
1� 24�=� lnð ffiffiffi

�
p

c Þ
�
; (31)

r ’ 64

3c 4

�
1� 6�=�ðc 2 þ 4 lnð ffiffiffi

�
p

c ÞÞ
1� 24�=� lnð ffiffiffi

�
p

c Þ
�
2
; (32)

dns
d lnk

’ � 32

9c 4

�ð1þ 6�=�ð5� 4 lnð ffiffiffi
�

p
c ÞÞÞð1� 6�=�ðc 2 þ 4 lnð ffiffiffi

�
p

c ÞÞÞ
ð1� 24�=� lnð ffiffiffi

�
p

c ÞÞ2
�
; (33)

with

�2
R ’ �

�2

�
c 4

768�2

� ð1� 24�=� lnð ffiffiffi
�

p
c ÞÞ3

ð1� 6�=�ðc 2 þ 4 lnð ffiffiffi
�

p
c ÞÞÞ2 : (34)

These results exhibit a reduction in the values of both r and
ns as can be seen for the curves with � ¼ 200 in Figs. 2 and
3. In particular, for ns � 0:96 we obtain a lower bound r *
0:002 (see Fig. 3). This may be compared with the result
r * 0:02 for the Higgs potential found in Ref. [20]. The
running of the spectral index changes very slightly from
dns
d lnk 	�4� 10�4 to its tree level prediction dns

d lnk 	�5�
10�4 within the WMAP 1-� bounds. For � ¼ 200 the
value of c varies between 7 and 9. The requirement that
V1=4 & � together with the WMAP 1-� bounds implies an
upper bound � & 10�7. The limiting case � � 1, on the
other hand, shows similar trends for the scalar spectral
index and the tensor-to-scalar ratio as can be seen, for
example, with the � ¼ 10�3 curves in Figs. 2 and 3.

Finally in Figs. 5 and 6 we display the predictions of
nonminimal �4 inflation with the number of e-foldings
N0 ¼ 50 andN0 ¼ 60. A reduction in ns and an increase in

r is observed with a decrease in the number of e-foldings.
This behavior is easy to understand with the help of ana-
lytical approximations derived in Eqs. (27) and (28). The
number of e-foldings N0 ’ 50–60, depends on the reheat-
ing scenario. In our case, reheating occurs through the
Yukawa coupling. Furthermore, the out of equilibrium
decay of the inflaton can give rise to the observed baryon
asymmetry via leptogenesis (either thermal [22] or non-
thermal [23]).
To summarize, we have reconsidered nonminimal ��4

chaotic inflation and imposed the requirement that the
energy scale of inflation remains below the effective UV

cutoff scale, i.e., V1=4 & �. The inflaton field � is a gauge
singlet scalar (say axion) field. In addition to the non-
minimal gravitational coupling, we have also included
the Yukawa coupling of � with a single right-handed
neutrino, leading to radiative corrections which can have
a significant effect. In the large � � 1 limit the require-

ment that V1=4 & � provides the upper bounds � & 102,
� & 10�4 and � & 10�7, with predictions for ns and r that
are consistent with the WMAP 1-� bounds. For � � 1, we
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FIG. 6 (color online). V1=4=� and log10ð�Þ vs log10ð�Þ for tree level (� ¼ 0) nonminimal �4 inflation with the number of e-foldings
N0 ¼ 50 (red dashed curve) and N0 ¼ 60 (green solid curve).
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obtain the lower bounds � * 10�3 and � * 10�12 from the
WMAP 1-� bounds. Provided ns � 0:96, we have shown
that the scalar to tensor ratio r * 0:002, which will soon be
tested by the Planck satellite.
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