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We discuss the additional perturbation introduced during inflation by quantum stress tensor fluctuations

of a conformally invariant field such as the photon. We consider both a kinematical model, which deals

only with the expansion fluctuations of geodesics, and a dynamical model which treats the coupling of the

stress tensor fluctuations to a scalar inflaton. In neither model do we find any growth at late times, in

accordance with a theorem due to Weinberg. What we find instead is a correction which becomes larger

the earlier one starts inflation. This correction is non-Gaussian and highly scale dependent, so the absence

of such effects from the observed power spectra may imply a constraint on the total duration of inflation.

We discuss different views about the validity of perturbation theory at very early times during which

currently observable modes are trans-Planckian.
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I. INTRODUCTION

The inflationary paradigm has been remarkably success-
ful in predicting observed features of the cosmic micro-
wave background (CMB) radiation and the large scale
structure of the Universe. If inflation is driven by a nearly
free, massless quantum field, then a generic prediction is a
spectrum of primordial fluctuations which is Gaussian and
almost scale invariant [1–5]. For a recent review, see for
example [6]. The best test of these predictions comes
from CMB observations by the Wilkinson Microwave
Anisotropy Probe satellite, which has found a spectrum
of temperature fluctuations consistent with Gaussian,
nearly scale-invariant primordial fluctuations [7].

However, in addition to the dominant effect coming
from tree order fluctuations of the scalar inflaton and of
the graviton, there should also be some effects from loop
corrections of these fields with themselves and with other
fields. The latter will be the topic of this paper, particularly
a one loop effect which can be interpreted in terms of
quantum stress tensor fluctuations. The fluctuations of
quantum stress tensors and their physical effects have
been discussed by several authors in recent years [8–13].
For a recent review with further references, see Ref. [14].
Quantum stress tensor fluctuations necessarily have a
skewed, highly non-Gaussian, probability distribution,
although the explicit form of this distribution has only
been found in two-dimensional spacetime models [15].

The effect with which we are concerned is quite differ-
ent from the effect of adding a noise term in the inflaton
equation of motion. The latter effect has been discussed by
several authors, including Calzetta and Gonorazky [16],
who also considered several types of couplings to the
inflaton field, Lombardo and Nacir [17], and by Wu,
et al. [18]. A review of this line of work is given in the
recent book by Calzetta and Hu [19]. The latter authors are
working in a fixed background spacetime and generally
assume a Gaussian spectrum of noise. We are working in a
model in which quantum stress tensor fluctuations induce
fluctuations of the spacetime geometry, and are dealing
with non-Gaussian fluctuations, as noted above. As we will
show, the physical predictions of our model are distinct
from those of the models in the papers just cited.
Reference [20] studied the possible contributions of

quantum stress tensor fluctuations of a conformally invari-
ant field to primordial density perturbations in inflationary
models. It was found that these contributions can be pro-
portional to a power of the scale factor change during
inflation, and hence potentially large enough to observe.
Because they are associated with a non-scale invariant and
non-Gaussian contribution, they can at best be a subdomi-
nant part of the primordial density perturbations. This fact
was used in Ref. [20] to infer upper bounds on the duration
of inflation. These bounds are compatible with adequate
inflation to solve the horizon and flatness problems, but
raise the possibility that the total duration of inflation might
be observable. This possibility goes against a commonly
held view that inflation erases the memory of anything
which occurred previously, and hence increasing its dura-
tion beyond the minimum needed to solve the horizon and
flatness problems can produce no observable effect.
However, contrary indications to this view had previously
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been published in the form of arguments that inflation
cannot be eternal to the past [21,22], although these argu-
ments were based on general considerations which do not
make specific predictions of observable effects. Winitzki
[23] has recently suggested a model in which inflaton field
fluctuations can produce violations of the null energy
condition and possible effects of the total inflationary
expansion.

The purpose of the present paper is to re-examine and
improve the analysis in Ref. [20]. In Sec. II, we discuss a
kinematic model which makes no explicit reference to the
inflaton field, but examines the gravitational effects of the
stress tensor fluctuation upon timelike geodesics. In
Sec. III, we give a detailed treatment of a dynamical model
in which the stress tensor fluctuations alter the dynamics of
a scalar inflaton field. In both models, a correction to the
power spectrum of density fluctuations is computed.
Section IV discusses the implications of our results and
some associated conceptual issues, especially the role of
trans-Planckian modes. Our analysis is summarized in
Sec. V.

Before concluding this section we should mention some
conventions. A hat is used to denote the spatial Fourier
transform of any field Aðt;xÞ

Âðt;kÞ � 1

ð2�Þ3
Z

d3xeik�xAðt;xÞ: (1)

We represent the power spectrum of A by the symbol
P Aðk; tÞ, which is defined as follows from the correlator

of two Â fields:

hÂðt;kÞÂðt;k0Þi � P Aðk; tÞ � �ðkþ k0Þ
4�k3

: (2)

In (the usual) cases for which Âðt;kÞ is time independent
we drop time from the argument list of the power spectrum,
as in P AðkÞ. We consider the loop counting parameter of
quantum gravity to be �2 � 16�G. Our curvature tensors
follow the Landau-Lifshitz spacelike convention, which is
also the Misner-Thorne-Wheeler (þþþ ) convention,

R�
��� � @��

�
�� � @��

�
�� þ ��

����
�� � ��

���
�
��

and R�� � R�
���: (3)

A very important point for understanding our analysis and
results is that we normalize the Friedmann-Robertson-
Walker scale factor to unity at the end of inflation, rather
than at the current time. Also note that we use the subscript
‘‘0’’ sometimes to signify ‘‘background’’ and sometimes to
denote that the subscripted quantity is evaluated at the
beginning of inflation. So t0 is the time at which inflation
begins, rather than the current time as in much of the
literature on cosmology. We indicate the current time by
the subscript ‘‘now,’’ so the wave number k ¼ 2�=	 is
measured in units of the comoving distance at the end of
inflation, and it can be expressed in terms of the current

wave number know ¼ 2�=	now through the relation k ¼
anowknow.

II. THE KINEMATIC MODEL REVISITED

Here we will review and modify a model first presented
in Ref. [20]. The point is to give a simple computation of
the extra part of the power spectrum of energy density
fluctuations due to a conformally invariant quantum field.
(See Fig. 1 for the relation between our contribution and
the usual tree order result.) A rigorous derivation involves
solving the coupled, linearized inflaton-graviton equations
with the conformal stress tensor as a source. We will do
that in Sec. III. Here we avoid any mention of the inflaton
field, and we require only the background metric

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj

¼ a2ð
Þð�d
2 þ �ijdx
idxjÞ; (4)

where t is the comoving time, 
 is the conformal time, and
a is the scale factor.
What we do instead is to assume that the stress energy

consists of a perfect fluid with energy density �ðt;xÞ,
pressure pðt;xÞ ¼ w�ðt;xÞ (with constant equation of state
parameter w) and 4-velocity u�ðt;xÞ, in comoving coor-
dinates such that u�@� ¼ @=@t. Then we use energy con-

servation,

_�þ ð�þ pÞ� ¼ 0; (5)

with _� � @�=@t, to infer the perturbed energy density
��ðt;xÞ by perturbing the expansion �ðt;xÞ � u�;�

@

@t

�
��ðt;xÞ
�0ðtÞ

�
¼ �ð1þ wÞ��ðt;xÞ: (6)

The key to simplifying the computation is deriving the
perturbed expansion ��ðt;xÞ from the Raychaudhuri equa-
tion

u�@�� ¼ �R��u
�u� � 1

3�
2 � ����

�� þ!��!��

þ ðu�;�u
�Þ;�: (7)

We shall drop the shear ���, the vorticity !��, and the
acceleration ðu�;�u

�Þ;�, at which point one can obtain

��ðt;xÞ from �R��ðt;xÞ ¼ 1
2�

2Tconf
�� ðt;xÞ, for the particu-

lar part of the total perturbation that concerns us. (See
Fig. 1.) Here Tconf

�� denotes the stress tensor of the confor-

mal field.
This makes for a wonderfully simple analysis in which

we need never consider the perturbed inflaton field or
components of the perturbed metric. Unfortunately, it is
not correct, as we will see in Sec. III. Ignoring ��� and
!�� is valid at linearized order for single-scalar inflation,
but the acceleration term contributes at linearized order
and that spoils the simple relation between ��ðt;xÞ and the
conformal stress tensor. So the result we shall derive in this
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section is off by an important factor of ðk=HÞ4, but it does
depend correctly on the initial time.

Conformal invariance allows the stress tensor correla-
tion function

C����ðx; x0Þ ¼ hT��ðxÞT��ðx0Þi � hT��ðxÞihT��ðx0Þi (8)

to be written in terms of the flat space stress tensor corre-
lation function

CRW
����ðx; x0Þ ¼ a�2ð
Þa�2ð
0ÞCflat

����ðx; x0Þ: (9)

Here the components of CRW
����ðx; x0Þ are understood to be

in the second set of coordinates in Eq. (4). Although the
conformal anomaly term in hT��ðxÞi breaks conformal

symmetry, this term cancels out of the correlation function,
Eq. (8). The construction of the stress tensor correlation
function for nonconformal fields is considerably more
complex. It has recently been done in de Sitter spacetime
for minimally coupled and massive scalar fields by Perez-
Nadal, Roura, and Verdaguer [13]. Their results might be
used to extend our analysis to nonconformal fields.

The flat spacetime energy density correlation function of
the conformal field is Eð�
; rÞ, where �
 ¼ 
� 
0 and
r ¼ jx� x0j. The expansion correlation function can be
expressed in terms of Eð�
; rÞ as

h��ð
1;xÞ��ð
2;x
0Þi ¼ 1

4
�4a�2ð
1Þa�2ð
2Þ

Z 
1


0

d


að
Þ
�

Z 
2


0

d
0

að
0Þ Eð�
; rÞ: (10)

For the case of the electromagnetic field,

E emð�
; rÞ ¼ Re

�ð�
2 þ 3r2Þðr2 þ 3�
2Þ
�4½r2 � ð�
þ i"Þ2�6

�
; (11)

and the expression for the conformal scalar field case is
identical except for an additional factor of 1=12. [Note that
this expression corrects an error in Eq. (39) of Ref. [20].]
This expression is ultraviolet finite in spite of being one
loop [11].

After reheating, the expansion fluctuations cause differ-
ential redshifting and consequent density fluctuations, in
accordance with the conservation law Eq. (5) for a perfect
fluid. The fluid flow approach to density perturbations has
been discussed by several authors [24–27]. Let �� ¼ ��=�

be the fractional density fluctuation at conformal time 
 ¼


s, the last scattering surface. Its spatial correlation func-
tion is given in terms of the expansion correlation function
by

h��ð
s;xÞ��ð
s;x
0Þi ¼ ð1þ wÞ2

Z 
s


r

d
1

að
1Þ
Z 
s


r

d
2

að
2Þ
� h��ð
1;xÞ��ð
2;x

0Þi: (12)

Here reheating occurs at 
 ¼ 
r and the equation of state
after reheating is p ¼ w�.
Let

F0ðrÞ ¼ h��ð
r;xÞ��ð
r;x
0Þi (13)

be the variance of the expansion at the end of inflation. In
many cases, the dominant contribution to the density fluc-
tuations arises from effects occurring during inflation.
Then contributions to the expansion correlation function
coming from stress tensor fluctuations after reheating may
be neglected. However, we still need to account for the
evolution of �� after reheating. If we ignore the effects of
classical density perturbations and pressure gradients, as
well as the quantum stress tensor, then �� satisfies [See
Eq. (13) in Ref. [20]]

d��

dt
¼ � 2

3
�0��; (14)

where �0 ¼ 3 _a=a is the unperturbed Robertson-Walker
expansion. The solution of this equation can be written as

��ð
Þ ¼ ��ð
rÞ
a2ð
Þ ; 
 � 
r; (15)

where we have set the scale factor at reheating to unity,
að
rÞ ¼ 1. In the approximation where we consider only
stress tensor fluctuations during inflation, after reheating
we have

h��ð
1;xÞ��ð
2;x
0Þi ¼ a�2ð
1Þa�2ð
2ÞF0ðrÞ: (16)

The density perturbation correlation function now be-
comes

h��ð
s;xÞ��ð
s;x
0Þi � ð1þ wÞ2F0ðrÞ

�Z 
s


r

d
1

a3ð
1Þ
�
2
:

(17)

The time integral now depends only upon the form of the
scale factor between reheating and last scattering. We

FIG. 1. Various contributions to the power spectrum of primordial perturbations. Wavy lines stand for graviton-inflaton fields and
solid lines denote conformal fields. The left-most diagram represents the tree order contribution which is usually reported. The center
diagram gives the one loop contribution from conformal matter which is the subject of our analysis. The right-most diagram represents
the (unobserved) term which is neglected by subtracting off the expectation value of the conformal stress tensor.
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consider a model in which the inflation is described by a
de Sitter metric,

að
Þ ¼ � 1

H

; 
 � 
r; (18)

and the subsequent period is radiation dominated (w ¼
1=3),

að
Þ ¼ H
þ 2: (19)

HereH is the Hubble parameter of de Sitter space, and both
að
Þ and da=d
 are continuous at
 ¼ 
r ¼ �1=H. Then

Z 
s


r

d
1

a3ð
1Þ
¼

Z 
s

�1=H

d
1

ðH
1 þ 2Þ3 �
1

2H
: (20)

The last step follows because að
sÞ 	 1. Now we obtain

h��ð
s;xÞ��ð
s;x
0Þi ¼ 4

9H2
F0ðrÞ: (21)

We will next take spatial Fourier transforms and write,
for example,

Ê emð�
; kÞ ¼ 1

ð2�Þ3
Z

d3xeik��xEemð�
; rÞ: (22)

The explicit form of Êemð�
; kÞ is

Ê emð�
; kÞ ¼ � k4 sinðk�
Þ
960�5�


¼ � k5

960�5

Z 1

0
du cosðku�
Þ: (23)

The Fourier transform of F0ðrÞ is

F̂ 0ðkÞ ¼ 1

4
�4

Z 
r


0

d


að
Þ
Z 
r


0

d
0

að
0Þ Eð�
; kÞ: (24)

We next evaluate the integrals in this expression, using
the second form in Eq. (23), to find in the limit that
kj
0j 	 1,

F̂ 0ðkÞ 
 �4k4H2

11 520�4

�
�j
0j3 þ 3

�k
j
0j2 þ � � �

�
: (25)

Note that the magnitude of F̂0ðkÞ grows as j
0j ! 1 for
fixed k. The growth was found in Ref. [20], but there only
the j
0j2 term appeared. The reason for this is that in
Ref. [20], the calculations were done in coordinate space
until the last step, where a term in F0ðrÞ / 1=r6 was

Fourier transformed into a term in F̂0ðkÞ / k3. However,
this procedure is not sensitive to the possibility of delta-
function terms in F0ðrÞ. The leading term in Eq. (25) arises
from just such a term, one proportional to r4�ðx� x0Þ.

Let P��
ðkÞ denote the spatial Fourier transform of

h��ð
s;xÞ��ð
s;x
0Þi, which is related to the power spec-

trum by P ��
ðkÞ ¼ 4�k3P��

ðkÞ. From Eqs. (21) and (25),

we find

P��ðkÞ � 1

ð2�Þ3
Z

d3xeik�ðx�x0Þh��ð
s;xÞ��ð
s;x
0Þi

� �4k

25 920�4

�
�jk
0j3 þ 3

�
jk
0j2 þ � � �

�
: (26)

Note that if we take the k4j
0j3 term seriously for all k,
then its spatial Fourier transform contributes a term pro-
portional to r4�ðx� x0Þ in h��ð
s;xÞ��ð
s;x

0Þi. To the

extent that measurements are made in position space by
comparing proxies for ��ðt;xÞ at x � x0, this term will not
contribute. Here we assume that we may ignore this term
and retain only the nonlocal 
2

0 effect. Recalling the defi-

nition Eq. (2), our result for the one loop contribution to the
�� power spectrum from conformal matter is then

½P ��
ðkÞ�conf � �4k4

2160�4

�
k

Haðt0Þ
�
2
: (27)

Apart from numerical factors, this is equivalent to Eq. (48)
in Ref. [20]. We will see in the next section that the
prefactor of k4 should really be H4; however, that still
leaves the result very strongly biased toward short wave-
length perturbations and far from scale invariant. The
possible implications will be discussed in Sec. IV.

III. A DYNAMICAL MODEL

The computation of ½P ��
ðkÞ�conf we have just completed

involved three basic steps:
(i) Inferring the post-inflationary density contrast from

the perturbed expansion

��ðt;xÞ ¼ �ð1þ wÞ
Z t

tr

dt0��ðt;xÞ: (28)

(ii) Approximating the post-inflationary Raychaudhuri
equation as (14), so that the density contrast during
radiation domination becomes

��ðt;xÞ � � 2

3HðtrÞ��ðtr;xÞ: (29)

(iii) Computing the perturbed expansion which is accu-
mulated during inflation by using the Raychaudhuri
Eq. (7), under the assumption that the acceleration
term ðu�;�u

�Þ;� makes no contribution at linearized

order.

Equation (28) is exact. While Eq. (29) is certainly not
exact, it does represent a reasonable approximation when
Fourier transformed and restricted to superhorizon modes.
The problematic step is ignoring the acceleration term to
compute the ��ðtr;xÞ induced by conformal matter fluctu-
ations during inflation. It turns out that the acceleration
term depends linearly upon the inflaton perturbation, and
we must study the coupled gravity-inflaton system to get a
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reliable result for ��ðtr;xÞ. Having done this, we use
Eqs. (28) and (29) as before to compute ½P ��

ðkÞ�conf .
In this section we study the coupling of a single-scalar

inflaton field with the gravitational perturbations of a spa-
tially flat Robertson-Walker spacetime. These perturba-
tions are in turn driven by the fluctuations of the stress
tensor of a conformal quantum field. The unperturbed
metric is of the form in Eq. (4). During inflation, this metric
will be approximately that of de Sitter spacetime, although
with a slowly varying Hubble parameter H. We assume
that the unperturbed metric satisfies Einstein’s equations
with the stress tensor of a spatially homogeneous inflaton
field ’0ðtÞ as the source. Let the inflaton be self-coupled by
a potential Vð’Þ. Then the Einstein equations become

3H2 ¼ 1
2�

2ð12 _’2
0 þ V0Þ; (30)

and

� 2 _H� 3H2 ¼ 1
2�

2ð12 _’2
0 � V0Þ: (31)

Here dots again denote derivatives with respect to t, H ¼
_a=a and V0 ¼ Vð’0Þ. The scalar field equation is

� 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�’Þ þ V0ð’Þ ¼ 0; (32)

which becomes

€’ 0 þ 3H� _’0 þ V 0
0 ¼ 0: (33)

To the extent that V0 is not constant, the unperturbed
spacetime will not be exactly de Sitter space.

A. Coupled equations for inflaton and metric
perturbations

We next wish to consider linear perturbations of this
spacetime in a gauge in which

gtt ¼ �1; (34)

so the perturbed metric may be written as

ds2 ¼ �dt2 þ 2aðtÞhtiðt;xÞdtdxi
þ a2ðtÞ½�ij þ hijðt;xÞ�dxidxj: (35)

It is convenient to define the conformally transformed,
spatial metric,

~g ij � �ij þ hij: (36)

The determinant of the full metric can be broken up into
three factors,

� g ¼ a6 � detð~gÞ � ½1þ htihtj~g
ij�

¼ a6½1þ hþOðh2Þ�; (37)

where h ¼ �ijhij is the trace of the metric perturbation.

In addition to the metric perturbation, the inflaton field
will have inhomogeneous perturbations:

’ðt;xÞ ¼ ’0ðtÞ þ �’ðt;xÞ: (38)

The scalar field perturbations will satisfy

� €’þ 3H� _’þ 1
2 _’0

_hþ V00
0�’ ¼ 0; (39)

which follows from the expansion of Eq. (32) to first order
both in �’ and in h.
The Einstein equations may be written as

R�� ¼ 1
2�

2ðTtotal
�� � 1

2g��g
��Ttotal

�� Þ; (40)

where the total stress tensor is the sum of contributions
from the inflaton field and the conformal quantum field:

Ttotal
�� ¼ Tinfl

�� þ Tconf
�� : (41)

We focus here on the time-time component of the Einstein
equation. The first-order expansion of Rtt is

Rtt ¼ �3 _H � 3H2 � 1

2
ð €hþ 2H _hÞ þ 1

a
ð _hti;i þHhti;iÞ

þOðh2Þ: (42)

The inflaton stress tensor satisfies

Tinfl
�� � 1

2g��g
��Tinfl

�� ¼ @�’@�’þ g��Vð’Þ: (43)

The first-order expansion of the tt component of this ex-
pression is

@t’@t’� Vð’Þ ¼ _’2
0 � Vð’0Þ þ 2 _’0� _’� V 0ð’0Þ�’:

(44)

Thus, the equation for the first-order metric perturbation
can be written as

� 1

2
ð €hþ 2H _hÞ þ 1

a
ð _hti;i þHhti;iÞ

¼ �2

2
½2 _’0� _’� V0ð’0Þ�’þU�; (45)

where we define

U ¼ Tconf
tt ; (46)

the energy density of the conformal field in the comoving
frame.
Define the normal vector to the surfaces of constant’ by

u� ¼ � g��@�’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��@�’@�’

q : (47)

The first-order expansion of the spatial components of this
vector is

ui ¼ hti
a

þ @i�’

a2 _’0

: (48)

We can impose the gauge condition

u� ¼ ��
t ; (49)

from which the condition gtt ¼ �1 follows. In addition,
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this leads to a relation between �’ and hti to first order:

htiðt;xÞ ¼ �@i

�
�’ðt;xÞ
aðtÞ _’0ðtÞ

�
: (50)

This relation allows us to eliminate the hti terms in Eq. (45)
and write

� �2 _’0� _’þ 1

2
�2V0

0�’�r2

a2
@

@t

�
�’

_’0

�
� 1

2a2
@

@t
ða2 _hÞ

¼ 1

2
�2U: (51)

Equations (39) and (51) form a pair of coupled second-
order equations for the metric and scalar field perturba-
tions. These equations may be rewritten by expressing ’0,
V0, and their derivatives in terms of the Hubble parameter
HðtÞ and its derivatives. The sum of Eqs. (30) and (31)
leads to

� _’0 ¼ 2
ffiffiffiffiffiffiffiffiffi
� _H

p
; (52)

and their difference leads to

�2V0 ¼ 2 _H þ 6H2: (53)

From these relations, we find

� €’0 ¼ � €Hffiffiffiffiffiffiffiffiffi
� _H

p ; �’
:::
0 ¼ � H

:::

ffiffiffiffiffiffiffiffiffi
� _H

p � €H2

2ð� _HÞ3=2 ;
(54)

and

�V 0
0 ¼

€Hffiffiffiffiffiffiffiffiffi
� _H

p � 6H
ffiffiffiffiffiffiffiffiffi
� _H

p
;

V 00
0 ¼ � H

:::

2 _H
þ €H2

4 _H2
� 3H €H

2 _H
� 3 _H:

(55)

Note that the homogeneous form (setting U ¼ 0) of

Eqs. (39) and (51) has a solution when �’ ¼ _’0 and _h ¼
6 _H. We can reduce the order of the system by scaling out
this solution and defining

BðxÞ ¼ �’ðxÞ
_’0ðtÞ : (56)

We can now rewrite Eq. (39) as

_h ¼ 6 _HB� 2

�
2
€’0

_’0

þ 3H

�
_B� 2 €B: (57)

This allows us to eliminate h from Eq. (51), and write

O _B ¼ 1
2�

2U; (58)

where O is the operator defined by

O ¼
�
@2t þ

�
5H þ 2

€’0

_’0

�
@t þ 4 _H þ 6H2 þ 4H

€’0

_’0

� 2
€’2
0

_’2
0

þ 2
’
:::
0

_’0

�r2

a2

�
: (59)

Equation (58) is a third-order equation which we will solve
using a retarded Green’s function.
It will be convenient to take a spatial Fourier transform,

and define the operator

O k ¼ @2t þ
�
5Hþ 2

€’0

_’0

�
@t þ 4 _H þ 6H2 þ 4H

€’0

_’0

� 2
€’2
0

_’2
0

þ 2
’
:::
0

_’0

þ k2

a2
: (60)

Let Gðt; t0; kÞ be the retarded Green’s function of this
operator, which satisfies the equation

O kGðt; t0; kÞ ¼ �ðt� t0Þ; (61)

with the boundary condition

Gðt; t0; kÞ ¼ 0 if t < t0: (62)

Let�1 and�2 be two linearly independent solutions of the
homogeneous equation

O k�ðt; kÞ ¼ 0: (63)

The Green’s function may be expressed as

Gðt; t0; kÞ ¼ 1

Wðt0; kÞ ½�1ðt<; kÞ�2ðt>; kÞ

��1ðt; kÞ�2ðt0; kÞ�; (64)

where t< and t> are the lesser and the greater, respectively,
of t and t0, and

Wðt; kÞ ¼ �1ðt; kÞ _�2ðt; kÞ � _�1ðt; kÞ�2ðt; kÞ (65)

is the Wronskian.
The homogeneous solutions �i are difficult to obtain in

general. However, if we make a ‘‘slow roll’’ approximation
in which time derivatives of H, and hence of ’0 and of V0,
are assumed to be small, then we have approximately

O k � @2t þ 5H@t þ 6H2 þ k2

a2
: (66)

In this approximation, the solutions of Eq. (63) are

�1ðt; kÞ ¼ a�2ðtÞeik
R

t

t0
dt1a

�1ðt1Þ; (67)

and �2ðt; kÞ ¼ ��
1ðt; kÞ. Here t0 is an arbitrary constant.

Now the Wronskian is

Wðt; kÞ ¼ � 2ik

a5ðtÞ ; (68)

and the retarded Green’s function may be written as
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Gðt; t0; kÞ ¼ � a3ðt0Þ
ka2ðtÞ sin

�
k
Z t

t0

dt1
aðt1Þ

�
; (69)

for t � t0.

B. Inflaton field fluctuations

In this subsection, we wish to calculate the fluctuations
in ’ which are driven by the stress tensor fluctuations of
the conformal field. Let Gðx; x0Þ be a coordinate space
Green’s function for the operator O, which satisfies

OGðx; x0Þ ¼ �ðx� x0Þ ¼ �ðt� t0Þ�ðx� x0Þ: (70)

A particular solution of Eq. (58) can be written as

_Bðt0;x0Þ ¼ 1

2
�2

Z
d4x1Gðx; x1ÞUðx1Þ: (71)

We now treat U and hence B as fluctuating fields, and
write the correlation function for _B as

h _Bðt;xÞ _Bðt;x0Þi ¼ 1

4
�4

Z
d4x1d

4x2Gðx; x1ÞGðx0; x2Þ
� hUðx1ÞUðx2Þi: (72)

Next we convert from comoving to conformal time, using
d
 ¼ dt=aðtÞ, and use the relation between the (comov-
ing) energy density in Robertson-Walker spacetime to that
in flat spacetime,

hUðx1ÞUðx2Þi ¼ a�4ð
1Þa�4ð
2ÞEð�
; rÞ; (73)

where Eð�
; rÞ is the flat spacetime energy density corre-
lation function, with r ¼ jx1 � x2j and �
 ¼ 
1 � 
2.
This leads to

h@
Bð
;xÞ@
Bð
0;x0Þi
¼ 1

4
�4að
Það
0Þ

Z 



0

d
1

a3ð
1Þ
Z 
0


0

d
2

a3ð
2Þ
�

Z
d3x1d

3x2½Gð
;
1;x� x1ÞGð
0; 
2;x
0 � x2Þ

� Eð�
; rÞ�: (74)

Here the boundary condition @
Bð
;xÞ ¼ 0 at 
 ¼ 
0 has

been imposed.
Next we take spatial Fourier transforms, and define

h@
Bð
;xÞ@
0Bð
0;x0Þi ¼
Z

d3keik�ðx�x0Þh@
B@
0Bik;
(75)

and analogous transforms of Gð
;
1;x� x1Þ and of
Eð�
; rÞ. Then we may write

h@
B@
0Bik ¼ 1

4
�4að
Það
0Þ

Z 



0

d
1

a3ð
1Þ
Z 
0


0

d
2

a3ð
2Þ
� ½Gð
;
1; kÞGð
0; 
2; kÞÊð�
; kÞ�:

(76)

The correlation function for @
Bmay be integrated to yield

the mean squared inflaton fluctuation at the end of infla-
tion, 
 ¼ 
r. If B ¼ 0 at 
 ¼ 
0, then

hB2ð
rÞik ¼
Z 
r


0

d

Z 
r


0

d
0h@
B@
0Bik: (77)

The form for the Green’s function from the slow roll
approximation, Eq. (69), may be expressed as

Gð
;
0; kÞ ¼ � a3ð
0Þ
ka2ð
Þ sin½kð
� 
0Þ�: (78)

With this form, and the de Sitter space scale factor, Eq. (18)
we find

hB2ð
rÞik ¼ �4H2

4k2

Z 
r


0

d


Z 
r


0

d
0
0 Z 



0

d
1

� sin½kð
� 
1Þ�
Z 
0


0

d
2

� sin½kð
0 � 
2Þ�Êð�
; kÞ: (79)

It is interesting to compare this with the result Eq. (10) of
the kinematical model. After first horizon crossing,

��̂ð
;kÞ 
H2B̂ð
;kÞ [See Eq. (86) below], so the big
difference between Eqs. (79) and (10) is the extra factors of

H2

k

Z 



0

d
1 sin½kð
� 
1Þ�H
2

k

Z 
0


0

d
2 sin½kð
0 � 
2Þ�:
(80)

These terms describe how stress tensor fluctuations from
very early times are communicated by the inflaton field to
the late time geometry, and they effectively introduce a
factor of ðH=kÞ2 � ðH=kÞ2 ¼ ðH=kÞ4 to the result of the
kinematical model.

Finally, we may use the form of Êð�
; kÞ given in
Eq. (23), and perform the integrations in Eq. (79) using
the algebraic computer program MATHEMATICA. The result
is rather complicated, but in the limit of large j
0j, it
becomes

hB2ð
rÞik 
��4H2j
0j3
122 880�4

þ �4H2
2
0

153 600�3k
þ . . . : (81)

As with our result Eq. (25) for F̂0ðkÞ, the leading contri-
bution for large j
0j corresponds to a term which is ultra-
local in position space, in this case proportional to
�ðx� x0Þ.
In the subsequent analysis, we will also encounter ex-

pectation values of quadratic forms involving time deriva-
tives of B, such as hB _Bi and h _B2i. However, one may check
that all of these terms are at most proportional to j
0j and
hence subdominant compared to hB2i in the limit of large
j
0j.
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1. Density fluctuations from the conservation law

As discussed at the beginning of this section, we can
compute the density contrast using Eqs. (28) and (29) once
we have ��ðtr;xÞ, the perturbed expansion at the end of
inflation. The expansion � can be obtained from its defini-
tion

� � u�;� ¼ 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
u�Þ: (82)

In our gauge, Eq. (49), this becomes

�ðt;xÞ ¼ @

@t
lnð ffiffiffiffiffiffiffi�g

p Þ: (83)

We may use Eq. (37) to write

� ¼ 3H þ 1

2

@

@t
lnð~gÞ þ 1

2

@

@t
ln½1þ htihtj~g

ij�

¼ 3H þ 1

2
_hþOðh2Þ: (84)

Recall that �0 ¼ 3H is the expansion of the comoving
geodesics in Robertson-Walker spacetime, so the first-
order perturbation of the expansion is

��ðt;xÞ ¼ 1
2
_hðt;xÞ: (85)

One infers _hðt;xÞ from Bðt;xÞ using Eq. (57). Because
we only need it at the end of inflation the _B and €B terms can
be dropped, and we can use the radiation domination result
_H ¼ �2H2 to conclude

��ðtr;xÞ � �6H2Bðtr;xÞ: (86)

Hence, Eqs. (28) and (29) give the following expression for
the density contrast during radiation domination:

��ðt;xÞ � 4HBðtr;xÞ: (87)

This should be valid when Fourier transformed and re-
stricted to superhorizon modes.

To find the power spectrum we first compute the spatial
Fourier transform of the �� correlator using Eqs. (87) and

(81)

P��ðkÞ � 1

ð2�Þ3
Z

d3xeik�ðx�x0Þh��ð
s;xÞ��ð
s;x
0Þi

� �4H4k�3

7680�4

�
�jk
0j3 þ 4�

5
jk
0j2 þ � � �

�
: (88)

Multiplying by 4�k3 gives the power spectrum. As for the
kinematic model (26), we assume that we may drop the
j
0j3 term which is ultralocal and presumably not part of
the observed power spectrum. This leaves us with

½P ��
ðkÞ�conf � �4H4

2400�2

�
k

Haðt0Þ
�
2
: (89)

Thus, the dynamical model also produces a non-scale-
invariant spectrum biased toward the blue end of the spec-

trum, although less so than in the case of the kinematic
model.
Models with noise terms in the inflaton equation of

motion on a fixed background spacetime [16–18] can
also produce a blue spectrum, although the basic physics
of these models is quite different from our model, and the
details of the spectrum depend on the details of the noise
term and differ from that of Eq. (89). None of the models in
the papers just cited exhibit the dependence upon the
physical momentum which we find.

2. Density fluctuations from the Sachs-Wolfe effect

An alternative approach to calculate density or tempera-
ture fluctuations is to study the effects of metric perturba-
tions on the redshifts of photons, as was first done by Sachs
and Wolfe [28]. Equation (39) of their paper may be ex-
pressed as

�T

T
¼

Z ts

tr

dt

�
êihti;tðxÞ � 1

2
êiêjhij;tðxÞ

�
: (90)

This formula gives the differential redshift, and hence
temperature fluctuation, of a photon propagating from t ¼
tr to t ¼ ts along a null geodesic in the direction of the unit
vector êi. The integrand is understood to be evaluated
along the unperturbed null geodesic. In contrast to the
previous discussion, we now need expressions for the
individual components of the spatial metric perturbation,
hij. For this purpose, it is convenient to express the scalar

part of the perturbed metric, Eq. (35) as

ds2 ¼�dt2 � 2B;idx
idtþ½a2ð1� 2c Þ�ij � 2E;ij�dxidxj:

(91)

Here we follow the notation of Mukhanov [6], as modified
in Ref. [29]. As before, hti is given by Eq. (50). The spatial
components of scalar perturbations are

hijðt;xÞ ¼ �2�ijc ðt;xÞ � 2

a2ðtÞ@i@jEðt;xÞ: (92)

The quantities which appear in the integrand of Eq. (90)
may be written in terms of B, c and E as

ê ihti;tðxÞ ¼ �
�
ê � r
a

�
ð _B�HBÞ (93)

and

� 1

2
êiêjhij;tðxÞ ¼ _c þ

�
ê � r
a

�
2ð _E� 2HEÞ: (94)

Expressions for c and for _E� 2HE, Eqs. (A23) and
(A25), respectively, are derived in the Appendix. First we
note that _E� 2HE contains two types of terms, those
which involve _B and €B, and those which depend upon U
or _U evaluated at the same time as _E� 2HE. Both of these
types of terms will give a subdominant contribution, which
is either independent of j
0j or small compared to the j
0j3
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and j
0j2 terms. The same comment applies to all terms in
c , except for the HB term. Note that in coordinate space,
Eqs. (A23) and (A25) contain the nonlocal operator 1=r2,
which is nonlocal in space only, not in time. In any case,
calculations are best done in Fourier space, where 1=r2 is
replaced by �1=k2.

Thus, we may take

c � �HB: (95)

If we drop the _B term in Eq. (93), and use the fact that

d

dt
¼ @

@t
�

�
ê � r
a

�
(96)

is the total derivative along our null geodesic, we may write

�T

T
¼ �

Z ts

tr

dt
dðHBÞ
dt

� ðHBÞtr : (97)

In the last step, we used the fact that the dominant con-
tribution will come from the lower limit of the integral. If
we recall that here

��

�
¼ 4

�T

T
; (98)

we again obtain Eq. (87).
Density perturbations are often treated using the gauge-

invariant potentials, which is yet another possible ap-
proach. However, both the fluid flow approach and the
Sachs-Wolfe formula, Eq. (90), are themselves gauge in-
variant and somewhat simpler for our purposes than the
gauge-invariant potentials.

IV. DENSITY PERTURBATIONS FROM QUANTUM
STRESS TENSOR FLUCTUATIONS

A. Possible constraints on the duration of inflation

Let us now discuss the possible physical implications of
the conformal matter contribution to the power spectrum.
Recalling that �2 ¼ 16�G, and that current wave numbers
know correspond to k ¼ ðakÞnow, our result (89) can be
expressed as

½P ��
�conf � 8G2H4

75

�ðakÞnow
a0H

�
2
: (99)

This is not scale invariant, and it is associated with highly
non-Gaussian fluctuations. In contrast, observations of
large scale structure and the cosmic microwave back-
ground radiation are consistent with the primordial pertur-
bation spectrum being approximately scale invariant and
Gaussian [7]

PRðknowÞ � ð2:441þ0:088
�0:092Þ

� 10�9

�
know

0:002 Mpc�1

��0:037�0:012
: (100)

(The primordial curvature and density contrast power spec-

tra are related by PR ¼ 9
16P ��

[6].) Note that the weak

scale dependence of the observed power spectrum (100) is
actually in the opposite (red) sense to the massive blue tilt
we predict from conformal matter. Hence the contribution
from conformal matter can only represent a tiny part of the
total power spectrum. Because our result Eq. (99) grows
like 1=a2ðt0Þ as the start of inflation is pushed back to
earlier and earlier times, one can derive a bound on the
duration of inflation by requiring that Eq. (99) is small
enough to not affect the measured result, Eq. (100).
It will facilitate the discussion to recall some reasonably

generic predictions of single-scalar inflation in the slow
roll approximation. The tree order results for the scalar and
tensor power spectra are [27]

½PRðknowÞ�tree � GH2ðtkÞ
�ðtkÞ ;

½P hðknowÞ�tree � 16

�
GH2ðtkÞ;

(101)

where ðtÞ � � _H=H2, and tk is the time of first horizon
crossing,

anowknow ¼ aðtkÞHðtkÞ: (102)

The absence of much scale dependence in the observed
result, Eq. (100), is explained byHðtÞ being approximately
constant during inflation. (This is why our de Sitter ap-
proximation of Sec. III was well motivated.) Of course a
nearly constant HðtÞ makes the slow roll parameter ðtÞ ¼
� _H=H2 close to zero. The enhancement of the scalar
power spectrum by 1=ðtkÞ explains why it has been ob-
served, while the tensor contribution has so far not been
resolved. At 95% confidence the bound on their ratio is [7]

r � P hð0:002 Mpc�1Þ
PRð0:002 Mpc�1Þ< 0:22: (103)

With the theoretical results Eq. (101) and the scalar ob-
servation Eq. (100), this implies a bound on the inflationary
Hubble parameter

GH2 ¼ �

16
� r� PRð0:002 Mpc�1Þ & 10�10: (104)

Note that our one loop contribution Eq. (99) is suppressed
by GH2 relative to the tree effect Eq. (101). It can only
become observable when inflation begins at such an early
time that these factors are canceled by the square of the
physical wave number in Hubble units, ðk=a0HÞ2.
The bound we get on t0 derives from requiring the

predicted contribution from conformal matter Eq. (99) to
be smaller than the observed result Eq. (100) for the largest
wave number know for which data exists. We take know �
10�24 cm�1 � 2� 10�38 GeV, which corresponds to
structures of about 2 Mpc in physical size, or about 5 arc-
minutes of angular scale [30]. Let TR stand for the reheat
temperature, and let us assume efficient reheating so that
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H2 � 8�GT4
R � 8�� 1010 GeV2

�
TR

1012 GeV

�
4
: (105)

The Universe has expanded by about a factor of 103 since
the last scattering time ts (when the temperature was TS �
1 eV) and recall that we normalize the scale factor to unity
at the end of inflation, hence

anow � 103aðtsÞ � 103
TR

TS

� 1024
�

TR

1012 GeV

�
: (106)

For these parameters our result Eq. (99) implies

½PRðknowÞ�conf � 3G2H4

50

�
anowknow
a0H

�
2

� 5� 10�94

a20

�
TR

1012 GeV

�
6
: (107)

Requiring this conformal contribution to be less (by a
factor of 10, say) than the observed spectrum Eq. (100)
gives

1

a0
& 1042

�
1012 GeV

TR

�
3
: (108)

Recall that sufficient inflation to solve the horizon and
flatness problems requires 1=a0 * 1023, so Eq. (108) al-
lows more than enough inflation for this purpose. Note that
this bound is, apart from being improved by a factor of 103,
equivalent to Eq. (92) in Ref. [20]. However, the latter
result was derived using an overly simplified dynamical
model which did not fully account for the coupling be-
tween the inflaton field and the perturbations of the space-
time geometry.

B. The trans-Planckian issue

We now turn to some of the conceptual issues which are
raised by the calculations described in the previous sec-
tions. One of these concerns the use of trans-Planckian
modes, that is, modes whose physical wavelengths are less

than the Planck length of ‘p � ffiffiffiffi
G

p � 10�33 cm, as mea-

sured by an observer at the start of inflation. The estimates
in the previous subsection dealt with perturbations with a
present wavelength on the order of 	now � 1025 cm �
1058‘p. The physical wavelength of this mode at the begin-

ning of inflation is,

	0 ¼ a0	 ¼ a0 � 	now

anow
: (109)

If we assume that a0 is at the bound (108)—which means
conformal matter contributes 10% of the measured power
spectrum at the smallest observed scales—then the initial
wavelength is

	0 � 10�8‘p

�
TR

1012 GeV

�
2
: (110)

For most values of TR, this is at/or below the Planck length.

This raises two questions:
(i) Is it valid to extrapolate low energy dynamics such as

electromagnetism to trans-Planckian scales?
(ii) Is it valid to apply perturbation theory for trans-

Planckian modes?

No one knows what dynamical principles might apply at
Planck scales, but it is of course acceptable to carry out a
study, as we have done, based on the explicitly stated
assumption that they are unchanged. What does not seem
alright is employing perturbation theory. One must not be
mislead by the fact that the tree order effect 
�2H2= is
small; the series is an expansion in powers of the large
parameter ð�k=a0Þ2,

P ��
ðkÞ 
 �2H2

�
�0


þ �1

�
�k

a0

�
2 þ �2

�
�k

a0

�
4 þ . . .

�
:

(111)

If one makes the usual assumption that the pure numbers
�‘ are of order one then the only way of making the one
loop term comparable to the tree order result must also
make the two loop and higher terms comparable. The
conclusion seems unavoidable that perturbation theory
must break down, for mode k, as the initial time is pushed
back to the point for which �k=a0 
 1. We do not possess a
nonperturbative computational technique so what actually
happens at earlier times is a matter of conjecture and lively
debate within the community [31–33].
One view is based on the observation that the far ultra-

violet contains so many modes that even very small devia-
tions from quiescence in each of them must produce
enormous fluctuations that would invalidate semiclassical
inflation. Hence it must be, the argument goes, that a
nonperturbative resummation of loop corrections such as
Eq. (111) exhibits no large effect, even for very early initial
times. For each wave number k there would be a time Tk

such that �k=aðTkÞ  1, after which our perturbative treat-
ment is valid. As long as t0 comes after Tk, making t0
smaller causes the one loop effect to grow as we predict,
with higher loop contributions still negligible. But if t0 is
pushed before Tk then the higher loop corrections become
important and the whole series approaches a constant. If
this view is correct then, for t0 < Tk, one could only
employ the perturbative treatment of this paper by starting

the evolution of B̂ðt;kÞ at t ¼ Tk, not at t ¼ t0. And the
correct initial condition would be something close to qui-
escence at t ¼ Tk. This is a nonlocal initial condition, but
then quantum effects typically are nonlocal.
A different view is motivated by the similarity of these

issues to those which arise in black hole physics. The
original derivation of the Hawking effect [34] assumes
free quantum field theory on a fixed background spacetime
and requires trans-Planckian modes. This derivation is
analogous to our treatment in the previous sections. It is
possible to reproduce the Hawking effect without the use of
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trans-Planckian modes [35,36], but only by postulating a
nonlinear dispersion relation, which breaks local Lorentz
symmetry.

If there is a new physical principle which avoids trans-
Planckian modes, then economy of thought would suggest
that it should be the same principle for both black hole
physics and for cosmology. Ideally, one might hope for an
experimental or observational test of trans-Planckian phys-
ics. The power spectrum which we have derived using
trans-Planckian modes has the potential to provide such a
test. If inflation lasted just slightly less than the amount
given by Eq. (108), then the model described above pre-
dicts a non-scale invariant and non-Gaussian component in
the cosmic microwave background which might be
detectable.

C. Relation to Weinberg’s theorem

Neither the comoving wave number k nor scale factor
aðtÞ are physical, only their ratio, k=aðtÞ. Of course ratios
of the scale factor at different times are also physical.
Because we normalize the scale factor to one at the end
of inflation, the various factors of k in our results must
really be interpreted as the physical wave number at the
end of inflation, k=ar. Therefore, the kinematic model
estimate of ½P ��

ðkÞ�conf 
 �4k6=½H2a20� seems to suggest

a one loop correction to the power spectrum which not only
violates scale invariance by the factor ðk=arÞ6 but also
grows at late times like ðar=a0Þ2. Such growth would
contradict a bound of at most logarithmic growth estab-
lished by Weinberg [37]. (Weinberg’s result was derived
for minimally coupled scalars but it can easily be extended
to conformally coupled particles [38].) In fact one can see
from the dynamical model of Sec. III that there is no
growth at late times; what happens instead is that the
principal effect arises from fluctuations near the time t0
when the interaction is turned on, after which it rapidly
approaches a constant. By comparing our one loop correc-
tion with the usual tree order result

½P ��
ðkÞ�tree 
 �2H2


versus

½P ��
ðkÞ�conf 
 �2H2 � �2k2

a20
;

(112)

it will be seen that our contribution consists of the tree
result (without the inverse of  � � _H=H2), multiplied by
a typical one loop correction of the square of � times the
mode’s physical energy at the initial time. Later times
contribute far less because the mode’s physical energy
redshifts so rapidly. There is no mystery about why the
effect can be large at very early times because the mode is
trans-Planckian then and should induce large gravitational
effects. Of course this again raises concerns about using
perturbation theory and low energy dynamics. What
Weinberg considered was quantum loop effects from the

‘‘safe’’ regime of late times during which perturbative
general relativity must be valid. Our results are in perfect
agreement with his bound; indeed, they fail to show even
the logarithmic growth allowed for by the bound and
achieved by nonconformal matter.

V. SUMMARYAND DISCUSSION

In this paper we have evaluated the extra contribution to
inflationary density perturbations from the quantum stress
tensor fluctuations of a conformal field such as the photon.
This was done in a simple, kinematical model and then in a
more accurate, but much more complicated, dynamical
model. Our main result is that the power spectrum of the
energy density at wave number k goes like the tree order
result (without enhancement by 1=) times ðEðt0Þ=MPlÞ2,
where Eðt0Þ ¼ k=aðt0Þ is the mode’s physical energy at the
beginning of inflation and MPl is the Planck mass. If a
perturbative computation such as this could be trusted to
arbitrarily early times, the absence of such a massive blue
tilt in the observed power spectrum would seem to imply a
bound on the total duration of inflation. This constraint
allows enough inflation to solve the horizon and flatness
problems.
Our result derives from very early times and rapidly

approaches a constant, so it does not contradict
Weinberg’s bound [37,38], on the maximum possible
growth of quantum corrections at late times. However,
our result does involve a problematic extrapolation of
known physical laws to the trans-Planckian regime, and
the even more problematic assumption that perturbation
theory can be used at times and on modes for which the
physical energy density is trans-Planckian. Opinion on
these issues is divided [31–33] and we have tried to present
both sides. It is worth pointing out that stress tensor fluc-
tuations from very early times would also induce signifi-
cant non-Gaussianities if one were to compute them
perturbatively, using known physical laws, as we have
done for the 2-point correlator.
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APPENDIX: SOME RELATIONS INVOLVING
SPATIAL PERTURBATIONS

In this appendix, we will derive some relations relating
to the spatial parts of the metric perturbations which are
used in Sec. III B 2. The Einstein equations, Eq. (40), may
be expressed as

R�� � 1
2�

2½@�’@�’þ g��Vð’Þ� ¼ 1
2�

2Tconf
�� : (A1)

It is convenient to remove the scale factors from the
conformal stress tensor by defining

U ¼ Tconf
tt ¼ T̂tt; Tconf

ti ¼ aT̂ti; Tconf
ij ¼ a2T̂ij:

(A2)

Note that T̂�� are the components of the conformal stress

tensor in a local orthonormal frame defined by dt̂ ¼ dt and
dx̂i ¼ adxi. The hti and hij defined in Eq. (35) are the

metric perturbations in this frame.
Because the conformal stress tensor is itself a first-order

perturbation we can express its tracelessness using only the
zeroth order metric,

g��Tconf
�� ¼ 0 ) T̂kk ¼ T̂tt þOðh2Þ: (A3)

Similar simplifications can be made to the relations im-
plied by stress-energy conservation,

g��Tconf
��;� ¼ 0 ) 1

a3
@tða3T̂ttÞ ¼ 1

a
T̂tk;k �HT̂kk þOðh2Þ;

(A4)

1

a3
@tða4T̂tiÞ ¼ T̂ik;k þOðh2Þ: (A5)

The expansion of the time-time component of Eq. (A1)
was performed in Sec. III A so here we focus on the
remaining components. The first-order expansions of the
required components of the Ricci tensor are, using the
metric of Eq. (35),

Rti ¼ _hk½i;k� þ 1

a
ht½k;i�k þ ð3H2 þ _HÞahti þOðh2Þ; (A6)

Rij ¼ ð3H2 þ _HÞa2�ij þ ð3H2 þ _HÞa2hij þ 1

2a
@tða3 _hijÞ

� 1

a
@tða2htði;jÞÞ þ hkði;jÞk � 1

2
hij;kk � 1

2
h;ij

�Ha�ijhtk;k þ 1

2
Ha2�ij

_hþOðh2Þ: (A7)

The remaining first-order Einstein equations become

_h k½i;k� þ 2 _H@i� ¼ 1
2�

2aT̂ti; (A8)

and�
@2t þ 3H@t �r2

a2

�
hij þ 1

a2
½hik;kj þ hjk;ki � h;ij�

þH�ij
_h� 2�ij½ €H þ 6H _H�Bþ 2

a2
_B;ij

þ 2H

a2
½�ijr2 þ @i@j�B ¼ �2T̂ij: (A9)

To understand what Eqs. (A8) and (A9) imply, it is
useful to make a decomposition of hij into irreducible

representations of the rotation group,

hij � hTTij þ hTi;j þ hTj;i �
1

2

�
�ij � 3

@i@j

r2

�
hL

þ 1

2

�
�ij �

@i@j

r2

�
h: (A10)

This is a decomposition into transverse-tracefree (TT),
transverse (T), longitudinal (L) and trace parts. Here hTTii ¼
0 ¼ hTTij;j and hTi;i ¼ 0 as usual. We can make similar de-

compositions of the conformal stress tensor,

T̂ ti � TT
ti þ @iT

L
t ; (A11)

T̂ij � TTT
ij þ TT

i;j þ TT
j;i �

1

2

�
�ij � 3

@i@j

r2

�
TL

þ 1

2

�
�ij �

@i@j

r2

�
T: (A12)

The following identities facilitate extraction of the longi-
tudinal and trace parts,

�ij ¼ � 1

2

�
�ij � 3

@i@j

r2

�
þ 3

2

�
�ij �

@i@j

r2

�
; (A13)

@i@j ¼ � 1

2

�
�ij � 3

@i@j

r2

�
r2 þ 1

2

�
�ij �

@i@j

r2

�
r2:

(A14)

Equivalently, the longitudinal part is obtained by the action
of the projection operator

Lij ¼
@i@j

r2
; (A15)

so that hL ¼ Lijhij. The longitudinal part of (A9) is,�
@2t þ 3H@t þr2

a2

�
hL þ

�
H@t �r2

a2

�
h� ð2 €H þ 12H _HÞB

þr2

a2
ð2@t þ 4HÞB ¼ �2TL: (A16)

Note that stress-energy conservation (A5) implies,

ð@t þ 3HÞðaTL
t Þ ¼ TL; (A17)

and Eq. (A8) implies
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_h L ¼ _h� 4 _HBþ �2aTL
t : (A18)

r2

a2
hL þ

�
@2t þ 4H@t �r2

a2

�
h� 4 _H _B�ð6 €H þ 24H _HÞB

þr2

a2
ð2@t þ 4HÞB ¼ 0: (A19)

Now eliminate the _h terms using Eq. (57) and eliminate the
resulting @3t B term using Eq. (58). The resulting simplifi-
cation of (A19) is,

r2

a2
ðhL � hþ 4HBÞ þ

�
�8H

€’0

_’0

� 12H2 þ 4 _H

�
_B

� 4H €B ¼ �2U: (A20)

At this point, it is convenient to switch to the variables c
and E defined in Eq. (91), in terms of which

hL ¼ �2c � 2
r2

a2
E; (A21)

and

h ¼ �6c � 2
r2

a2
E: (A22)

Now Eq. (A20) may be written as

c þHB� a2

r2

�
H €Bþ

�
2H

€’0

_’0

þ 3H2 � _H

�
_Bþ �2

4
U

�

¼ 0: (A23)

The time derivative of Eq. (A22) is

_h ¼ �6 _c � 2
r2

a2
ð _E� 2HEÞ: (A24)

Next substitute this relation and the time derivative of
Eq. (A23) into Eq. (57), and eliminate the @3t B term using
Eq. (58). The result is

r2

a2
ð _E� 2HEÞ ¼ €Bþ

� €H
_H
þ 3H

�
_B��2 a

2

r2

�
3HUþ 3

4
_U

�
:

(A25)
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