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We compute time delays for gravitational lensing in a flat � dominated cold dark matter Swiss cheese

universe. We assume a primary and secondary pair of light rays are deflected by a single point mass

condensation described by a Kottler metric (Schwarzschild with �) embedded in an otherwise homoge-

neous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is

nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time

delays predicted by conventional linear lensing theory that can reach �4% for these large lenses. The

differences in predicted delay times are due to the failure of conventional lensing to incorporate the

lensing mass into the mean mass density of the universe.
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While investigating a recently proposed effect of the
cosmological constant � on gravitational lensing [1], the
authors discovered that angular deflections caused by the
embedding of point masses in homogeneous cosmologies
can differ from the Einstein value by as much as a few
percent [2]. The difference in the deflection angles is
primarily caused by making the deflector’s mass part of
the universe’s mean mass density rather than as an addition
to it, as is assumed in conventional linear lensing theory. In
this paper we use the same model to compute analytic
expressions for time delays between images produced by
these lenses. To incorporate the lenses into the mean
homogeneous mass density and to enable us to evaluate
time delays beyond the linear term we use a simple Swiss
cheese cosmology [3–5]. Estimations of these time delays
using a similar lensing model have recently appeared in
[6,7] and earlier estimates, some using less precise models,
appeared in [8–12]. These attempts primarily focus on
determining the cosmological constant’s effect on lensing,
including time delays, whereas this analytic work empha-
sizes the significantly larger effect caused by embedding
the lens into the cosmology rather than the conventional
approach of simply superimposing the lensing mass on top
of the homogeneous mean density.

Swiss cheese models are exact general relativistic (GR)
solutions which replace comoving homogeneous spheres
in Friedman-Lemaı̂tre-Robertson-Walker (FLRW) uni-
verses by spherical condensations (lenses) [13]. Because
a Swiss cheese lens is part of the mean density there is a
range beyond which it ceases to deflect passing light rays.
That range is just the comoving radial boundary �b of the
homogeneous sphere that is replaced by the condensation.
Beyond that distance the gravity caused by a condensation
and a homogeneous sphere are the same.

In this calculation we assume the background FLRW
cosmology is a flat (�m þ�� ¼ 1) � dominated cold
dark matter (�CDM) model. The simplest Swiss cheese
cosmology is constructed by replacing the comoving
spheres of homogeneous dust by point masses [3,4].
When � � 0 the metric in an evacuated void is the
Kottler metric [14,15] (Schwarzschild with a cosmological
constant present). In [2] we calculated in detail the deflec-
tion angle of a photon passing through a Kottler condensa-
tion. We now compute analytic expressions for the time
delay caused by encountering such a deflector. We com-
pute the difference in arrival times �T0 of two light rays
emitted at the same time from two sources at equal comov-
ing distances from the observer. One ray is assumed to
travel entirely in FLRWand arrive at time T0 and the other
ray is assumed to encounter a deflector and arrive at the
observer at the later time �T0 ¼ T0 þ �T0 (see Fig. 1).
The Kottler metric [14] can be written as

ds2 ¼ ��ðrÞ�2c2dt2 þ �ðrÞ2dr2 þ r2ðd�2 þ sin2�d�2Þ;
(1)

where ��1ðrÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ðrÞp

,

�2ðrÞ ¼ rs
r
þ�r2

3
; (2)

and rs ¼ 2Gm=c2 is the Schwarzschild radius of the con-
densed mass. The flat FLRW metric for the background
cosmology can be written as

ds2 ¼ �c2dT2 þ RðTÞ2½d�2 þ �2ðd�2 þ sin2�d�2Þ�;
(3)

with its time development determined by

_R

R
¼ HðRÞ � H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� þ�m

�
R0

R

�
3

s
: (4)

To satisfy the junction conditions of GR the boundary of

*Bin.Chen-1@ou.edu
†kantowski@nhn.ou.edu
‡xdai@ou.edu

PHYSICAL REVIEW D 82, 043005 (2010)

1550-7998=2010=82(4)=043005(5) 043005-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.043005


the comoving sphere of dust removed [�b ¼ constant; T,
�, � ¼ arbitrary] is matched to an expanding sphere of
radial timelike geodesics [ðtbðTÞ; rbðTÞÞ with �, � arbi-
trary] in the Kottler vacuole by requiring

rs ¼ �m

H2
0

c2
ðR0�bÞ3; rbðTÞ ¼ RðTÞ�b: (5)

A consequence of Eq. (5) for flat FLRW is that the net dust
removed equals the condensed Schwarzschild mass.

A photon (see Fig. 1), traveling in a flat�CDM universe
starting from a source at time TS and comoving distance
�S0 from the observer, moves along a null geodesic of

Eq. (3) and arrives at time T0, where

�S0 ¼
Z T0

TS

cdT

RðTÞ ¼
Z R0

RS

cdR

R2H
: (6)

We want to compare this straight path travel time to the
time �T0 � TS it takes a photon to travel along a deflected
path from the source through a Kottler condensation and
then to the observer. If the entrance time into and exit time
from the Kottler hole are respectively T1 and T2, the
respective comoving distances in FLRW traveled by the
deflected photon before and after encountering the Kottler
hole are

�S1 ¼
Z R1

RS

cdR

R2H
; and �20 ¼

Z �R0

R2

cdR

R2H
; (7)

where R1 and R2 are the radii of the universe at entrance
and exit times, respectively. Combining these with Eq. (6)
we have an equation to solve for the difference in travel
timesZ �T0

T0

cdT

R
¼ �� � �S1 þ

Z R2

R1

cdR

R2H
þ �20 � �S0: (8)

�� is just the difference in the comoving distance the
deflected photon would have traveled if it went straight
in FLRW for the actual travel time �T0 � TS and the co-
moving distance from the source to the observer (a travel
time of T0 � TS if the deflector were not encountered). The
difference in comoving distances �� can be factored into
the sum of a geometrical part and a potential part, respec-
tively, ��g and ��p by adding and subtracting the sum of

two comoving distances �1B þ �B2 (see Fig. 1),

��g � �SB þ �B0 � �S0;

��p �
Z R2

R1

cdR

R2H
� ð�1B þ �B2Þ:

(9)

The path SB0 is that of an imaginary photon that starts
from the source S and travels to point 1, just as the
deflected photon does, but then continues on in FLRW
until it is reflected at point B by an angle � (same as the
Kottler deflection angle) and finally arrives at the observer
at T0 þ �Tg. The deflected photon, if traveling straight,

would go an additional comoving distance ��p and con-

sequently arrives an additional time �Tp later. ��p is the

difference in the comoving distance a photon would have
traveled in FLRW during the Kottler crossing time T2 � T1

minus the comoving distance the imaginary reflected pho-
ton did travel in crossing the unevacuated sphere. We
identify �Tg and �Tp as the geometrical and potential

parts of the time delay for purposes of comparison with
standard linear lensing delays [16]. A decomposition is not
unique but this one is useful and results in Eqs. (10) and
(14).
To proceed further we must relate comoving distances

�SB þ �B0 and �1B þ �B2 to known deflector-observer
and source-observer distances �D0 and �S0 as well as

FIG. 1. Swiss cheese gravitational lensing. Bottom: the spatial
comoving paths of three photons. The deflected photon leaves a
source S, enters a Kottler hole at point 1, exits at 2 at a deflected
angle �, and then proceeds to the observer at 0. A second photon
travels straight from the source to the observer as if the Kottler
condensation were absent. An imagined third photon also travels
as if the condensation were absent but is reflected at point B by
angle � before arriving at 0. The point B (the reflection point) is
the intersection of the forward and backward extensions of
respective FLRW rays S1 and 20 drawn as if the Kottler hole
were absent. �S1 and �20 are comoving distances, respectively,
from the source S to entrance point 1 and from exit point 2 to the
observer. �S0 and �D0 are comoving distances from the source
and deflector, respectively, to the observer. The comoving dis-
tances from source to reflection point B and from B to the
observer are, respectively, �SB � �S1 þ �1B and �B0 � �B2 þ
�20. The angular positions (as seen by the observer) of the image
and source relative to the optical axis are, respectively, �I and �S.
Top left: a blow up of the two triangles 1B2 and 1D2. The angles
~�1, �1, �, and�� are described below Eq. (11) and are the same
as those computed in [2]. Top right: a space time diagram
showing the difference in arrival times �Tg and �Tp of three

photons originating from source S at time TS and arriving at
observer 0. The upper photon encounters a Kottler condensation
at time T1, exits at T2, and then arrives at the observer at time
�T0 ¼ T0 þ�Tg þ�Tp. The lower photon arrives at T0 after

traveling on a straight line entirely in FLRW. The middle photon
arrives at time T0 þ�Tg after traveling on two straight segments

SB and B0 both entirely in FLRW but whose directions differ by
the angle �.
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evaluate the integral in Eq. (9). We can avoid computing
�SB and �B0 to all but the lowest order �SB � �S0 � �D0

and �B0 � �D0 by using the law of cosines on the triangle
SB0. To the accuracy we give �T0 it suffices to replace the
left hand side of Eq. (8) by c�T0=R0. The resulting geo-
metrical part of the time delay is

�Tg � R0

c
��g ¼ R0

c
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
S0 þ 4�SB�B0sin

2ð�=2Þ
q

��S0Þ

¼ R0

c

ð�S0 ��D0Þ�D0

2�S0

�2

�
1þOð�2Þ þO

�
�1

�b

�S0

�
2
�

� 2
ð1þ zDÞ

c

DSDDD0

DS0

�
rs
r0

�
2
cos6 ~�1

�
�
1þ 6 tan ~�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r20
3

þ rs
r0
sin3 ~�1

s �
; (10)

where the deflection angle � has been taken from Eq. (32)
of [2]. The minimum value of the Kottler coordinate r for
the photon’s orbit is r0 and occurs when � ¼ �=2, see
Eq. (1). The source-deflector-observer distances in Eq. (10)
are the usual angular diameter distances. For small impact

angles ~�1 this result reduces to the standard lensing result
given in Eq. (12) of [16]. For larger impact angles the

difference is significant, even vanishing when ~�1 ! �=2
as the photon grazes the Kottler void.

To evaluate the potential part of the time delay in Eq. (9)
we need to determine �1B þ �B2. If we apply the law of
sines and cosines to the triangles 1B2 and 1D2, respec-
tively, the result is

�1B þ �B2 ¼ 2�b cosð ~�1 þ��=2Þ
� cosð��=2� �1 � �=2Þ= cosð�=2Þ: (11)

The deflected photon’s trajectory angles in this expression
are shown in Fig. 1 and are the same as those used in [2].
They are defined as follows: In the plane of the deflected
photon (spherical polar angle � ¼ �=2) the incoming pho-
ton’s slope is tan�1, the photon impacts the Kottler void at

point 1 with azimuthal angle �� ~�1, the photon exits the
void at point 2 with slope tanð�1 þ �Þ and azimuthal angle
~�1 þ ��. By definition the angles �, �1, and �� are
negative. Equation (11) can be evaluated using values for
these angles given in [2] as series that depend on the
deflector’s mass, the cosmological constant, the photon’s
minimum Kottler radius r0, and the photon’s entrance

angle ~�1. We evaluate the integral in Eq. (9) by expanding
it as a series in �R ¼ R2 � R1 to order ð�RÞ4 using
Eq. (4), where �R is the change in the radius of the
universe that occurs while the photon traverses the
Kottler condensation. It is related to the change in the
Kottler coordinate of the boundary �r ¼ rbðT2Þ � rbðT1Þ
that occurs during the photon’s transit by Eq. (5), i.e.,

�R ¼ R1

r1
�r; (12)

where r1 � rbðT1Þ. The change �r is related to the change
in the azimuthal angle �� ¼ �2 � ~�1 by the orbit equa-
tion (11) of [2] and �� is given by Eq. (13) below. In
equation (13) of [2] we gave an expression for �� but not
to the accuracy needed to evaluate nonlinear corrections to
the time delay. Using the method described in [2] we
computed �� to the next higher order,

��¼�2�1 sin ~�1 þ
�
rs
r0

��
3cos ~�1sin

2 ~�1 ��1

�
2þ 7

3
sin2 ~�1 � 6sin4 ~�1 þ 2 log

�
cot

~�1

2

�
tan ~�1 sin ~�1

��

� 1

9
�1�r20 sin

~�1 þ
�
rs
r0

�
2
�
2 log

�
cot

~�1

2

�
sin ~�1ð4� 3sin2 ~�1Þtan2 ~�1 þ 1

6
ð36� 9sin ~�1 � 70sin2 ~�1

þ 9sin3 ~�1 � 59sin4 ~�1 þ 81sin6 ~�1Þ tan ~�1

�
þ rs

r0
�r20

�
2

3
log

�
cot

~�1

2

�
sec2 ~�1 � 2

9
sec ~�1ð1þ 14sin2 ~�1 � 12sin4 ~�1Þ

�

þOð�5
1Þ: (13)

In this expression �1, see Eq. (2), is the expansion velocity

of the Kottler boundary as seen by a static observer at the
instant the photon enters the void. When the above is

inserted into the integral in Eq. (9) and combined with
Eq. (11) the potential part of the time delay can be ap-
proximated by using � from equation (32) and �1 from

equation (18) of [2]. The result is

�Tp ¼ 2
ð1þ zdÞ

c
rs

�
log

�
cot

~�1

2

�
� cos ~�1

�
1þ 1

3
cos2 ~�1

�

þ cot ~�1cos
3 ~�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r20
3

þ rs
r0

sin3 ~�1

s

þO
�
�2

1 þ �1

�b

�d

��
: (14)
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Arriving at Eq. (14) also required converting the redshift z1
of the photon when just entering the Kottler void to the
slightly smaller redshift zd of a source located at the
deflector’s distance. To the accuracy needed here

ð1þ z1Þ ¼ ð1þ zdÞ½1þ �1 cos ~�1 þOð�2
1 þ �1�b=�dÞ�:

(15)

The result for �Tp in Eq. (14) can be compared with the
original linear result given in equation (17) of [16]. The
Swiss cheese result reproduces the original result when
~�1 � 0 (but � 0). The comparison requires two images
seen at small ~�1’s. The potential part of the time delay also
vanishes as it should when ~�1 ! �=2, i.e., when the
photon misses the Kottler hole. The most significant part
of the correction is to the linear term, and just as with the
geometrical term the cosmological constant only appears
as a part of the expansion velocity of the Kottler boundaries
[the square root terms in Eqs. (10) and (14) come from�1].

In Fig. 2 we illustrate the use of Eqs. (10) and (14) by
comparing conventional and Swiss cheese time delays for
two point mass lens systems with zd ¼ 0:5, zs ¼ 1:0 and
masses m ¼ 1012M� and 1015M�. The cosmological pa-
rameters used are �m ¼ 0:3, �� ¼ 0:7, and H0 ¼
70 km s�1 Mpc�1. We graph the fractional difference in
time delay between two images seen in Swiss cheese and
the time delay between two images caused by standard
Schwarzschild lensing as functions of source position �S.
For both lenses the abscissa �S varies from 0 to 2:5�E,
where �E is the classical Einstein ring radius. For the
1015M� case the total relative correction to the potential
part of the time delay is seen to be larger than 2% ranging
up to 4% at 2:5�E. The effect of � is to increase the

potential time delay by as much as 0.002%. The geomet-
rical part of the time delay differs from the conventional
Schwarzschild result by as much as 0.1% of which a
reduction by a factor of 3� 10�7 was caused by the �
terms in Eq. (10). For the 1012M� deflector we observe a
change in the potential part of the time delay of up to 0.4%.
The� term increases the potential part of the time delay by
as much as 2� 10�7. The geometrical part of the time
delay is different by as much as 4� 10�5 whereas �’s
effect is a reduction of no more than a factor of 3� 10�10.
For currently observed strong lensing by clusters the net

time delay corrections are only�0:2%. For example a pair
of images for a lens like SDSSJ1004þ 4112 [17] at red-
shifts zd ¼ 0:68, zs ¼ 1:73, a lens mass of M ¼
2:3� 1013M� (the estimated mass contained within the
Einstein ring), and a source position �s ¼ 0:15�E, pro-
duces a Schwarzschild time delay of �7:26 yrs with a
Swiss cheese increase of �4:9 days. Although time delays
measured from optical quasar light curves have measure-
ment uncertainties of a few days, in the X- ray band it is
possible to measure the time delay with uncertainties of
hours [18,19]. In addition, future wide field synoptic sur-
veys also expect to detect lensed supernovae or gamma-ray
bursts [20], where the time delays can even be more
accurately measured. As indicated by Fig. 2 for a lensing
configuration where 1015M� were contained inside the
Einstein ring a correction 10 times larger would result.
Exactly how important Swiss cheese lensing is for lens
modeling awaits additional theoretical work on the embed-
ding of more realistic distributed mass lenses.

Work on this project was partially supported by NSF
grant AST-0707704 and US DOE Grant DE-FG02-
07ER41517 and B. Chen wishes to thank the University
of Oklahoma Foundation.

FIG. 2. Fractional differences between Swiss cheese (�TSC) and conventional Schwarzschild (�TSch) time delays as functions of
source position �S in units of Einstein ring radius �E for a 1015M� (left) and a 1012M� (right) lens. �TSC and �TSch are the differences
in arrival times for two images seen around point masses, respectively, in a Swiss cheese universe (a Kottler void lens) and a
homogeneous FLRW universe (a superimposed Schwarzschild lens). The solid and dashed curves are the fractional time delay
differences in the potential and the geometrical parts, respectively. The dotted and dot-dashed curves are those parts of the fractional
differences due to the square root term (contains �) in Eqs. (14) and (10).
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