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I. INTRODUCTION

Because of deflections in the interstellar and intergalac-
tic magnetic fields (IGMF), the information about the
original directions of cosmic rays pointing to their produc-
tion sites is lost. On the other hand, the isotropic flux of
cosmic rays is contributed, most likely, by a large number
of galactic and extragalactic sources. These objects repre-
sent different source populations characterized by essen-
tially different physical parameters—age, distance, energy
budget, etc., as well as by different particle acceleration
scenarios. This makes extremely difficult the identification
of sources of cosmic rays based on the chemical composi-
tion and energy spectra of particles—two measurables
characterizing the ‘‘soup’’ (isotropic flux of cosmic rays)
cooked over cosmological time scales. Fortunately, at ex-
tremely high energies, E� 1020 eV, the impact of galactic
and extragalactic magnetic fields on the propagation of
cosmic rays becomes less dramatic, which might result in
large and small scale anisotropies of cosmic ray fluxes.
Thus, depending on the strength and structure of the
(highly unknown) IGMF, the highest energy domain of
cosmic rays may offer us a new astronomical disci-
pline—‘‘cosmic ray astronomy.’’ The extension of studies
to energies 1020 eV and beyond enhances the chances of
localization of particle accelerators for two reasons. With
an increase of particle energy, the probability that a proton
would penetrate through the intergalactic medium (IGM)
without significant deflections in chaotic magnetic fields
increases. Note that for IGMF much weaker than 10�9 G,
the deflection angle can be quite small also for lower
energy protons (� / B=E). However, at energies signifi-
cantly below 1020 eV, the deflection in galactic magnetic
fields becomes the dominant factor leading to the lost of
information about the original directions of particles (see,
e.g., Ref. [1]).

In the context of prospects of realization of ‘‘cosmic ray
astronomy,’’ there is a second independent factor which
gives strong preference to energies 1020 eV. Particles of
such high energies can arrive only from relatively nearby
accelerators located within 100 Mpc (see, e.g., [2]). This
dramatically (by orders of magnitude) decreases the num-
ber of relevant sources of � 1020 eV protons contributing
to the observed cosmic ray flux, and correspondingly re-
duces the level of the diffuse background, i.e. the (quasi)
isotropic flux as a superposition of contributions by unre-
solved discrete sources. Formally, one cannot a priori ex-
clude the possibility that the 1020 eV cosmic rays are
contributed by a large number of weak sources which
cannot be detected individually. Alternatively, the entire
cosmic ray flux at such high energies can be dominated by
contributions from a few sources, especially given the
tough requirements to the 1020 eV proton accelerators
[3]. This excludes, in particular, objects like ordinary
galaxies, unless the galaxies provide highest energy cosmic
rays through transient events related to compact objects
like gamma ray bursts (GRB) [4].
The propagation of cosmic rays in IGMF has been

discussed in a number of recent works (see, e.g.,
Refs. [5–8]). In these studies different magnetized environ-
ments have been assumed and different methods dealing
with particle transport have be applied. Consequently, their
conclusions are quite different, the principal reason being
the different assumptions and approaches in the modeling
of the IGMF. The main purpose of our work is to study the
features related to the transport of particles, therefore we
assume, following Ref. [7], purely turbulent and homoge-
neous IGMF. We limit our treatment by only the proton
component of cosmic rays, and associated with it the
secondary gamma rays and neutrinos. This not only makes
the calculations simple and more transparent (as long as it
concerns the pure transport effects), but also seems to be a
feasible realization for the large scale structure of IGMF.
Whether we may identify the accelerators of extragalac-

tic cosmic rays using the highest energy protons is a
question which largely depends on the strength of the large
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scale IGMF. Even for the most favorable conditions for
realization of the ‘‘proton astronomy,’’ the latter will be
relevant to the nearby Universe, the accessible sources
being limited within a sphere of radius 100 Mpc. A differ-
ent approach for localization of acceleration cites of
1020 eV protons can be provided by observations of
gamma rays and neutrinos produced at interactions of these
energetic particles with the 2.7 K CMBR photons and
magnetic fields in the proximity of the source, namely,
within a region of a size of order of 10 Mpc—sufficiently
large for effective interaction of protons with 2.7 K photons
through the photomeson process and, at the same time, still
small for a significant deflection of protons from their
original directions. All short-lived particles of these inter-
actions, as well as the products of their decays (gamma
rays, neutrinos, and electrons) are produced at small angles
relative to the initial directions of parent protons. In an
magnetized environment with B � 10�9 G the electrons
with typical energy exceeding 1019 eV are predominantly
cooled via synchrotron radiation with production of high
energy gamma rays. The electrons emit synchrotron pho-
tons very quickly, before any significant change of their
direction in the surrounding chaotic magnetic field. Thus
the synchrotron photons will move essentially in the initial
direction of the parent protons. Since the protons, after they
escape their production site (accelerator), move radially,
the observer will see an apparent compact (quasi-pointlike)
gamma-ray source [9,10], even though gamma rays are
produced in an extended region with angular size of order
of �d=r� 5ðr=100 MpcÞ�1 deg . Note that the same is
true if protons escape the source anisotropically, but are
moving within a narrow angular cone towards the observer.
Otherwise, the observer will miss the source.

The favorable range of IGMF for realization of this
scenario is 10�9–10�7 G. In a stronger magnetic field,
deflections of protons are significant even at the first sev-
eral Mpc scales. Thus, because of the small interaction
depth of undeviated protons, the pointlike source becomes
very weak.

On the other hand, for IGMF much weaker than 10�9 G
electrons are cooled predominantly via inverse Compton
scattering, thus the efficiency of synchrotron radiation
drops dramatically. This scenario, which involves a pair
cascade in the 2.7 CMBR and extragalactic background
radiation (EBL), also leads to high energy gamma rays.
However, unless the field is much weaker than 10�12 G,
the cascade electrons of relatively low (TeV) energies are
thermalized, thus the cascade leads to the formation of
giant halos [11] and in this way contributes to the diffuse
extragalactic gamma-ray background radiation (see, e.g.,
Ref. [12]) rather than to the formation of a discrete gamma-
ray source (for a discussion of different regimes of for-
mation of cascades initiated by interactions of highest
energy protons with 2.7 K CMBR, and their detectability
from the direction of the cosmic ray source see Ref. [13]).

The detection of the cascade component as a pointlike or a
slightly extended source of gamma rays initiated by inter-
actions of ultrahigh energy protons (after they escape the
accelerator) with 2.7 K CMBR is possible in the case of
extremely small IGMF, B � 10�15 G (see, e.g., Ref. [14]).
The energy spectrum and flux of synchrotron radiation

of secondary electrons from photomeson interactions of
protons with 2.7 K CMBR have been studied in Ref. [10].
The calculations have been limited by the first 10 Mpc
range of propagation of protons, assuming that at this stage
protons propagate radially without significant deviations,
and the secondary electrons move along the same direction
before they emit synchrotron photons. While this approxi-
mation gives a correct estimate of the flux, it does not
specify the angle within which the radiation is confined.
This approach ignores also the non-negligible tails of
distribution of synchrotron radiation formed at the later
stages of propagation and interactions of protons.
In the case of quasicontinuous operation of an extraga-

lactic accelerator of protons over time scales exceeding the
typical delay time due to the deflection in the magnetic
field, the energy and angular distributions of protons, as
well as accompanying photons and electrons, can be accu-
rately described by the steady-state solutions of the trans-
port equations. Generally, this is the case of a continuous
proton accelerator of age T � 106 yr. In the case of shorter
activity of the source (an ‘‘impulsive accelerator’’) or
solitary events like GRB, relatively simple analytical so-
lutions of the arrival time distributions of protons, gamma
rays, and neutrinos can be obtained within an approxima-
tion when the energy losses of protons are ignored. We
consider the cases of ‘‘continuous’’ and ‘‘impulsive’’ pro-
ton accelerations in Secs. II and IV, respectively.

II. STEADY STATE DISTRIBUTION FUNCTIONS

The realization of the small-angle multiple scattering
considerably simplifies the description of propagation of
protons through a scattering medium. In particular, in the

small-angle approximation the term v @f
@r of the Boltzmann

transport equation can be presented in a form allowing
analytical derivation of the steady state solution. Because
of the smallness of the single scattering angle, one can
write the elastic collision integral in the Fokker-Planck
approximation. To expand the distribution function into
series in terms of the single scattering angle one should
have a smooth function of this angle. This condition is
satisfied if one neglects the unscattered part of the distri-
bution function that has very sharp angle dependency. Such
an approximation is justified in the case of multiple
scattering.
The approach provides solutions that can be applied to

the various cases which, independent of the details of the
scattering medium, are characterized only by the average
scattering angle per unit length h�2si. The scattering process
depends on the particle energy, i.e. h�2si is a function of
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energy. During the propagation through the medium be-
tween two scattering centers, the energy of particles is
gradually decreased due to different dissipative processes.
If the change of energy in each action of interaction is
considerably smaller than the initial energy, one can use
the continuous energy approximation. It should be noted
that in the approach described here, the processes respon-
sible for the scattering and the energy loss of particles are
not required to be the same. The particle scattering could
have elastic character and do not cause energy losses. On
the other hand, the effect of deflection of particles from
their original direction due to the processes responsible for
energy losses might be negligibly small. This is the case of
the problem considered below. One can safely ignore the
change of the direction of primary particles as well as the
production angles (�� 1=�) of the secondary products
(gamma rays, electrons, neutrinos) due to all relevant
processes including photomeson and pair production, in-
verse Compton scattering, synchrotron radiation.

The aim of this section is to derive distribution functions
for protons and accompanying them secondary particles
propagating through the galactic and extragalactic mag-
netic fields for a spherically symmetric point source of
protons. However, it is technically more convenient to
consider first a source emitting protons in a given (fixed)
direction. In this case we have a preferential direction
along the infinitely narrow beam emitted by the source.
Let us choose the z-axis along this direction. Because of
the scattering, particles deviate from the initial course. To
define the deviation we introduce angles �x and �y between

the direction of propagation n and the coordinate planes
YOZ and XOZ, respectively. If n is close to the z-axis, the
angles �x and �y are small and can be treated as compo-

nents of two-dimensional vector � in the XOY plane,
where the absolute value of � corresponds to the deflection

angle between n and the z-axis. Then we can write n �
ð�x; �y; 1� �2

2 Þ ¼ ð�; 1� �2

2 Þ.
The retention of the second-order term �2=2 in the

expansion of nz allows us to take into account the effects
relating to the elongation of the path like delay time, but
does not give any considerable contribution to steady-state
solution. Therefore, we divide the problem into two sub-
problems. In the first part of the paper, we solve the steady-
state equation that takes into account the energy losses but
ignores the elongation of particle trajectories. The results
of these calculations are relevant to the continuous source
of protons and describe the energy and angular distribu-
tions of protons and accompanying neutrinos and synchro-
tron radiation of secondary electrons produced during the
propagation of protons. In the second part of the paper, we
calculate the distributions of arrival times of protons, neu-
trinos and gamma rays in the case of an impulsive source.
In this case the arrival time delays directly depend on the
elongation of trajectory. The time-dependent solutions for
distribution functions presented in Sec. IV are limited by

the approximation in which the energy losses of protons
are neglected.
Thus, to derive the steady-state solution of the transport

equation we assume n � ð�x; �y; 1Þ ¼ ð�; 1Þ. Let us denote
by � ¼ ðx; yÞ the perpendicular displacement in the plane
XOY. For a point source characterized by a monoenergetic
and infinitely narrow beam of protons emitted along the
z-axis we obtain the equation for Green functionGðr;�; EÞ
of the Boltzmann steady-state transport equation in the
approximations of a small-angle multiple scattering and
continuous energy losses:�

@

@z
þ �

@

@�
� h�2si

4

@2

@�2
� @

@E
��

�
Gðr;�; E; E0Þ

¼ 1

c
�ðzÞ�ð�Þ�ð�Þ�ðE� E0Þ: (1)

Here we take into account that the particles are ultrarela-
tivistic jvj ¼ c. The solution of Eq. (1) is obtained in
Ref. [15] for the propagation of charged particles passing
through a layer of matter. The features of this solution are
comprehensively discussed in Ref. [16]. Using the nota-
tions introduced in Ref. [16], the Green function can be
written in the form:

Gðr;�; E; E0Þ ¼ �ðSðE; E0Þ � zÞ
c ��ðEÞ�2�

� exp

�
�A1�

2 � 2A2��þ A3�
2

�

�
; (2)

where S is the traveled distance that is uniquely related to
the energy loss rate ��ðEÞ ¼ jdE=dzj:

SðE; E0Þ ¼
Z E0

E

dE0

��ðE0Þ ; (3)

and

� ¼ A1A3 � A2
2: (4)

The �-function in Eq. (2) points to the fact that we neglect
the elongation of trajectory so the traveled distance is equal
to z as if particles propagate strictly along z-axis. Taking
the relation between energy and z into account, Ai can be
written in the following form:

AiðE0; zÞ ¼
Z z

0
h�2siðz0Þðz� z0Þi�1dz0: (5)

It is easy to recognize the physical meanings of the
coefficients A1, A2, and A3; A1 is the mean square deflec-
tion angle, A3 is the mean square displacement, and A2 is
the mean value of �� at the distance z:

A1 ¼ h�2iz; A2 ¼ h��iz; A3 ¼ h�2iz: (6)

For the treatment of the case of spherically symmetric
point source of protons, let us rewrite the Green function in
the form which is independent of choice of the coordinate
system. After the replacements
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� ! n� n0; � ! r� rn0; z ! r; (7)

where n0 is the direction of the emission, n is the direction of particle motion at the point r, we find

Gðr;n;n0; E; E0Þ ¼ �ðSðE; E0Þ � rÞ
c ��ðEÞ�2�

exp

�
�A1ðr� rn0Þ2 � 2A2ðr� rn0Þðn� n0Þ þ A3ðn� n0Þ2

�

�
: (8)

Performing integration over all directions of the vector n0

by the saddle point method (see Appendix A), we find

Gsphðr; �; E; E0Þ ¼ �ðSðE;E0Þ � rÞ
c ��ðEÞr2�D exp

�
� �2

D

�
; (9)

where

D ¼ A1 � 2
A2

r
þ A3

r2
: (10)

Since we have spherically symmetric distribution, the
Green function depends only on the distance r from the
source and � which is the angle between the radius-vector
from the source to the observation point and the movement
direction at this point.

We assume that the spherically symmetric source injects
protons into the IGM with a constant rate:

Qpðr; EÞ ¼ cJpðEÞ�ðrÞ: (11)

The substitution of this expression into

fðr; �; EÞ ¼
Z

Qðr0; E0ÞGsphðr� r0; �; E; E0Þdr0dE0

(12)

gives

fpðr;�;EÞ¼ 1

��ðEÞ
Z 1

E

JpðE0Þ
�r2D

exp

�
��2

D

�
�ðSðE;E0Þ�rÞdE0;

(13)

where D can be written as

DðE0; rÞ ¼ 1

r2

Z r

0
h�2siðr0Þr02dr0: (14)

For the given energy and spatial distribution of protons
we can calculate the number of secondary particles from
the decays of �-mesons that are produced at interactions
between protons and 2.7 K CMBR photons. To obtain the
energy distributions of the secondary products—photons,
electrons, and neutrinos, we use the approximation pro-
posed in Ref. [17]. The energy of protons is ultrarelativistic
so we can assume that secondary particles initially move in
the same direction as protons. The distribution of second
particles can be presented in the form

Qðr; �; EÞ ¼ Q̂ðfpðr; �; EpÞÞ (15)

where Q̂ denotes an integral operator. For example, for the
energy distribution of protons JpðEÞ, the energy distribu-

tion of photons produced in photomeson interactions is

Q�ðE�Þ ¼ Q̂�ðJpðEpÞÞ; (16)

where

Q̂ �ðJpðEpÞÞ ¼
Z

JpðEpÞfphð�ÞwðE�; Ep; �ÞdEpd�:

(17)

Here fph is the distribution function of CMBR photons, w

is the differential interaction rate of the p� interactions,
namely, the Bethe-Heitler pair production or photomeson
production (see Ref. [17]). Since we are interested in the
distribution of ultrarelativistic electrons that weakly devi-
ate in the magnetic field, we can apply the Green function
given by Eq. (8) to the source function given by Eq. (15).

Note that Q̂ acts only on variable Ep, therefore we can

change the order of integration. Tedious calculations (see
Appendix B) yield:

feðr; �; EeÞ ¼ 1

c ��eðEeÞ
Z 1

Ee

dEe0Q̂e

�
1

��pðEpÞ
Z 1

Ep

dEp0

� JpðEp0Þ
r2

expð� �2

DeþDp
Þ

�ðDe þDpÞ �ðS� rÞ
�
: (18)

Here S is sum of the distances traveled by proton to the
point of interaction with CMRB and traveled by electron
from the point of production to the point r:

S ¼ SpðEp; Ep0Þ þ SeðEe; Ee0Þ: (19)

The angular distribution of electrons in Eq. (18) is charac-
terized by

De ¼ Ae1 � 2
Ae2

r
þ Ae3

r2
; (20)

where Aei ¼ AeiðEe; Ee0Þ have the same meaning as in
Eq. (5), and

Dp ¼ 1

r2

Z r0

0
h�2sir02dr0; (21)

where r0 ¼ SpðEp; Ep0Þ.
The main channel of production of gamma rays by HE

electrons is synchrotron radiation. Applying the modified
Eq. (D1) for the spectrum of synchrotron radiation in
chaotic magnetic field to the distribution of electrons given
by Eq. (18), we find the angular and spatial distributions of
gamma ray. Let us describe the procedure as in Eq. (15) by

Qsðr; �; E�Þ ¼ Q̂sðfeðr; �; EeÞÞ: (22)

In the general case the distribution function of gamma rays
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that are characterized by the source functionQðr;n; EÞ and
propagate through the absorbing medium with extinction
coefficient kðEÞ, is

f�ðr;n; EÞ ¼ 1

c

Z 1

0
Qðr� n�;n; EÞe�k�d�; (23)

where n is the direction of movement at the point r that
coincides with the direction of emitting as the propagation
of gamma rays is rectilinear. Since emitting electrons have
ultrarelativistic energy, we assume that the direction of
radiation coincide with the electron direction, therefore
the distribution function of synchrotron gamma rays for
the distribution of electrons given by Eq. (18) is

f�ðr; �; E�Þ ¼ 1

c

Z 1

0
Q̂sðfeðjr� n�j; �i; EeÞÞe�kðE�Þ�d�;

(24)

where �i is the angle between n and r� n�, and � is the
angle between n and r. It is convenient to perform the
integration over � using the delta function in Eq. (18). For
that we should change the order of integration so the
integration over � becomes internal. Using the features of
the delta function we find

�ðjr� n�j � SÞ
jr� n�j2 ¼ 1

Sr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSrÞ2 � sin2�

q X2
i¼1

�ð�� �iÞ;

(25)

where �1;2 ¼ rðcos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSrÞ2 � sin2�

q
Þ. Since the term cor-

responding to �2 does not contribute to large angles �i in
exponent [see Eq. (18)] we keep only the term correspond-
ing to �1. After performing relevant calculations we obtain:

f�ðr; �; E�Þ ¼ Q̂s

�
1

c2 ��eðEeÞ
Z 1

Ee

dEe0Q̂e

�
1

��pðEpÞ

�
Z 1

Ep

dEp0
~fp�

�
1� S

r

�
�

�
S

r
� sin�

���
;

(26)

where

~f p ¼ JpðEp0Þ
S
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSrÞ2 � sin2�

q expð� �2
1

DeþD0
p
Þ

�r2ðDe þD0
pÞ
e�kðE�Þ�1 ; (27)

� is the Heaviside function. The angle between n and r�
n� is

�1 ¼ arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS=rÞ2 � sin2�
p

S=r

�
: (28)

III. THE SPECTRAL AND ANGULAR
DISTRIBUTIONS OF PROTONS, PHOTONS, AND

NEUTRINOS

A. Protons

Transport of protons substantially depends on the spatial
distribution of magnetic fields. The assumption of chaoti-
cally oriented magnetic cells is usually used for estimates
of the influence of IGMF on cosmic-ray propagation (see,
e.g., Ref. [18]). The spectral analysis of the correlation
function of the magnetic field fluctuations [19] provides a
more appropriate and accurate treatment of the problem.
We use this approach for derivation of the mean square
deflection angle.
UHE protons propagate large distances in IGMFwithout

considerable deflections. Indeed, the evaluation of the de-
flection angle �� ’ �=rg on the correlation length � is

�� ’ 9� 10�3

�
�

1 Mpc

��
B

10�9 G

��
1020 eV

E

�
rad; (29)

where rg ¼ E=eB is the gyroradius of the ultrarelativistic

particle. Therefore, change of direction of ultrahigh energy
protons is small on the scale � ’ 1 Mpc. The proton energy
can be assumed constant for this scale. Then the proton
motion in the magnetic field is described by the equation

_v ¼ ec

E
½v�BðrÞ�: (30)

For ultrarelativistic particles v ¼ cn, where n is a unit
vector. Rewriting the change in velocity over the time�t in
the form �v ¼ c�, we find

� ¼
Z tþ�t

t

ec

E
½n� BðrðtÞÞ�dt: (31)

Since the deflection angle is small, the trajectory of particle
can be considered rectilinear in integration.
Now one should make an assumption about the statisti-

cal properties of the magnetic fields. Here we assume that
IGMF is a statistically isotropic and homogeneous. While
h�i ¼ 0 (since in this case hBi ¼ 0), the mean square
deflection is

h�2i ¼
�
ec

E

�
2 Z h½n�B1�½n�B2�idt1dt2

¼
�
e

E

�
2ð�	
 � n	n	Þ

Z
hB1	B2
idz1dz2; (32)

where B1;2 ¼ Bðrðt1;2ÞÞ. Here we switch to integration

over coordinates of particle, directing the z-axis along n.
Equation (32) includes the correlation function of the

magnetic field

K	
ðr1 � r2Þ 	 hB	ðr1ÞB
ðr2Þi: (33)

It depends only on the difference ðr1 � r2Þ because we
assume statistical homogeneity of the magnetic field. The
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mean square of magnetic field is determined as hB2i ¼
K		ð0Þ ¼ const.

To turn to the spectral description,K	
 should bewritten

as a Fourier integral:

K	
ðr1 � r2Þ ¼
Z

~K	
ðkÞeikðr1�r2Þ d3k

ð2�Þ3 : (34)

Since divB ¼ 0, then K	
 should satisfy the conditions

@K	
=@x1	 ¼ 0; @K	
=@x2
 ¼ 0: (35)

For function ~K	
 these conditions take on form ~K	
k	 ¼
0, ~K	
k
 ¼ 0. Therefore, if there is no preferential direc-

tion in space, ~K	
 has the following structure:

~K 	
ðkÞ ¼ 1

2

�
�	
 � k	k


k2

�
�ðk2ÞhB2i: (36)

Here constant factor hB2i is introduced such that �ðk2Þ
meets the normalization condition:

Z
�ðk2Þ d3k

ð2�Þ3 ¼
1

2�2

Z 1

0
�ðk2Þk2dk ¼ 1: (37)

It is convenient to change variables z1 ¼ zþ �=2, z2 ¼
z� �=2 in the integral in Eq. (32). Assuming that the
traveled distance �z is much greater than a characteristic
scale on which the correlation function tends to zero, one
can extend the limits of integration over � to infinity.
Meanwhile, the traveled distance should be smaller than
the distance on which the proton loses its energy appreci-
ably. The integrand depends only on � , therefore the in-
tegration over dz gives the length of integration interval
�z. The mean square deflection angle is proportional to the
traveled distance, so the mean square deflection per unit
length is

h�2si ¼
�
e

E

�
2ð�	
 � n	n
Þ

Z 1

�1
K	
ð0; 0; �Þd�: (38)

Integration of K	
 written in the form of Eq. (34) over

d� gives 2��ðkzÞ that allows us to calculate the integral
over dkz. Then, the integral remains over the components
of k perpendicular to z-axis. Using Eq. (36), we obtain

h�2si ¼ 1

2

�
e

E

�
2hB2i

Z d2k?
ð2�Þ2 �ðk2?Þ: (39)

The derived result can be written in the form

h�2si ¼ �

2

�
e

E

�
2hB2i�; (40)

where

� ¼
Z d3k

ð2�Þ3
1

k
�ðk2Þ ¼ 1

2�2

Z 1

0
�ðk2Þkdk: (41)

Taking into account Eq. (37), the factor� can be treated as
the mean value of k�1, � ¼ hk�1i.

The calculation of h�2si requires the spectral energy
distribution of magnetic field. To obtain final form of
h�2si we assume a power-law spectrum

�ðk2Þk2 �

8>>><
>>>:
�
k0
k

�
	
; k > k0�

k
k0

�


; k < k0

(42)

where k0 is an absolute value of the wave vector corre-
sponding to the maximal scale of correlation �: k0 ¼
2�=�. It gives

h�2si ¼ ð	� 1Þð
þ 1Þ
4	


�
e

E

�
2hB2i�: (43)

Taking into account the turbulent character of IGMF that
has hBi ¼ 0, we take 	 ¼ 5=3 which corresponds to the
Kolmogorov turbulence. The choice of the parameter 
 is,
to a certain extent, arbitrary. Here we assume 
 ¼ 1which
leads to a simple expression for the mean square deflection
angle per unit length:

h�2si ¼ �

5

�
e

E

�
2hB2i: (44)

Because of uncertainties related to the spectrum of IGMF,
the numerical factor in Eq. (44) is somewhat different from
the coefficients used in other papers (see, e.g., Ref. [18]).
Significant uncertainty in calculations of h�2si is related

to the absolute value of the correlation length �. It is
expected to be between 100 kpc and 1 Mpc, i.e. compa-
rable to the characteristic distances between galaxies. In
the subsequent calculations we normalize the correlation
length to � ¼ 1 Mpc, but the presented results can be
easily recalculated for any �.
Since the propagation of protons in IGMF can be treated

as a set of large number of small chaotic deflections, the
problem can be reduced to the diffusion in angle. The
diffusion coefficient Dðr; E0Þ given by Eq. (14) contains
information about the energy loss and influence of IGMF
on propagation, and gives angular distribution of protons at
the given point. Since there is a unique correspondence
between the energy and r [see Eq. (9)] we can rewrite
Eq. (14) in terms of energy and energy losses per unit
length. Substituting Eq. (44) into Eq. (14), we obtain

DðE; E0Þ ¼ �

r2

Z E0

E

1

E02

�Z E0

E0

dE00

��ðE00Þ
�
2 dE0

��ðE0Þ ; (45)

where

r ¼
Z E0

E

dE0

��ðE0Þ ; � ¼ e2�

5
hB2i: (46)

The function E= ��ðEÞ based on results of Ref. [17] and
implying the mean free path of protons in the IGM due
to the Bethe-Heitler pair production and photomeson pro-
cesses at interactions with CMBR, is shown in Fig. 1. The
results of these calculations are in a good agreement with
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[20], except for the region above 1021 eV where the dis-
crepancy is approximately 20%. The reason for the differ-
ence is presumably due to the slightly different cross
sections used in Refs. [20,21].1 Note that for many scenar-
ios described by Eq. (1) the same process is responsible for
both the angular scattering and the energy losses. But in the
case of propagation of protons in the IGMwe deal with two
different processes: while the interactions with CMBR lead
to energy losses, the angular deflections are caused by
multiple scattering on magnetic inhomogeneities.

The influence of energy losses on the angular distribu-
tion of protons can be traced in Fig. 2, where mean de-
flection angle of protons with observed energies Ef is

shown as function of traveled distance r. As it is seen
from Fig. 1, protons with energy smaller than E ¼ 6�
1019 eV do not suffer noticeable energy losses over the
distances �100 Mpc. In this case the diffusion in angular
space can be treated as a homogeneous random walk that
brings us to the dependence of the mean deflection angle

on the travel distance / r1=2. For protons with initial
energy higher than the threshold of photomeson produc-
tion, the energy of protons gradually decreases which leads
to deviation from this simple dependence. In particular, for
the given observed (final) energy Ef, this effect implies

higher original energies, and consequently smaller deflec-
tion angles at the initial parts of propagation. This results in
a weaker increase of the mean deflection angle with the
traveled distance in comparison with loss-free case. This
effect is clearly seen from analytical expressions, which is
possible to obtain in the case of constant energy loss rate

j dEdz j 1E ¼ b ¼ const:

h�2i � r

E2
f

�
�2 � 2� þ 2ð1� e�� Þ

�3

�
j�¼2br

: (47)

Expanding this expression into series in terms of powers of
r we obtain:

h�2i � 1

E2
f

�
r

3
� br2

6
þ 
 
 


�
: (48)

The first term does not depend on the value of b and
thereby describes the loss-free propagation. The next
term takes into account the energy losses and makes the
dependence on the distance r weaker. While Eq. (47)
approximately describes the behavior of mean deflection
angle for the final energy Ef � 1021 eV, the first term of

Eq. (48) describes the case of Ef � 6� 1019 eV. In Fig. 2

the mean deflection angle of protons is given for IGMF
B ¼ 1 nG. Since the dependence of the average deflection
angle on the magnetic field is linear, it is easy to produce
plots for other magnetic fields.
In order to indicate the evolution of the energy of pro-

tons during their propagation through the 2.7 K CMBR, in
Fig. 2 we indicate at the corresponding curves, calculated
for the fixed observed (final) energies of protons, the en-
ergies which protons had at different distances from the
observer. For the fixed observed energies exceeding the
threshold of photomeson production, the calculated initial
energies grow dramatically with the increase of the dis-
tance, especially for � 100 Mpc. Therefore, any deficit of
protons of such high energies in the initial spectrum would
results in the cutoff in the observed spectrum at the corre-
sponding energies.
The energy distributions of protons at distances 100Mpc

and 300 Mpc are shown in Fig. 3 for the initial differential
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FIG. 2. The mean deflection angle of protons for the fixed
observed energy Ef over the distance r. The numbers at the

curves indicate the energies which proton had at the distance r
from the observer.
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FIG. 1. The mean free path of protons in the IGM due to
interactions with photons of CMBR.

1Note that in Ref. [17], the photoproduction cross sections
from the SOPHIA code [21] have been used for calculations of the
differential and integral characteristics of p� interactions.
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energy spectrum JpðEÞ ¼ J0E
�2 expð�E=E0Þ. The total

luminosity of the source in CRs with energy above
109 eV is taken L ¼ 1044 erg=s. The upper dashed lines
correspond to the case when protons propagate in empty
space; flux is determined by the geometrical factor 1=r2.
Solid line presents the case when the deflections in the
magnetic field are ignored. Comparison of these two
curves reveals two features: a bump and a sagging at lower
energies. Both features become more prominent with in-
creasing of the distance. The bump preceding the cutoff
appears due to strong growth of energy losses at the
threshold of photomeson production (see Fig. 1) that
makes particles to be accumulated in this energy region;
the sagging is a consequence of the energy losses due to the
electron-positron pair production.

The approximation of continuous energy losses takes
into consideration the mean energy losses. In general it
provides an acceptable accuracy but some features con-
nected with stochastic properties of interactions should be
taken into account for precise description of the spectrum
in the cutoff region. The fluctuations in the energy losses
do have an impact on the form of the bump and the cutoff in
the observed spectrum of protons. It results, in particular,
in a smoother cutoff and a broader and lower-amplitude
bump [20,22] compared to the results calculated within the
continuous energy losses approximation.

The bump characterizes the energy spectra of protons
from discrete sources; in the case of diffuse spectra the
bump disappears (see e.g. Ref. [20]). Note that the diffuse
spectrum can be formed not only in the case of superposi-
tion of contributions from sources distributed in space, but
also in the scenario of a single source when the IGMF are
strong enough to fully izotropized the flux of protons. On
the other hand, in the case of moderate intergalactic mag-
netic fields (B� 10�9–10�7 G) and a certain distance to
the source, when the protons are deflected selectively,

depending on their energy, one should expect a much
more prominent maximum at highest energies compared
to the ‘‘photoproduction energy loss bump.’’ Indeed, the
scattering in the magnetic field leads to strong dependence
of the energy distribution on the solid angle within which
the particles are detected. Consequently, the flux of protons
at highest energies is concentrated along the direction to
the source. This is demonstrated in Fig. 3.

B. Electrons

The secondary gamma rays and neutrinos are tracers of
propagation of protons in the IGM. The first generation
gamma rays from photomeson processes are produced at
extremely high energies E � 1019 eV. They are effectively
absorbed due to interactions with the photons of CMBR
and the cosmic radio background (CRB) over distance
�1 Mpc. Because of the threshold effects, at energies
below 1014 eV the efficiency of interactions with CMBR
dramatically drops, but gamma rays continue to interact
with the infrared and optical photons of the EBL. At these
energies the mean three path of gamma rays increases
sharply achieving, �100 Mpc at E� � 10 TeV, and

�1 Gpc at E � 200 GeV (see, e.g., Ref. [23]). Thus, as
long as we are interested in gamma rays from the sources
of highest energy cosmic rays, the energy of gamma rays
should not significantly exceed 1 TeV. In this energy band
gamma rays are produced through the electromagnetic
cascade initiated by the products of decays of short-lived
mesons from the photomeson interactions and, partly, by
electrons from the Bethe-Heitler pair-production process.
For the development of an effective cascade the magnetic
field should be smaller than 10�10 G. Even so, the observer
can see the cascade gamma rays in the direction of the
source only in the case of extremely small IGMF, B �
10�15 G. A collimated beam of gamma rays of GeV–TeV
energies is expected in the case of magnetized IGM with
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FIG. 3. Energy flux distribution of protons observed within different angles for the source at the distance r ¼ 100 Mpc (left panel)
and r ¼ 300 Mpc (right panel). The initial spectrum of protons is assumed power-law with an exponential cutoff at E0 ¼ 3� 1020 eV,
the IGMF is 1 nG.
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B � 10�9 G. These gamma rays are produced through the
synchrotron radiation of E � 1019 eV electrons.

Because of very large Lorentz factor of particles, we can
assume that secondary products from all interactions under
consideration propagate strictly in the direction of the
parent particle. Therefore observed angular distribution
of gamma rays depends on the influence of IGMF on
electrons that produce these gamma rays. To observe the
UHECR source in gamma rays it is necessary that produc-
ing electrons are only slightly deflected in IGMF.

The almost rectilinear part of the path of electrons is
much smaller than distances traveled by protons and is
comparable to the typical correlation length, � ’ 1 Mpc.
So the scattering of electrons takes place in an almost
homogeneous magnetic field. But since the direction of
magnetic field has a random character, the scattering oc-
curs in random directions. In the case of electrons, one can
apply the formalism of the multiple scattering to the ran-
dom single scattering. Indeed, as has been noted the dis-
tribution function should be a smooth function of angle to
write the elastic collision integral in the Fokker-Planck
approximation. If all particles are scattered, as in the case
of electrons, the distribution function does not include a
part with sharp angular distribution corresponding to non-
scattered particles.

To obtain the mean square deflection angle per unit
length, we introduce a new parameter, namely, the electron
deflection angle resulting from the propagation while the
electron energy is reduced from the initial value of E0 to E:

� ¼
Z E0

E

1

��erg
dE00; (49)

where ��e is rate of energy losses due to synchrotron radia-
tion and rg is gyroradius. Taking into account random field

orientations we find

h�2si ¼ 3

2

ðmc2Þ4
e2E

�
1

E
� 1

E0

��
1

E
þ 2

3

1

E0

�
: (50)

After substituting this equation into Eq. (5) we find the
coefficients Aei of the diffusion coefficient De in simple
analytical forms:

A1 ¼ 5	


180

1

E4
ð7�2 þ 14�þ 9Þð1� �Þ2; (51)

A2 ¼ 	
2

180

1

E5
ð19�2 þ 22�þ 9Þð1� �Þ3; (52)

A3 ¼ 	
3

180

1

E6
ð12�2 þ 10�þ 3Þð1� �Þ4; (53)

where

	 ¼ 6

5

ðmc2Þ4
e2

; 
 ¼ 9

4

ðmc2Þ4
e4B2

; � ¼ E

E0 : (54)

Equation (49) can be written in the form

� � 0:008�
ð1� �2Þ
BnGE

2
20

; (55)

where BnG is the magnetic field in units of nano Gauss
(nG), E20 is final energy in units of 1020 eV, � ¼ E=E0.
Here the random orientations of the field are taken into
account. This expression allows us to estimate the thresh-
old of isotropization. Indeed, if the electron loses a con-
siderable part of its energy, then � � 1 and the deflection
angle mostly depends on the final energy. The deflection
angle becomes quite large (� 1 radian) in the magnetic of
field 1 nG when final energy is E � 2� 1018 eV. For
greater magnetic field, the threshold of isotropization is
shifted to the range of lower energies. It should be noted
that for magnetic fields 1–100 nG this threshold appears in
the energy region where the energy losses due to synchro-
tron radiation dominate over the inverse Compton scatter-
ing (see Fig. 4).
It means that inverse Compton scattering can be ne-

glected for electrons under consideration.
Let us estimate the energy of gamma rays produced by

electrons with energy exceeding the threshold of isotrop-
ization. Using modified Eq. (D1) for energy distribution of
synchrotron radiation in chaotic magnetic fields, we find
the energies of electrons that produce synchrotron gamma
rays with energy E�:

Ee ¼ 1:23� 1014

ffiffiffiffiffiffiffiffiffiffiffi
E�

xBnG

s
: (56)

Here Ee and E� are given in units of eV, x is the dimen-

sionless argument of distribution function Eq. (D5). The
latter has a maximum at x � 0:2291 and exponentially
decreases for large x [see Eq. (D7)]. To make sure that
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FIG. 4. Energy loss rates of electrons due to inverse Compton
scattering on CMBR photons (solid line) and synchrotron radia-
tion in random magnetic field for B ¼ 1 nG, 10 nG, and 100 nG.
For electrons of energy E * 1019 eV the inverse Compton
scattering on the radio waves of CRB becomes comparable or
even can exceed the contribution of the Compton scattering on
CMBR, however for IGMF B * 1 nG the synchrotron radiation
remains the main cooling channel.
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observed gamma rays are produced by electrons with en-
ergies greater threshold of isotropization we should con-
sider gamma rays with energies E� * 109 eV. Indeed,

electrons with energies corresponding to x * 10 in the
Eq. (56) give exponentially small contribution into radia-
tion of gamma rays of the given energy. Therefore, assum-
ing x ¼ 10, we find that the contribution of electrons with
energies below threshold of isotropization Ee & 1018 eV
into radiation of E� ¼ 109 eV gamma rays is insignificant.

According to Eq. (55) the product BE2 is constant for the
isotropization threshold. Since the same combination en-
ters in Eq. (56) the minimal energy of gamma rays pro-
duced by the electrons under consideration does not
depend on the magnetic field.

At interactions of protons with the intergalactic radiation
fields the ultrahigh energy electrons are produced via two
channels: pair production and photomeson production pro-
cesses. In the pair production process only a small
ð� 2me=mpÞ fraction of proton energy is converted to the

secondary electrons. For the magnetic field of order of nG
or larger, the energies of these electrons appear below the
threshold of isotropization, thus they do not contribute to
the gamma-ray emission emitted towards the observer. The
photomeson processes lead to several nonstable secondary
particles, such as �, �, K mesons, which decay into high
energy gamma rays, neutrinos, and electrons. The electrons
from the decays of these mesons are produced with ener-
gies [17] exceeding the isotropization threshold.

In addition, a significant fraction of electrons is created
at interactions of the first generation (’’photomeson’’)
gamma rays with photons of CMBR and CRB. For the
model of CRB suggested by [24], the mean free path of
gamma rays of E � 1019 eV is determined by the inter-
actions with MHz radio waves; it is of order of several
Mpc. Here we neglect by the interaction length assuming
that gamma rays interact with CRB immediately after their
creation. In this case the particle gets additional deflection
since it is treated as an electron all along. It results in
broader angular distribution of observed gamma ray in
comparison with exact consideration. The interaction of
gamma rays with CRB photons of energy �R occurs in the
regime �RE�=m

2
ec

4  1. It means that the most of the

energy is converted to one of the two electrons. The energy
of gamma rays is higher than the energy of electrons
produced in the decays of mesons (see, e.g., Ref. [17]).
Therefore electrons created by pair production process are
more energetic than electrons generated in the decays of
nonstable products of photomeson processes. Con-
sequently, the pair-produced electrons result in higher
flux of synchrotron radiation than the direct ones from
the meson decays.

C. Gamma rays and neutrinos

The apparent angular size of the synchrotron gamma-ray
source depends on the linear size of the emitter itself and

the deflection angles of the parent electrons. Both are
defined by spatial and angular distributions of electrons,
respectively. In the case of spherically symmetric source
and small deflection angles of electrons �def , the source
located at the distance r with the gamma-ray emission
region of radius d, has an angular size #obs � 2 d

r �def .

The case of an isotropically emitted gamma-ray source
corresponds to �def � 1. The linear size of the gamma-
ray emitter can be evaluated from Fig. 5, where is shown
the number of electrons of energy Ee located inside the
sphere of radius r. The saturation that takes place at large
distances shows the absence of electrons in this region.
One can see from Fig. 5 that the size of the sphere, where
the electrons are located, decreases while the energy in-
creases. This is explained by the fact that protons produc-
ing electrons of such high energies disappear due to energy
losses. For energies below Ee ¼ 1019 eV the electrons are
not located in a definite region. The electrons with energy
below the thermalization threshold form an extended halo.
These electrons have energies at which the inverse
Compton scattering losses dominates over the energy
losses due to the synchrotron radiation. They initiate elec-
tromagnetic cascades in the CMBR and EBL photon fields
that eventually results in a very extended GeV-TeV
gamma-ray emission.
The spectral energy distributions (SED) of gamma rays,

E2FðEÞ, received within different angles are presented in
Fig. 6. The fluxes are calculated for the same initial proton
energy distribution used in Fig. 3. Three series of curves for
each of two distances (left and right panels) correspond to
different cutoff energies in the initial proton spectrum. One
can see that the cutoff energy has significant impact on the
flux of gamma rays; it increases the flux, shifts the maxi-
mum of SED towards higher energies, and makes narrower
the angular distributions. These features have a simple
explanation. The increase of the cutoff energy provides
more secondary electrons and extends the spectrum of
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electrons to more energetic region. The latter leads to
smaller deflections. It is interesting to note that although
the angular distribution of gamma rays is composed of
deflections of both protons and electrons, their angular
distribution is more narrow compared to the angular dis-
tribution of protons (see, Fig. 3). This is explained by the
fact that the main portion of gamma rays is produced in
regions close to the source by the highest energy protons
which did not suffer significant energy losses (see, Fig. 5),
while the multiple scattering in IGMF contributes to the
formation of the angular distribution of protons over the
entire path from the source to the observer. Since the
angular size of the gamma-ray source is determined by
the geometrical factor d=r, the distribution of gamma rays
from a source at the distance r ¼ 300 Mpc is narrower
than from an identical source located at the distance r ¼
100 Mpc. It is remarkable that at very high energies the
source becomes pointlike. In particular, at energies above
E� � 5� 1011 eV, the observer will see the gamma-ray

source located at the distance of 100 Mpc within an angle
smaller than �obs ¼ 0:1�.

Figure 7 shows the impact of the IGMF strength on the
flux distribution of gamma rays. The increase of the mag-
netic field leads to the shift of the maximum of SED to
higher energies. In accordance with Eq. (56), the shift of
the synchrotron peak is proportional to the strength of the
magnetic field since the energy distribution of electrons
does not depend on the magnetic field. Finally, note that the
increase of the magnetic field implies strong deflections
which leads to the reduction of the flux and widening of the
angular distribution of gamma rays.

For the sources located beyond 100 Mpc, TeV gamma
rays interact effectively with optical and infrared photons
of the EBL. The energy-dependent absorption of gamma
rays is characterized by the optical depth ��� which de-

pends on the EBL flux and is proportional to the distance to

the source. Unfortunately the EBL flux contains quite large
uncertainties, especially at the mid and far IR wavelengths
which are most relevant to the gamma-ray energy band and
the source distances discussed in this paper. The impact of
these uncertainties on the intergalactic absorption of
gamma rays is discussed in Ref. [23]. Even for the mini-
mum EBL flux at infrared wavelengths, the absorption of
TeV gamma rays from sources beyond 100 Mpc can be
significant; at multi-TeV energies the optical depth ���
exceed 1. Therefore, the curves in Figs. 6–8 should be
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corrected by multiplying the unabsorbed fluxes to the
factor expð����Þ.

The decay of nonstable products of photomeson pro-
cesses leads to the appearance of extremely high energy
electrons (positrons) and neutrinos (antineutrinos). Since
the magnetic field does not have an impact on neutrinos,
the angular distribution of neutrinos is determined only by
the deflection of protons. This leads to more narrow angu-
lar distributions of neutrinos compared not only to the
distributions of protons (for the same reason described
above for gamma rays) but also compared to the distribu-
tion of gamma rays (because the gamma-ray distribution is
additionally broadened due to deflections of electrons).
The left panel of Fig. 8 shows SED of neutrinos and

antineutrinos received within different angles. The right
panel of the figure presents the integral fluxes of neutrinos.
The impact of the cutoff energy in the initial proton spec-
trum on the neutrino flux is demonstrated in Fig. 9.
For comparison, the spectral energy distributions of

protons, gamma rays and muon neutrinos are shown to-
gether in Figs. 10 and 11 for two distance to the source—
30 Mpc and 300 Mpc.
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FIG. 8. The fluxes of neutrinos observed within different angles in the direction of the cosmic ray proton source located at the
distance r ¼ 100 Mpc. The calculations are performed for the initial power-law distribution of protons with spectral index 	 ¼ 2 and
the exponential cutoff at E0 ¼ 3� 1020 eV. The IGMF B ¼ 1 nG, and the total power of injection of protons into IGM is 1044 erg=s.
Left panel is spectral energy distributions, right panel is integral fluxes.
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FIG. 10. The spectral energy distributions of gamma rays,
muon neutrinos, and protons observed within the polar angle
3� from two identical source located at r ¼ 30 Mpc (thick lines)
and r ¼ 300 Mpc (thin lines). The upper energy scale is for
protons and neutrinos, the lower energy scale is for gamma rays.
The calculations are performed for the initial power-law distri-
bution of protons with spectral index 	 ¼ 2, the exponential
cutoff E0 ¼ 3� 1020 eV, and the total power of injection into
IGM 1044 erg=s. The IGMF is 1 nG.
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IV. AN IMPULSIVE SOURCE: ARRIVAL-TIME
DISTRIBUTIONS

Let us assume that at the moment t ¼ 0 an impulsive
spherically-symmetric source injects protons into the IGM.
The multiple scattering of protons in the chaotic magnetic
field results in the deviation of the motion of particles from
the rectilinear propagation, therefore they arrive to the
observer with significant time delays. The arrival time of
the proton moving with a speed vp over the path S is

t ¼ S

vp

¼ S

c
þ 4:5� 10�4

�
SMpc

100

��
1018

EeV

�
2
s: (57)

For ultrarelativistic protons the second term is negligible,
therefore in calculations we adopt vp ¼ c. In this paper we

will study the distribution of the arrival-time delays � ¼
t� r=c ignoring the energy losses of particles.

Let us denote by Pð�; �; rÞd�d� the probability that the
proton with arrival direction in the interval ð�; � þ d�Þ is
detected at the distance r from the source in the time
interval (�, �þ d�). Here � ¼ �2, where � is the angle
between the proton direction at the point r and the vector r.
It is assumed that P satisfies to the condition of normal-
ization given by Eq. (C27). The equation for the function P
for a pulse of radiation in the small-angle approximation is
obtained in Ref. [25]. In Appendix C we derive the exact
relation between P and the standard distribution function
f, and obtain P in a quite different (simpler) way than in
Ref. [25]. Namely, our treatment of the problem is based on
the solution of equations written for the standard distribu-
tion function.

Following Ref. [25], we introduce the function G which
is determined from the equation

Pð�; �; rÞ ¼ c

r3h�2si2
Gðx; yÞ; (58)

where the dimensionless parameters x and y are

x ¼ �

rh�2si
¼ �2

rh�2si
; y ¼ c�

r2h�2si
: (59)

Function G can be presented in the form of the one-
dimensional integral

Gðx; yÞ ¼
Z 1

�1
ds

2�
~Gðx; sÞeisy: (60)

Here

~Gðx; sÞ ¼ z

j1ðzÞ exp
�
�x

zj0ðzÞ
j1ðzÞ

�
; (61)

where z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ð2iÞp

, j0 and j1 are spherical Bessel func-
tions:

j0ðzÞ ¼ sinz

z
; j1ðzÞ ¼ sinz

z2
� cosz

z
: (62)

The angular distribution of particles changes with time.
It can be shown, by using Eqs. (60) and (61), that

h�2ið�Þ ¼ 4c�=r; (63)

where

h�2ið�Þ ¼
Z 1

0
�2Gðx; yÞdx

�Z 1

0
Gðx; yÞdx (64)

is the mean square deflection angle at the moment �. Quite
remarkably no model parameters enter in (63) in an explicit
form. Thus, the measurements of �2 at different time
periods allow an estimate of the distance to the source.
This is a nice feature, because it could be the only channel
of information about the distance to the source, if the latter
is not active anymore.
From Eqs. (60) and (61) follows that Gðx; yÞ ¼ 0 at y <

0. We should note also the useful relation

~Gðx; sÞ ¼
Z 1

�1
dyGðx; yÞe�isy; (65)

which allows us to obtain the moments of the function G:

mn 	
Z 1

�1
dyynGðx; yÞ ¼ in

@n

@sn
~Gðx; sÞjs¼0: (66)

Let us write down the first three moments:

m0 ¼ 3e�3x; (67)

m1 ¼ 3
20ð1þ 2xÞe�3x; (68)

m2 ¼ 3
2800ð9þ 36xþ 28x2Þe�3x: (69)

Correspondingly the mean values for hyi and hy2i are
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FIG. 11. The spectral energy distribution of gamma rays,
muon neutrinos, and protons observed within polar angles 0.3�
and 3� towards a source located at r ¼ 30 Mpc. The parameters
for the IGMF and the proton spectrum are the same as in Fig. 10.
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hyi ¼ m1

m0

¼ 1

20
ð1þ 2xÞ; (70)

hy2i ¼ m2

m0

¼ 1

100

�
9

28
þ 9

7
xþ x2

�
: (71)

For the dispersion of distribution � and the ratio �
hyi2 we

have

� 	 hy2i � hyi2 ¼ 1
1400ð1þ 4xÞ; (72)

and

�

hyi2 ¼ 2

7

1þ 4x

ð1þ 2xÞ2 �
2

7
: (73)

This implies that we deal with a rather narrow distribution.
Rewriting Eq. (70) in the form

ch�i
r2h�2si

¼ 1

20

�
1þ 2�2

rh�2si
�

(74)

one can see that the measurement of h�i for the particles
with different values of � allows us to estimate h�2si.

Below we discuss two special cases of practical interest.
A. Detection of protons with arbitrary arrival angles.

This is the case discussed in Ref. [25]. In this case the
distribution over � is described as

fA 	
Z 1

0
Pð�; �; rÞd� ¼ 4�2c

r2h�2si
X1
n¼1

ð�1Þn�1n2e�2�2n2y:

(75)

with mean values for y:

hyi ¼ 1
12; hy2i ¼ 7

720; � ¼ 1
360: (76)

B. Protons arriving along the radius-vector at the regis-
tration point. For this case, substituting x ¼ 0 into Eq. (60),
we obtain

fB 	 Pð�; � ¼ 0; rÞ ¼ � c

r3h�2si2
X1
n¼1

z2n
j01ðznÞ

e�2z2ny; (77)

where 0< z1 < z2 < 
 
 
 are the zeros of the function
j1ðzÞ, located in the region z > 0.

The functions fA and fB corresponding to Eqs. (75) and
(77) are shown in Fig. 12.

As it follows from Eq. (58), the arrival time � enters into
P only in the form of combination of the variable y. Since

lgy ¼ lg�� 2 lgr� lg�� 2 lgBþ 2 lgEþ const; (78)

the curves for other values of the relevant parameters,
namely, energy E, magnetic field B, correlation length �,
and the distance to the source r, can be obtained by a
simple shift along the �-axis. However, it should be noted
that Eq. (58) is obtained in the approximation of ignoring
the energy losses of protons. Therefore for the large dis-
tances, r � 100 Mpc, and especially for large energies,

E � 1020 eV, Eq. (58) overestimates the arrival time,
given that the energy of protons during their propagation
significantly exceeds the energy at the registration point
(see Fig. 1). Therefore, for large distance Eq. (58) should
be treated as an upper limit for the time delay. On the other
hand, since gamma rays are produced at the very beginning
of propagation of protons (within 10 Mpc or so), the curves
calculated for a distance of order of 10 Mpc, provide a
quite accurate estimate for the arrival times of gamma rays.
As it is seen from Fig. 12 the delays of arrival times of

1020 eV protons as well as the secondary neutrinos and
gamma rays, even from relatively nearby sources and weak
intergalactic magnetic fields, are significant. The associa-
tion of these particles to short solitary events like GRB
with duration of 1 min or less, would be possible only if�

r

10 Mpc

��
B

10�13 G

�
& 1: (79)

V. SUMMARY

In this paper the angular, spectral and time distributions
of UHE protons and the associated secondary gamma rays
and neutrinos propagating through the intergalactic radia-
tion and magnetic fields have been studied based on the
relevant solutions of the Boltzmann transport equation in
the small-angle and continuous energy loss approxima-
tions. A general formalism for the treatment of the
steady-state distributions is provided in the form of rela-
tively simple analytical presentations. The treatment of the
secondary products, in particular, the synchrotron gamma-
radiation of electrons from photomeson interactions is
reduced to the consecutive application of the solutions

FIG. 12. The arrival-time distributions for the cases A (solid
line) and B (dashed line) discussed in the text. The distance to
the source is r ¼ 10 Mpc, the energy of protons E ¼ 1020 eV,
and the strength of the magnetic field B ¼ 1 nG. The curves are
shown in arbitrary unites; for convenience they are normalized to
1 at the points of the maximum of distributions: maxðfA;BÞ ¼ 1.
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which schematically can be presented as

Qp ! fp ! Qe ! fe ! Q� ! f�:

Here Qi denotes a source function and fi denotes a distri-
bution function. Qp is specified as spherically symmetric

source of protons. Qe is obtained from distribution func-
tion of protons as the final product of photomeson inter-
actions using the results Ref. [17]. Electrons generated in
the pair-production process of the first generation gamma
rays (from the decay of neutral �-mesons) are also in-
cluded in Qe. Finally, Q� corresponds to the synchrotron

radiation of electrons with distribution function fe formed
in the chaotic magnetic field. We consider the case of
strong magnetic field, B � 10�9 G, when the electrons
from photomeson interactions are cooled predominantly
via synchrotron radiation. Such strong magnetic fields
prevent the development of pair cascades at highest ener-
gies, and, at the same time, allow very effective conversion
of the electromagnetic energy released at photomeson
interactions into synchrotron radiation. The latter peaks
at GeV and TeV energies. The electromagnetic cascades
are developed at lower energies at which the suppression of
the Compton cooling due to the Klein-Nishina effect is
becoming more relaxed. These subcascades are initiated
basically by the electrons-positron pairs produced at the
inverse Bethe-Heitler process. However, because of deflec-
tions of low-energy electrons in chaotic IGMF, the gamma
rays produced during the cascade development lose the
directionality. Moreover, if the initial energy distribution of
protons extends to 1020 eV, the electromagnetic energy
released in photomeson interactions greatly exceeds the
energy supply from the Bethe-Heitler process. On the other
hand, the synchrotron radiation produced by highest en-
ergy secondary electrons not only provides an almost
100% effective conversion into gamma rays, but also pre-
serves the initial direction of protons as long as the mag-
netic field does not exceed 10�7 G. Remarkably, while the
main fraction of synchrotron gamma rays and the highest
energy neutrinos is produced in the proximity of the
source, namely, within the first � 10 Mpc of the initial
path of protons, the latter continue to suffer deflections
with an enhanced rate (because of gradual decrease of
energy during the propagation through the 2.7 CMBR),
until they arrive to the observer. Therefore, the gamma-ray
and neutrino distributions appear to be more narrow than
the angular distribution of protons.

The distribution functions fp and fe are obtained by

applying the Green function of transport equation to the
source functionsQp andQe, respectively. The angular part

of fp and fe is a normal (Gaussian-like) distribution, the

dispersion of which depends on the energy loss rate, the
deflection angle per unit length and the distance to the
source. f� is calculated by integration along optical depth

at different angles towards the source.

For specific realizations of the scenario of small-angle
deflection of charged particles, assuming that they move in
a statistically isotropic and homogeneous turbulent mag-
netic field with Kolmogorov spectrum, we considered the
IGMF in the interval from 10�9 to 10�7 Gauss and adopted
1 Mpc for the correlation length. The propagation of pro-
tons is considered, as long as it concerns the energy losses,
as rectilinear with diffusion in angle. Transport of electrons
is considered in the homogeneous magnetic field with
random direction since their propagation length is of the
order or less of 1 Mpc.
Despite the small-angle scatterings, the related elonga-

tion of particle trajectories causes significant delays of
their arrival time. The problem of propagation of particles
can be described by the steady-state solutions if the life-
time of the source exceeds the delay times. Otherwise the
problem should be treated as a time-dependent propagation
of particles injected in the IGM by an impulsive source of
extremely high energy protons. This could be the case of
solitary events like GRB or short periods (T � 105 year) of
enhanced activity of active galactic nuclei. In this paper we
discuss the case of an impulsive source, ignoring the
energy losses of protons. This approximation limits the
applicability of the derived time distribution functions to
the relatively nearby sources of protons located within
100 Mpc sphere of the nearby Universe. On the other
hand, since the bulk of synchrotron radiation of secondary
electrons is produced close the source, R & 10 Mpc, the
time-dependent solutions derived for protons, can describe
quite accurately the delayed arrival times of synchrotron
photons from sources located at cosmological distances.
The results presented in this paper for gamma rays are

valid for IGMF in a specific (but perhaps the most realistic)
range between B ¼ 10�9–10�7 G. IMGF stronger than
10�7 G would lead to large deflections of charged parti-
cles, and thus violate the condition of small-angle approxi-
mation. On the other hand, IGMF weaker than 10�10 G
would reduce dramatically the efficiency of the synchro-
tron radiation since in this case the electrons are cooled
predominantly via Compton scattering. The pair cascades
initiated by these electrons also lead to GeV and TeV
gamma-ray emission, however these cascades form giant
(hardly detectable) halos around the sources, unless the
magnetic field is extremely weak, smaller than 10�15 G.
The realization of the scenario of synchrotron radiation

of secondary electrons at the presence of a relatively
modest magnetic field, B� 10�9 G or larger, in the
10 Mpc proximity of the sources of highest energy cosmic
rays, has higher chances to be detected, given the compact
(almost pointlike) images at GeV and especially TeV en-
ergies, and the very high (10 per cent or more) efficiency of
conversion of the energy of protons to high energy syn-
chrotron gamma rays. The fluxes of gamma rays, protons,
and neutrinos shown in Figs. 7–11 are obtained assuming a
power-law energy spectrum of protons with 	 ¼ 2 and
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total injection rate into IGM Lpð� 1 GeVÞ ¼ 1044 erg=s.

The expected gamma-ray fluxes are close to the sensitiv-
ities of Fermi LAT at GeV energies and the sensitivity of
the Imaging Atmospheric Cherenkov telescope arrays at
TeVenergies. While the total power of production of high-
est energy cosmic rays hardly can exceed, except for very
powerful AGN, 1044 erg=s, in the case of blazars with
small beaming angles, the expected fluxes of gamma rays
could be significantly higher. Indeed, in the case of small
deflections, the directions of injection of observed particles
from the source are close to the observational line.
Therefore, the results for the spherically symmetric source
remain valid also for the narrow jet with solid angle
�beam ¼ �#2, where #2 * h�2i. Then the required power
of the source (to be detected in gamma rays) is reduced by
a factor �beam=4� which might be significantly small.

Finally, we should note that the calculations in this paper
are performed under assumption of homogeneity of the
chaotic magnetic field on scales comparable to the distance
of the source. However, one might expect realizations
when a significant fraction of propagation of protons takes
place in regions with very low magnetic field. In fact, such
voids do exist in the IGM with scales as large as 100 Mpc
[26]. In these cases one has to treat the problem separately
in different segments of space between the source and the
observer.

APPENDIX A: THE GREEN FUNCTION FOR
SPHERICALLY SYMMETRIC SOURCE

The Green function for spherically symmetric point
source is obtained by integration of Eq. (8) over all direc-
tions of the vector n0. Let us rewrite Eq. (8) in the follow-
ing form:

Gðr;n;n0; E; E0Þ ¼ �ðSðE;E0Þ � rÞ
c ��ðEÞ�2�

exp

�
�A�Bn0

�

�
:

(A1)

Here

A ¼ 2ðA1r
2 � 2A2rþ A3Þ � 2A2rð1� nrnÞ;

B ¼ 2ððA1r
2 � A2rÞnr þ ðA3 � A2rÞnÞ;

(A2)

where nr ¼ r=r. Since the directions of n, n0 and nr are
close to each other,

Bn0 ¼ jBj cos�0 � jBj
�
1� �20

2

�
: (A3)

Performing integration by saddle point method we obtain:

Z
exp

�
�A� Bn0

�

�
d�n0

� 2��

jBj exp

�
�A� jBj

�

�
:

(A4)

Taking into account

n rn � 1� �2

2
; (A5)

the expressions for A and jBj can be written:

A ¼ 2Dr2 þ �2A2r;

jBj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDr2Þ2 � �2ðA1r

2 � A2rÞðA3 � A2rÞ
q (A6)

where

D ¼ A1 � 2
A2

r
þ A3

r2
: (A7)

Expanding jBj into series in terms of � to the second-order
term in exponent and retaining the first term in denomina-
tor we find

Gsphðr; �; E; E0Þ ¼ �ðSðE;E0Þ � rÞ
c ��ðEÞr2�D exp

�
� �2

D

�
: (A8)

APPENDIX B: DISTRIBUTION FUNCTION OF
ELECTRONS

After changing the order of integration in

feðr;n; EeÞ ¼
Z

Q̂eðfpðr0;n0; EpÞÞGðr
� r0;n;n0; Ee; Ee0Þdr0�n0

dEe0 (B1)

we arrive at the following integral over directions of the
emission of electrons n0 at the point r0 and directions of r0:

I ¼
Z

exp

�
�ðn0 � nsÞ2

D

�

� exp

�
�A1ðr� r0 � jr� r0jn0Þ2 � 2A2ðr� r0 � jr� r0jn0Þðn� n0Þ þ A3ðn� n0Þ2

�

�
d�ns

d�n0
; (B2)

where

r ¼ rnr; r0 ¼ r0ns; r� r0 ¼ r0n0; (B3)

� and D are defined in Eqs. (4) and (14), respectively.
Taking into account that all directions are close, the inte-

gral can be presented in the following form:

I ¼
Z

e�ðA�BnsÞd�ns
d�n0

; (B4)

where
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A ¼ X0 þ X1ð1� nrn0Þ þ X2ð1� nrnÞ þ X3ð1� n0nÞ;
B ¼ Y1n0 þ Y2nþ Y3nr: (B5)

Here we introduce the following notations:

X0 ¼ 2

D
þ A1

�
ððr� r0Þ2 þ r20Þ; X1 ¼ 2

�
ðA1r

0 � A2Þr;

X2 ¼ 2

�
A2r; X3 ¼ 2

�
ðA3 � A2r

0Þ;

Y1 ¼ 2

D
þ 2

�
ðA2 � A1r

0Þr0; Y2 ¼ � 2

�
A2r0;

Y3 ¼ 2

�
A1rr0: (B6)

Since directions of n, n0, and nr are close, we can expand
jBj into series to the first-order terms:

jBj � � Y1Y2


ð1� n0nÞ � Y1Y3


ð1� n0nrÞ

� Y2Y3


ð1� nnrÞ; (B7)

where

 ¼ Y1 þ Y2 þ Y3: (B8)

The integration of I over d�ns
by saddle point method

gives

I � 2�



Z
e�ðA�jBjÞd�n0

(B9)

To perform the integration over d�n0
by the same method,

we present the expression in the exponent in the following
form:

A� jBj ¼ X0 � |fflfflffl{zfflfflffl}
Z0

þ
�
X1 þ Y1Y3



�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Z1

ð1� n0nrÞ

þ
�
X2 þ Y2Y3



�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Z2

ð1� nnrÞ

þ
�
X3 þ Y1Y2



�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Z3

ð1� n0nÞ

¼ Z0 þ Z1 þ Z3 þ Z2ð1� nnrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~A

� ðZ1nr þ Z3nÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
~B

n0

¼ ~A� ~Bn0: (B10)

Expanding j ~Bj into series

j ~Bj � �� Z1Z3

�
ð1� nnrÞ; (B11)

where

� ¼ Z1 þ Z3 (B12)

we find

I � 4�2

�
e�ð ~A� ~jBjÞ: (B13)

Making replacements of all notations by their actual values
and taking into account that

r0 � r� r0; (B14)

we finally obtain

I ¼ �2�D

Der
2 þDr20

exp

�
� �2r2

Der
2 þDr20

�
; (B15)

where

De ¼ A1 � 2
A2

r
þ A3

r2
(B16)

and � is the angle between nr and n. The Integration over
r0 in the expression for feðr;n; EeÞ can be readily per-
formed because of �-function.

APPENDIX C: DISTRIBUTION OF ARRIVAL
TIMES IN THE CASE OF IMPULSIVE SOURCE

In the case of spherical symmetry the proton distribution
function f ¼ fðt; r; �Þ depends on time t, distance to the
source r, and the variable � ¼ cos� ¼ ðnrÞ=r. Here n is a
unit vector towards the direction of the proton speed. Let us
normalize f using the conditionZ 1

0
dr

Z 1

�1
d�r2fðt; r; �Þ ¼ 1: (C1)

Then r2fðt; r; �Þdrd� is the probability that at the moment
t the proton is located in the layer ðr; rþ drÞ and is moving
in the direction within ð�;�þ d�Þ. Let us assume that
propagation of a single particle is fixed, i.e. the radius-
vector r0ðtÞ and the direction n0ðtÞ are certain functions of
time. For this particle, the distributions over r and � are
described by �-functions:

f0ðt; r; �Þ ¼ 1

r2
�ðr� r0ðtÞÞ�ð���0ðtÞÞ; (C2)

where �0ðtÞ ¼ ðn0ðtÞr0ðtÞÞ=r0ðtÞ.
By averaging Eq. (C2) over the ensemble of particles

gives the distribution function f:

fðt; r; �Þ ¼ hf0ðt; r; �Þi: (C3)

Let us assume that for each particle r0ðtÞ is a monotoni-
cally increasing function of time, i.e. there are no particles
in the ensemble with � � 0. Then the equation r ¼ r0ðtÞ
has a unique solution with t ¼ t0ðrÞ, and thus one can write
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�ðr� r0ðtÞÞ ¼ 1

dr0=dt
�ðt� t0ðrÞÞ ¼ 1

c�0ðtÞ�ðt� t0ðrÞÞ:
(C4)

Since in Eq. (C2) this expression is multiplied to �ð��
�0ðtÞÞ, in the denominator one can replace �0ðtÞ by � and
take the factor 1=c� out of the integral. This yields

h�ðr�r0ðtÞÞ�ð���0ðtÞÞi¼ 1

c�
h�ðt�t0ðrÞÞ�ð�� ~�0ðrÞÞi;

(C5)

where ~�0ðrÞ ¼ �0ðt0ðrÞÞ.
Function h�ðt� t0ðrÞÞ�ð�� ~�0ðrÞÞi has the meaning of

the probability distribution for t and �. Writing t ¼ �þ
r=c, we obtain the probability distribution for � and � at
the point r:

Pð�;�; rÞ ¼ h�ð�þ r=c� t0ðrÞÞ�ð�� ~�0ðrÞÞi: (C6)

From this equation follows that P satisfies the condition of
normalization Z 1

0
d�

Z 1

�1
d�Pð�; r;�Þ ¼ 1: (C7)

Thus we arrive at the conclusion that the functions P and f
are related as

Pð�;�; rÞ ¼ c�r2fð�þ r=c; r;�Þ 	 c�r2f0ð�; r; �Þ:
(C8)

The distribution function satisfies the equation

1

c

@f

@t
þ ðnrÞf ¼ I; (C9)

where I is the collision integral. In the case of spherical
symmetry

ðnrÞf ¼ �
@f

@r
þ 1��2

r

@f

@�
: (C10)

Replacing the variables in Eq. (C9) from ðt; rÞ to ð� ¼ t�
r=c; rÞ and presenting the collision integral in the Fokker-
Planck approximation, we obtain

1��

c

@f0

@�
þ�

@f0

@r
þ 1��2

r

@f0

@�

¼ h�2si
4

@

@�

�
ð1��2Þ @f

0

@�

�
: (C11)

In the case of an impulsive source and no scattering (i.e.
h�2si ¼ 0) the distribution function normalized according
to Eq. (C1) is

fðt; r; �Þ ¼ 2��ðr� cntÞ: (C12)

It is convenient to rewrite Eq. (C12) in the form

fðt; r; �Þ ¼ 1

cr2
�ðt� r=cÞ�ð�� 1Þ: (C13)

In order to demonstrate that the generalized functions in
the forms given by Eqs. (C12) and (C13) are identical, one
should multiply the right parts of these equations to an
arbitrary function hðr;nÞ and integrate over the space
coordinates and the direction of the vector n. This implies
that at h�2si ¼ 0

f0ð�; r;�Þ ¼ 1

cr2
�ð�Þ�ð�� 1Þ: (C14)

It is clear, from general physical considerations, that in the
limit r ! 0 Eq. (C14) is valid also at h�2si � 0. Therefore,
Eq. (C14) can be treated as a boundary condition to
Eq. (C11) at the point r ¼ 0.
An analytical solution of Eq. (C11) is possible to derive

in the small-angle approximation. In the case of multiple
scattering, the average angle of deviation of at the distance

r is of order of ðrh�2siÞ1=2. Therefore, for r � 1=h�2si one
can use the small-angle approximation. Let � ¼ 1� �=2,
and let us denote function f0ð�; r; 1� �=2Þ by f0ð�; r; �Þ.
Assuming � � 1, from Eq. (C11) we obtain

@f0

@r
þ �

2c

@f0

@�
� 2�

r

@f0

@�
� h�2si @

@�

�
�
@f0

@�

�
¼ 0: (C15)

To solve Eq. (C15) we apply the Fourier transformation:

~f 0ð!; r; �Þ ¼
Z 1

�1
f0ð�; r; �Þe�i!�d�: (C16)

Function ~f0 satisfies the equation

@~f0

@r
þ i!�

2c
~f0 � 2�

r

@~f0

@�
� h�2si @

@�

�
�
@~f0

@�

�
¼ 0; (C17)

and the boundary condition given by Eq. (C14) becomes

~f 0ð!; r;�Þ ¼ 2

cr2
�ð�Þ; r ! 0: (C18)

Let us search the solution in the form

~f 0 ¼ e��aðrÞþbðrÞ; (C19)

where the functions aðrÞ, bðrÞ do not depend on � .
Substituting Eq. (C19) in Eq. (C17), we obtain the follow-
ing ordinary differential equations:

da

dr
¼ i!

2c
þ 2

r
a� h�2sia2; (C20)

db

dr
¼ �h�2sia: (C21)

The solution to Eq. (C20) is

aðrÞ ¼ 1

rh�2si
zj0ðzÞ
j1ðzÞ ; (C22)

where z ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!h�2si=ð2icÞ

p
. The arbitrary constant which

appears in the solution is chosen requiring singularity at the
point r ¼ 0. At r ! 0 the function a ¼ 3=rh�2si. The so-
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lution to Eq. (C21) is

bðrÞ ¼ ln

�
1

r3
z

j1ðzÞ
�
þ const; (C23)

therefore the function ~f0 is defined as

~f 0 ¼ C
1

r3
z

j1ðzÞ exp
�
� �

rh�2si
zj0ðzÞ
j1ðzÞ

�
: (C24)

For determination of the constant C one should use the
boundary condition given by Eq. (C18). In the limit of
small r, and using the relation

lim
r!0

�



r
e��
=r

�
¼ �ð�Þ; (C25)

we find

~f 0 ¼ C
3

r3
exp

�
� 3�

rh�2si
�
¼ C

h�2si
r2

�ð�Þ: (C26)

Comparing Eqs. (C18) and (C26), we obtain C ¼ 2=ch�2si
and then using Eq. (C8) we find P. In the small-angle
approximation we can replace the factor � in Eq. (C8)
by unity. In order to compare our results with the solution
obtained in Ref. [25], we adopt C ¼ 1=ch�2si, which is
equivalent to the change of the condition of normalization,
namely, instead of Eq. (C7) we useZ 1

0
d�

Z 1

0
d�Pð�; r; �Þ ¼ 1; (C27)

where, because of rapid convergence, the upper limit of
integration over d� is set infinity. In order to present the
result in the form given by Eqs. (58)–(60), one should
introduce, instead of the variable !, a new variable of
integration s ¼ !r2h�2si=c.

APPENDIX D: EMISSIVITY FUNCTION OF
SYNCHROTRON RADIATION IN RANDOM

MAGNETIC FIELDS

For the case of chaotic magnetic fields one should
average out the standard formula for energy distribution
of synchrotron radiation

dN�

dE�dt
¼

ffiffiffi
3

p
2�

e3B

mec
2
@E�

F

�
E�

Ec

�
; (D1)

where

FðxÞ ¼ x
Z 1

x
K5=3ð�Þd�; Ec ¼ 3e@B�2

2mec
; (D2)

over directions of magnetic field. After taking the perpen-
dicular to velocity component of magnetic field B? ¼
B sin�, where � is angle between B and v we come to
the following double integral:

GðxÞ ¼
Z

sin�F

�
x

sin�

�
d�

4�
¼ 1

2

Z �

0
F

�
x

sin�

�
sin2�d�:

(D3)

After changing the order of the integration it can be
written as a single integral

GðxÞ ¼ x
Z 1

x
K5=3ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

�2

s
d�; (D4)

that can be expressed in terms of modified Bessel func-
tions:

GðxÞ ¼ x

20
½ð8þ 3x2Þð�1=3Þ2 þ x�2=3ð2�1=3 � 3x�2=3Þ�;

(D5)

where �1=3 ¼ K1=3ðx=2Þ, �2=3 ¼ K2=3ðx=2Þ. Note that

while the function FðxÞ has a maximum at x ¼ 0:2858
(maxFðxÞ ¼ 0:9180), the maximum of the function GðxÞ
is shifted towards smaller values: x ¼ 0:2292 (maxGðxÞ ¼
0:7126). An alternative presentation for GðxÞ in terms of
Whittaker’s function has been derived in Ref. [27]. The
functions FðxÞ and GðxÞ, as well as the ratio GðxÞ=FðxÞ are
shown in Fig. 13.
Although the function GðxÞ in Eq. (D5) is presented in a

quite compact and elegant form, for practical purposes it is
convenient to have approximation which does not contain
special functions. Here we propose such approximations
for FðxÞ and GðxÞ which provide an accuracy better than
0.2% over the entire range of variable x:

FIG. 13. The emissivity functions for synchrotron radiation
FðxÞ and GðxÞ. The dashed line shows the ratio GðxÞ=FðxÞ.
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~FðxÞ � 2:15x1=3ð1þ 3:06xÞ1=6

� 1þ 0:884x2=3 þ 0:471x4=3

1þ 1:64x2=3 þ 0:974x4=3
e�x; (D6)

~GðxÞ � 1:808x1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3:4x2=3

p 1þ 2:21x2=3 þ 0:347x4=3

1þ 1:353x2=3 þ 0:217x4=3
e�x:

(D7)
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