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We study the thermal noise caused by mechanical or thermomechanical dissipation in mirrors of

interferometric gravitational wave antennas. We give relative figures of merit for arbitrary Hermite-Gauss

or Laguerre-Gauss optical beams regarding the Brownian and thermoelastic noises (substrate and coating)

in the infinite mirror approximation.
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I. INTRODUCTION

One of the main limits to the sensitivity of interferomet-
ric gravitational wave antennas existing, like Virgo or
LIGO, is the thermal noise caused by thermodynamical
processes, essentially in the material of the mirrors of long
Fabry-Perot cavities. For the next generation of instru-
ments (‘‘advanced’’ detectors), several strategies have
been proposed to reduce this kind of noise.

One possible way [1] is to use optical modes of trans-
verse quantum numbers higher than the fundamental’s,
expecting a large cancellation of surface fluctuations by
averaging on a widely spread phase surface. The analyses
were restricted up to now to axially symmetrical modes,
excluding Hermite-Gauss modes and nonaxisymmetrical
Laguerre-Gauss modes. Axial symmetry allows a simple
calculation, but is not a fundamental restriction. The ques-
tion of the efficiency of more general modes, not neces-
sarily axisymmetric, remained thus open. We show here
that a general calculation is possible at least in the limit of a
mirror seen as a half space limited by an infinite plane. This
is a first step towards a general assessment using a more
accurate theory with finite mirrors. We think however that
even in this restricted framework, our results may give
some ideas about the respective efficiencies of symmetrical
and nonsymmetrical modes of any kind. We focus on
relative merit factors of the various readout beams, merit
factors that are invariant with respect to the material’s
elastic and thermoelastic parameters.

II. THEORETICAL BASIS

A. Fluctuation-dissipation

1. Brownian noise

We use the fluctuation-dissipation theorem (FDT) and
the resulting principle derived by Levin [2]. Recall briefly
that the FDT states that the power spectral density (PSD) of
Brownian noise in an elementary dynamical system de-
scribed by a degree of freedom x and a driving force F is
given by

SxðfÞ ¼ 4kBT

ð2�fÞ2 Re½Z�

where T is the temperature of the system, kB the
Boltzmann constant, and Z the mechanical impedance,
i.e. Z � ~v= ~F, if v � _x. At this point, Levin has shown
that at low frequency (far from mechanical resonance of
the mirror’s substrate) the real part of the impedance is
given by

R e½Z� ¼ 4�f�U

whereU is the elastic energy stored in the mirror by a static
pressure distribution having the transverse profile of the
intensity of the readout beam, and normalized to 1N, so
that U has dimension J=N2. � is a loss angle characteriz-
ing internal dissipation (the inverse of the mechanical Q
factor). Obviously, at frequencies near resonances, the
theory becomes far more intricate (see [3,4]). The question
of the spectral density of noise nevertheless amounts there-
fore to the calculation of U for all possible beam profiles,
the low-frequency tail (a part of major interest) of the PSD
being simply:

SxðfÞ ¼ 4kBT

�f
�U: (1)

2. Thermoelastic noise

Another source of noise is related to the coupling of
temperature fluctuations with the linear thermal expansion
of the material. The Levin formula again holds, and we
have [5]

SxðfÞ ¼ 4kBT

!2
W (2)

where W is the averaged dissipated power. The pressure
distribution being normalized to 1N, W has dimension
W=N2. How to compute U and W is the scope of the
next paragraph.
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B. Basics of static linear elasticity

The aim of the present paragraph is to define notations to
be employed in the following. Recall briefly that under
applied internal and/or external forces, a stressed solid is
deformed so that the position of atoms inside moves ac-
cording to a displacement vector field ~uð ~rÞ. The aim of
elasticity theory [6] is to determine ~u from the applied
forces and boundary conditions. We consider an infinite
solid limited only by an infinite plane z ¼ 0 and a pressure
distribution pðx; yÞ applied on that plane. (This is a picture
of a light beam hitting a mirror large with respect to the
beam transverse extension.)

1. Static strain energy

The elastic energy stored in the solid may be evaluated
in the case of only one interface (the plane z ¼ 0) as

U ¼ � 1

2

Z
R2

pðx; yÞuzðx; y; z ¼ 0Þ: (3)

Our problem is now reduced to compute uz from pðx; yÞ.
The strain tensor Eij is related to ~u by

Eijð ~rÞ ¼ 1

2
½@iujð ~rÞ þ @juið~rÞ�:

In an isotropic medium and in the linear regime, the stress
tensor �ijð ~rÞ is related in turn to the strain tensor by a

relation analogous to Hooke’s law:

�ij ¼ �E�ij þ 2�Eij

where E � Eii is the trace of the strain tensor, and where �
and � are the Lamé coefficients. Recall that the Lamé
coefficients are related to the Young modulus Y and to
the Poisson ratio � by

� ¼ �Y

ð1þ �Þð1� 2�Þ ; � ¼ Y

2ð1þ �Þ :

The displacement vector must obey the elastodynamics
equation (� being the density of the bulk material):

@j�ijð ~rÞ ¼ �
@2ui
@t2

ð~rÞ:
In the static case, this reduces to the Navier-Cauchy equa-
tion:

@j�ijð~rÞ ¼ 0: (4)

Moreover, the boundary conditions on the limiting plane
are

�zzðx; y; z ¼ 0Þ ¼ pðx; yÞ; �xzðx; y; z ¼ 0Þ ¼ 0;

�yzðx; y; z ¼ 0Þ ¼ 0:
(5)

Another way of evaluating the strain energy is to compute
the energy density given by

�ðx; y; zÞ ¼ 1

2
Eij�ij ¼ 1

2
½�E2 þ 2�ðEijEijÞ�:

Then

U ¼
Z
V
�ðx; y; zÞdxdydz (6)

where V is the space region of interest. Equation (3) may
be employed for the infinite substrate whereas Eq. (6) is
mandatory in the case of the coatings (limited slab).

2. Thermoelastic dissipated energy

The averaged dissipated energy (see Eq. (2)) due to
temperature fluctuations is related to the trace of the strain
tensor by [5,7,8]:

W ¼ KT

�
�Y

ð1� 2�Þ�C
�
2 Z ð ~rEÞ2dV (7)

where � is the linear thermal expansion coefficient, � the
density and C the specific heat of the material.

C. Optical beams in the paraxial approximation of
diffraction

It is well known that long cavities having weakly curved
mirrors have eigen modes accurately described by the
paraxial theory of diffraction (PTD). In the PTD, a main
propagation direction (optical axis) is assumed, and we
take it in the z direction. The coordinates in the transverse
plane are either Cartesian ðx; yÞ or polar ðr; 	Þ. If the set of
all possible light amplitude distributions (i.e. of integrable
squared modulus) in some plane z ¼ z0 is given the struc-
ture of a Hilbert space, there exist at least two well-known
complete bases, namely, the Hermite-Gauss and the
Laguerre-Gauss basis. Each basis is a family of wave
functions assumed to propagate along the z direction,
described at abscissa z by their complex amplitude and
labeled by 2 quantum numbers ðn;mÞ. For Hermite-Gauss
modes, the expression relevant for our purpose (ignoring
phase factors) is

H m;nðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�w22mþnm!n!

s
Hm

� ffiffiffi
2

p x

w

�
Hn

� ffiffiffi
2

p y

w

�

� exp

�
� r2

w2

�
(8)

where w is a width parameter, and where the HnðxÞ are the
Hermite polynomials. The corresponding intensity distri-
bution, needed according to the preceding subsection, is
thus

Im;nðx; yÞ ¼ ImðxÞ � InðyÞ (9)

with (for any integer N and real t):

INðtÞ ¼
ffiffiffiffi
2

�

s
1

2NN!w
HNð

ffiffiffi
2

p
t=wÞ2e�2t2=w2

:

For the Laguerre-Gauss modes, the transverse plane is
described in polar coordinates, and we have for the modu-

lus LðnÞ
m of the wave function:
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LðnÞ
m ðr;	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ð1þ �n0Þ�w2

m!

ðmþ nÞ!

s �
2r2

w2

�
n=2

LðnÞ
m

�
2r2

w2

�

� exp

�
� r2

w2

�
cosn	 (10)

where the LðnÞ
m ðxÞ are the generalized Laguerre polyno-

mials. The intensity distribution is consequently:

IðnÞm ðr;	Þ ¼ 2

ð1þ �n0Þ�w2

m!

ðmþ nÞ!
�
2r2

w2

�
n
LðnÞ
m

�
2r2

w2

�
2

� exp

�
� 2r2

w2

�
ð1þ cos2n	Þ: (11)

In all following calculations, the intensities are viewed (as
said in Sec. II A) as pressure distributions normalized to
1N, so that Iðr;	Þ or Iðx; yÞ have dimension m�2.

III. NOISE OF HERMITE-GAUSS MODES

A. Brownian noise: Substrate

It is possible to find a displacement vector ~u satisfying
the Navier-Cauchy equations and all but one boundary
conditions by taking the following displacement vector
field:

uxðx; y; zÞ ¼ i

4�2

Z
R2

p

k

�� kzð�þ�Þ
�þ 2�

Aðp; qÞe�kzeiðpxþqyÞdpdq

uyðx; y; zÞ ¼ i

4�2

Z
R2

q

k

�� kzð�þ�Þ
�þ 2�

Aðp; qÞe�kzeiðpxþqyÞdpdq

uzðx; y; zÞ ¼ 1

4�2

Z
R2

�
1þ kz

�þ�

�þ 2�

�
Aðp; qÞe�kzeiðpxþqyÞdpdq

(12)

where k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and where Aðp; qÞ is an arbitrary

function of ðp; qÞ. If we consider a Hermite-Gauss mode,
the remaining boundary condition is thus:

�zzðx; y; z ¼ 0Þ ¼ Im;nðx; yÞ
where Im;nðx; yÞ is given by (9). On the other hand, after
some calculations, we find:

�zzðx; y; z ¼ 0Þ ¼ � 1

4�2

Z
R2

kAðp; qÞ 2�ð�þ�Þ
�þ 2�

� eiðpxþqyÞdpdq

¼ � Y

2ð1� �2Þ
1

4�2

Z
R2

kAðp; qÞ

� eiðpxþqyÞdpdq:

So that kAðp; qÞ appears as the Fourier transform of the
intensity distribution. We get

kAðp; qÞ ¼ � 2ð1� �2Þ
Y

~ImðpÞ~InðqÞ
with

~I NðuÞ ¼
ffiffiffiffi
2

�

s
1

2NN!

Z
R
e�2x2=w2

HNð
ffiffiffi
2

p
x=wÞ2eiuxdx

¼ 2ffiffiffiffi
�

p 1

2NN!

Z 1

0
e�t2HNðtÞ2 cos

�
uwffiffiffi
2

p t

�
dt (13)

which is simply [9]:

~I NðuÞ ¼ e�u2w2=8LNðu2w2=4Þ (14)

where the LNðxÞ � Lð0Þ
N ðxÞ are the ordinary Laguerre poly-

nomials. The Fourier transform of the intensity is thus

~I m;nðp; qÞ ¼ e�k2w2=8Lmðp2w2=4ÞLnðq2w2=4Þ: (15)

Owing to (12), we can consider Aðp; qÞ as the Fourier
transform of uzðx; y; z ¼ 0Þ. We have the following expres-
sion for the elastical energy:

Um;n ¼ � 1

2

Z
R2

dxdyuzðx; y; z ¼ 0ÞIm;nðx; yÞ:

After the Parseval-Plancherel theorem (PPT), we have as
well in the Fourier space:

Um;n ¼ � 1

8�2

Z
R2

dpdq~uzðp; q; z ¼ 0Þ~Im;nðp; qÞ

or as well

Um;n ¼ 1� �2

4�2Y

Z
R2

dpdq
1

k
~Im;nðp; qÞ2

¼ 1� �2

4�2Y

Z 1

0
dke�k2w2=4

Z 2�

0
d�~Imðk cos�Þ2

� ~Inðk sin�Þ2
and finally

Um;n ¼ 1� �2

2
ffiffiffiffi
�

p
Yw

��3=2
Z 1

0
dte�t2

Z 2�

0
d�Lmðt2cos2�Þ2

� Lnðt2sin2�Þ2:
In the case m ¼ n ¼ 0 (fundamental mode), we get

U0;0 ¼ 1� �2

2
ffiffiffiffi
�

p
Yw
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which is the result first given in [4]. In all what follows, we
shall give results as relative to U0;0 under the form of a
merit factor g expressing the PSD reduction obtained by
increasing the order of the mode. We have here, for HG
modes:

g0;m;n�Um;n

U0;0

¼��3=2
Z 1

0
dte�t2

Z 2�

0
d�Lmðt2cos2�Þ2Lnðt2sin2�Þ2:

We give on Table I the values of the first g0;m;n’s. Note that
the global PSD scales as 1=w. A general remark: All merit
factors g, here and in the following, result from infinite
integrals involving a Gaussian function times a more or
less complicated polynomial. These integrals are therefore
analytically and exactly computable using any symbolic
calculation software, giving a rational number (e.g.
g0;1;1 ¼ 1275=2048). Owing to the approximative nature
of the theory, we give the result as a decimal number
(which is not the result of a numerical integration).

B. Brownian noise: Coatings

The coating, i.e. the thin reflective layer at the surface of
the mirror, has its own elastic parameters and loss angle.
The total strain energy of the mirror is therefore the sum of
the substrate energy, plus the coating contribution. In
Eq. (1), we may replace 	U by 	SUS þ	CUC, where
subscript S refers to the substrate, and subscript C to the
coating. For evaluating UC, it is no more possible to use
Eq. (3); one has to integrate the energy density. The volume
integral reduces in fact, assuming almost constant stresses
in the layer, to a surface integral times the thickness �C of
the coating. This leads [8] to

UC ¼ �C

ð1þ �Þð1� 2�Þ
Y

�1$1

with

$1 ¼
Z
R2

dpdq~Im;nðp; qÞ2 (16)

and where�1 is a factor depending on the elastic constants
of the coating’s material [8]. In practical cases,�1 is of the
order of unity, and exactly 1 if the constants are the same as

the substrate’s. We note that the integral (16) is nothing but
the L2 norm of the intensity profile, so that it can be
expressed either in the Fourier or the direct space (PPT).
We get

$1 ¼ �

w2
g1;n;m:

The relevant merit factor is

g1;n;m ¼ Gm �Gn (17)

with

GN � 2ffiffiffiffi
�

p
Z 1

0
dte�t2LNðt2Þ2:

Table II gives the results for the first g1;m;n’s. Let us note

that the corresponding PSD scales as 1=w2.

C. Thermolastic noise: Substrates

It is easy to derive from (12) the trace of the strain tensor.
We have:

Eðx; y; zÞ ¼ � 2ð1� 2�Þð1þ �Þ
4�2Y

�
Z
R2

dpdq~Imn;ðp; qÞeiðpxþqyÞe�kz

from what we obtain, in particular,

Z
R2

dxdy

��
@E

@x

�
2 þ

�
@E

@y

�
2 þ

�
@E

@z

�
2
�

¼ 2ð1� 2�Þ2ð1þ �Þ2
�2Y2

Z
R2

k2dpdq~Im;nðp; qÞ2e�2kz

(18)

and finally

Z
ð ~rEÞ2dV ¼ ð1� 2�Þ2ð1þ �Þ2

�2Y2

Z
R2

kdpdq~Im;nðp; qÞ2

or as well

Z
ð ~rEÞ2dV ¼ 4ð1� 2�Þ2ð1þ �Þ2ffiffiffiffi

�
p

Y2w3
g2;m;n

and finally, for the dissipated power

TABLE I. Some numerical values of g0;m;n.

m 0 1 2 3 4 5

n

0 1 .781 .683 .622 .579 .546

1 .781 .623 .550 .504 .471 .446

2 .683 .550 .488 .449 .421 .400

3 .622 .504 .449 .414 .389 .370

4 .579 .471 .421 .389 .366 .348

5 .546 .446 .400 .370 .348 .332

TABLE II. Some numerical values of g1;m;n.

m 0 1 2 3 4 5

n

0 1 .75 .641 .574 .528 .493

1 .75 .562 .480 .431 .396 .370

2 .641 .480 .410 .368 .338 .316

3 .574 .431 .368 .330 .303 .283

4 .528 .396 .338 .303 .279 .260

5 .493 .370 .316 .283 .260 .243
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W ¼ 4KT�2ð1þ �Þ2ffiffiffiffi
�

p
�2C2w3

g2;m;n

with

g2;m;n ¼ 2

�
ffiffiffiffi
�

p

�
Z 1

0
dtt2e�t2

Z 2�

0
d�Lnðt2cos2�Þ2Lmðt2sin2�Þ2:

The PSD of equivalent displacement is given by Eq. (2).
Table III gives the first values of the g2;m;n. Let us empha-

size that the PSD scales as 1=w3.

d. Thermoelastic noise: Coatings

Thermoelastic noise in coatings has been discussed by
several authors (we do not repeat the details, see [10,11]);
the theory foresees a scaling law in w analogous to that of
coating Brownian noise, so that the relative merit factors
are identical and already given by Table II.

IV. NOISE OF LAGUERRE-GAUSS MODES

A. Brownian noise: Substrate

The case of Laguerre-Gauss modes is more difficult. We
have an intensity profile which is (see Eq. (11)) the sum of
two terms, one is axially symmetrical, the second has
angular parity cos2n	. Each of the two terms causes its
own displacement vector. The theory being linear, the
global displacement is thus the sum of two displacement
vectors: ~uaðr; zÞ for the axisymmetrical part, and
~unðr;	; zÞ for the 	-dependent term. An axisymmetrical
displacement giving null tangential stresses on the plane
z ¼ 0 and satisfying the Navier-Cauchy equations has the
form of a Hankel transform:

~u aðr; zÞ ¼

8>>>><
>>>>:

urðr; zÞ ¼ �R1
0 AaðkÞ ��kzð�þ�Þ

�þ2� e�kzJ1ðkrÞkdk
u	ðr; zÞ ¼ 0

uzðr; zÞ ¼
R1
0 AaðkÞ

�
1þ �þ�

�þ2� kz

�
e�kzJ0ðkrÞkdk

: (19)

AaðkÞ is an arbitrary function to be determined. In all the
following, the JnðzÞ are the Bessel functions of the first
kind. The stress component normal to the surface z ¼ 0 is

�zzðr; z ¼ 0Þ ¼ �2
�ð�þ�Þ
�þ 2�

Z 1

0
AaðkÞJ0ðkrÞk2dk

¼ � Y

2ð1� �2Þ
Z 1

0
AaðkÞJ0ðkrÞk2dk:

The condition�zzðr; z ¼ 0Þ ¼ IðnÞm ðrÞ gives, after inverting
the Hankel transform of kernel J0:

AaðkÞ ¼ �2
1� �2

Y

1

k
~IðnÞa;mðkÞ (20)

with the following definition:

~I ðnÞ
a;mðkÞ �

Z 1

0
J0ðkrÞIðnÞm ðrÞrdr: (21)

This has been already calculated in [1], and the result is

~I ðnÞ
a;mðkÞ ¼ 1

2�
e�yLmðyÞLmþnðyÞ ðy � k2w2=8Þ:

(22)

The z component of the displacement is (at z ¼ 0)

ua;z ¼ �2
1� �2

Y

Z 1

0

~IðnÞa;mðkÞJ0ðkrÞdk:

Let us consider now the 	-dependent term. The corre-
sponding displacement vector giving null tangential
stresses on the plane z ¼ 0, satisfying the Navier-Cauchy
equations and having the right angular parity, is

urðr; 	; zÞ ¼
Z 1

0
AðkÞ@rJ2nðkrÞe�kz �� kzð�þ�Þ

�þ 2�

� dk cos2n	

u	ðr; 	; zÞ ¼ �
Z 1

0

1

r
AðkÞJ2nðkrÞe�kz �� kzð�þ�Þ

�þ 2�

� dk sin2n	

uzðr; 	; zÞ ¼
Z 1

0
AðkÞJ2nðkrÞe�kz

�
1þ kz

�þ�

�þ 2�

�

� kdk cos2n	: (23)

The boundary condition reads

Z 1

0
AðkÞJ2nðkrÞk2dk cos2n	 ¼ IðnÞm ðrÞ cos2n	

from what we get, after inverting the Hankel transform of
kernel J2n,

TABLE III. Some numerical values of the g2;m;n.

m 0 1 2 3 4 5

n

0 1 .906 .866 .841 .824 .811

1 .906 .791 .741 .712 .691 .676

2 .866 .741 .688 .656 .634 .618

3 .841 .712 .656 .623 .600 .583

4 .824 .691 .634 .600 .577 .559

5 .811 .676 .618 .583 .559 .542
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AðkÞ ¼ �2
1� �2

Y

1

k
~IðnÞm ðkÞ

with the definition

~I ðnÞ
m ðkÞ �

Z 1

0
J2nðkrÞIðnÞm ðrÞrdr: (24)

The result is (see [12])

~I ðnÞ
m ðkÞ ¼ 1

2�

m!

ðmþ nÞ! e
�yynLðnÞ

m ðyÞ2 ðy � k2w2=8Þ:
(25)

At this point, the global pressure distribution is

pðr;	Þ ¼ IðnÞm ðrÞ þ IðnÞm ðrÞ cos2n	
whereas the global z component of the displacement at z ¼
0 is

uzðr;	Þ ¼ �2
1� �2

Y

�Z 1

0
dkJ0ðkrÞ~IðnÞa;mðkÞ2

þ
Z 1

0
dkJ2nðkrÞ~IðnÞm ðkÞ2 cos2n	

�

and consequently

UðnÞ
m ¼ � 1

2

Z 1

0
dkrdr

Z 2�

0
d	uzðr; 	Þpðr;	Þ

¼ 2�ð1� �2Þ
Y

�
$ðnÞ

0;a;m þ 1

2
$ðnÞ

0;m

�

with the definitions

$ðnÞ
0;a;m ¼

Z 1

0
dk~IðnÞa;mðkÞ2 ¼ 1

4�3=2w
GðnÞ

a;m

$ðnÞ
0;m ¼

Z 1

0
dk~IðnÞm ðkÞ2 ¼ 1

4�3=2w
GðnÞ

m

with

GðnÞ
a;m � 2

ffiffiffiffi
2

�

s Z 1

0
dxe�2x2Lmðx2Þ2Lmþnðx2Þ2

and

GðnÞ
m � 2

ffiffiffiffi
2

�

s �
m!

ðmþ nÞ!
�
2 Z 1

0
dxe�2x2x4nLðnÞ

m ðx2Þ4

and at the end

UðnÞ
m ¼ U0;0g

ðnÞ
0;m (26)

with

gð0Þ0;m ¼ Gð0Þ
a;m gðnÞ0;m ¼ GðnÞ

a;m þ 1

2
GðnÞ

m ðn � 0Þ:

See Tables IV and V.

B. Brownian noise: Coating

The fact already mentioned that the Brownian noise of
the coating depends on theL2 norm of the intensity, which
can be evaluated in the direct or Fourier space, makes the
result very simple. Indeed, due again to the PPT, the L2

norms of both radial distributions of intensity (correspond-
ing to the axisymmetrical term and to the term in cos2n	
respectively) for the Laguerre-Gauss modes are given by
the two equivalent integrals:

J ðnÞ
m � 2

�
m!

ðmþ nÞ!
�
2 Z 1

0
e�2xx2nLðnÞ

m ðxÞ4dx

¼ 2
Z 1

0
e�2xLmðxÞ2LmþnðxÞ2dx

each of these gives the merit figure for an axisymmetrical

LGðnÞ
m mode. Now, considering the factor of 1=2 arising

from the angular integration (of cos22n	), the global merit
figure corresponding to the sum of the two contributions is

gðnÞ1;m ¼
�
1þ 1

2

�
J ðnÞ

m ðn � 0Þ gð0Þ1;m ¼ J ð0Þ
m : (27)

See Table VI for the merit figures (keeping in mind that the
PSD scales in 1=w2). We recall the results (Table VII) for
axisymmetrical LG modes (modes in expðin	Þ).

C. Thermoelastic noise: Substrate

Here the trace of the strain tensor is again shared be-
tween the axisymmetrical part and the angle dependent
part. For the axisymmetrical part Ea we have [8]

TABLE IV. Some numerical values of the gðnÞ0;m.

m 0 1 2 3 4 5

n

0 1 .598 .462 .390 .343 .310

1 .781 .558 .458 .398 .357 .326

2 .623 .475 .402 .356 .323 .297

3 .540 .427 .368 .330 .302 .280

4 .486 .393 .344 .310 .286 .267

5 .448 .367 .324 .295 .273 .256

TABLE V. Recall some numerical values of the GðnÞ
a;m corre-

sponding to axial symmetry (modes in expðin	Þ).
m 0 1 2 3 4 5

n

0 1 .598 .462 .390 .343 .310

1 .687 .496 .409 .356 .319 .292

2 .571 .440 .374 .331 .301 .278

3 .505 .402 .348 .312 .286 .265

4 .459 .374 .328 .297 .274 .255

5 .426 .352 .311 .284 .263 .246
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EaðrÞ ¼ 2ð1� 2�Þð1þ �Þ
Y

Z 1

0
kdk~IðnÞa;mðkÞJ0ðkrÞe�kz:

The angularly dependent part is

Enðr;	Þ ¼ 2ð1� 2�Þð1þ �Þ
Y

�
Z 1

0
kdk~IðnÞm ðkÞJ2nðkrÞe�kz cos2n	:

Now the gradient of En has the following components:

@rEnðr; z; 	Þ ¼ E1 cos2n	

1

r
@	Enðr; z; 	Þ ¼ E2 sin2n	

@zEnðr; z; 	Þ ¼ E3 cos2n	

with, respectively,

E1ðr; zÞ ¼ 2ð1� 2�Þð1þ �Þ
Y

Z 1

0
k2dk~IðnÞm ðkÞJ02nðkrÞe�kz

E2ðr; zÞ ¼ � 2ð1� 2�Þð1þ �Þ
Y

Z 1

0
k2dk~IðnÞm ðkÞ 2n

kr
J2nðkrÞ

� e�kz

E3ðr; zÞ ¼ � 2ð1� 2�Þð1þ �Þ
Y

Z 1

0
k2dk~IðnÞm ðkÞJ2nðkrÞ

� e�kz

so that

Z 2�

0
ð ~rEnÞ2d	 ¼ �ðE2

1 þ E2
2 þ E2

3Þ:

Now, we have on one hand:

E 1 þ E2 ¼ 2ð1� 2�Þð1þ �Þ
Y

�
Z 1

0
k2dk~IðnÞm ðkÞJ2n�1ðkrÞe�kz

and on the other hand the product E1E2 vanishes in a radial
integration because for n � 0, the function J2n is zero both
at r ¼ 0 and at r ¼ 1. We get, therefore,

Z 2�

0
d	

Z 1

0
rdrð ~rEnÞ2 ¼ �

Z 1

0
rdr½ðE1 þ E2Þ2 þ E2

3�

and at the end, using the closure relation for Bessel func-
tions,

Z
ð ~rEnÞ2dV ¼ 4�ð1� 2�Þ2ð1þ �Þ2

Y2
$2

with

$2 ¼
Z 1

0
k2dk~IðnÞm ðkÞ2:

An entirely analogous calculation can be carried out for the
axisymmetrical part Ea, except that a factor of 2� appears
in the azimuthal integration instead of �, so that

Z
ð ~rEnÞ2dV ¼ 8�ð1� 2�Þ2ð1þ �Þ2

Y2
$2;a

with

$2;a ¼
Z 1

0
k2dk~IðnÞa;mðkÞ2:

Now we have after some straightforward calculation

$2 ¼ 1

2�
ffiffiffiffi
�

p
w3

GðnÞ
2;m; $2;a ¼ 1

2�
ffiffiffiffi
�

p
w3

GðnÞ
2;a;m

with:

GðnÞ
2;m ¼ 8

ffiffiffiffi
2

�

s �
m!

ðmþ nÞ!
�
2 Z 1

0
t4nþ2LðnÞ

m ðt2Þ4e�2t2dt

and

GðnÞ
2;a;m ¼ 8

ffiffiffiffi
2

�

s Z 1

0
t2Lmðt2Þ2Lmþnðt2Þ2e�2t2dt:

By adding the two contributions to W, we get at the end:

W ¼ 4ð1� 2�Þ2ð1þ �Þ2ffiffiffiffi
�

p
Y2w3

gðnÞ2;m (28)

with

gðnÞ2;m ¼ GðnÞ
2;a;m þ 1

2
GðnÞ

2;m ðn � 0Þ; and gð0Þ2;m ¼ Gð0Þ
2;m:

See in Table VIII the first values of the gðnÞ2;m, keeping in

mind that the PSD scales as w3.

TABLE VII. Some numerical values of the J ðnÞ
m .

m 0 1 2 3 4 5

n

0 1 .5 .344 .266 .218 .186

1 .5 .312 .234 .190 .161 .140

2 .375 .250 .194 .161 .139 .122

3 .312 .215 .170 .143 .125 .111

4 .273 .191 .154 .131 .114 .102

5 .246 .174 .141 .121 .107 .096

TABLE VI. Some numerical values of the gðnÞ1;m.

m 0 1 2 3 4 5

n

0 1 .5 .344 .266 .218 .186

1 .75 .469 .351 .285 .241 .210

2 .562 .375 .292 .242 .208 .183

3 .469 .322 .256 .215 .187 .166

4 .410 .287 .231 .196 .172 .153

5 .369 .261 .212 .181 .160 .144
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We recall hereafter (Table IX) the values for axisym-
metrical LG modes. The thermoelastic noise being directly
related to strain gradient, we are not surprised to see that
modes having intensity nodes give worse merit factors than
the axisymmetric modes of same quantum numbers.

D. Thermoelastic noise: Coatings

As in the preceding sections, the scaling law being
analogous to the case of Brownian noise, the relative merit
factors are already given by Tables VI and VII.

V. CLIPPING

The preceding calculations were dealing with infinite
mirrors. This makes sense for beams of cross section which
are reasonably small compared to the radius a of the
mirror. It also makes sense to compare HG and LG modes
in the same conditions. But we keep in mind that in real
world, mirrors have finite radii. If the w parameter is
imposed from geometrical considerations, the preceding
numerical results are sufficient. In the case where w can be
freely chosen, one has to choose it for obtaining the largest
cross section consistent with negligible clipping losses (i.e.
the fraction of light power escaping the mirror). It is well
known that the effective cross section is an increasing
function of the order ðn;mÞ. The ratio �n;m ¼ a=wn;m

giving (arbitrarily) 1 ppm loss for the H m;n (or the ratio

�ðnÞ
m ¼ a=wðnÞ

m for LðnÞ
m ) is thus an increasing function of

ðm; nÞ, and this should be included in the comparison
between modes. To be specific, the results of the two
preceding tables should be corrected, giving a new factor:

ĝ n;m ¼ gn;m �
�
�n;m

�0;0

�
sþ1

where s is the scaling factor (s ¼ 0 for the Brownian
thermal noise in the substrate, s ¼ 1 for the Brownian or
thermoelastic thermal noise in the coating, s ¼ 2 for the
thermoelastic noise in the substrate, see [11]). We therefore
give in the two following Tables X and XI the values of the
ratio, obtained by a numerical integration.

VI. CONCLUSION

The calculation of relative figures of merit for arbitrary
Hermite or Laguerre Gaussian beams shows that axial
symmetry is always preferable. Regarding Brownian noise,
it shows that the efficiency of increasing the order of the
modes is a general property, whatever the symmetry prop-
erties of the intensity distribution of the beam are. At
comparable order, the efficiency is however the best for
axially symmetrical LG modes, then for nonaxially sym-
metrical LG, and eventually for HG modes. Regarding
thermoelastic noise, it is clear that it may increase with
the order of the readout beam if the w parameter is taken
into account (in particular in the substrate case).
The global conclusion is that there is a benefit in using

high-order modes. These assessments were made in the
approximation of an infinite mirror surface, and we are
trying to extend the analysis to finite mirrors.
The gain in the various kinds of thermal noises is ob-

viously not the only criterion in the design of a real optical
configuration. Numerical simulations and laboratory ex-

TABLE VIII. Some numerical values of the gðnÞ2;m.

m 0 1 2 3 4 5

n

0 1 .754 .642 .573 .526 .490

1 .906 .749 .667 .612 .571 .539

2 .791 .658 .591 .546 .513 .487

3 .734 .610 .549 .509 .479 .456

4 .698 .578 .521 .484 .456 .434

5 .673 .556 .500 .465 .439 .418

TABLE IX. Some numerical values of the GðnÞ
2;a;m: case of

axisymmetrical LG modes (modes in expðin	ÞÞ.
m 0 1 2 3 4 5

n

0 1 .754 .642 .573 .526 .490

1 .437 .390 .357 .333 .314 .299

2 .329 .306 .287 .272 .260 .250

3 .275 .261 .248 .238 .229 .221

4 .242 .231 .222 .214 .207 .201

5 .218 .210 .203 .197 .191 .186

TABLE XI. Some numerical values of the ratio � � a=w for
1 ppm clipping losses (Laguerre-Gauss modes).

m 0 1 2 3 4 5

n

0 2.628 3.145 3.548 3.891 4.197 4.475

1 2.889 3.347 3.720 4.044 4.336 4.603

2 3.093 3.520 3.873 4.184 4.465 4.723

3 3.267 3.675 4.014 4.313 4.586 4.830

4 3.423 3.815 4.143 4.434 4.699 4.916

5 3.565 3.946 4.265 4.549 4.803 4.968

TABLE X. Some numerical values of the ratio � � a=w for
1 ppm clipping losses (Hermite-Gauss modes).

m 0 1 2 3 4 5

n

0 2.628 2.889 3.123 3.333 3.525 3.703

1 2.889 3.093 3.295 3.485 3.662 3.829

2 3.123 3.295 3.475 3.647 3.812 3.968

3 3.333 3.485 3.647 3.807 3.961 4.108

4 3.525 3.662 3.812 3.961 4.106 4.245

5 3.703 3.829 3.968 4.108 4.245 4.379
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periments are necessary to assess the compatibility of high-
order modes operation with the locking systems and the
stability of the mirrors steering control loops in an actual
interferometer.
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