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Thermal noise in advanced gravitational wave interferometric antennas: A comparison between
arbitrary order Hermite and Laguerre Gaussian modes
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We study the thermal noise caused by mechanical or thermomechanical dissipation in mirrors of
interferometric gravitational wave antennas. We give relative figures of merit for arbitrary Hermite-Gauss
or Laguerre-Gauss optical beams regarding the Brownian and thermoelastic noises (substrate and coating)

in the infinite mirror approximation.
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L. INTRODUCTION

One of the main limits to the sensitivity of interferomet-
ric gravitational wave antennas existing, like Virgo or
LIGO, is the thermal noise caused by thermodynamical
processes, essentially in the material of the mirrors of long
Fabry-Perot cavities. For the next generation of instru-
ments (“‘advanced” detectors), several strategies have
been proposed to reduce this kind of noise.

One possible way [1] is to use optical modes of trans-
verse quantum numbers higher than the fundamental’s,
expecting a large cancellation of surface fluctuations by
averaging on a widely spread phase surface. The analyses
were restricted up to now to axially symmetrical modes,
excluding Hermite-Gauss modes and nonaxisymmetrical
Laguerre-Gauss modes. Axial symmetry allows a simple
calculation, but is not a fundamental restriction. The ques-
tion of the efficiency of more general modes, not neces-
sarily axisymmetric, remained thus open. We show here
that a general calculation is possible at least in the limit of a
mirror seen as a half space limited by an infinite plane. This
is a first step towards a general assessment using a more
accurate theory with finite mirrors. We think however that
even in this restricted framework, our results may give
some ideas about the respective efficiencies of symmetrical
and nonsymmetrical modes of any kind. We focus on
relative merit factors of the various readout beams, merit
factors that are invariant with respect to the material’s
elastic and thermoelastic parameters.

II. THEORETICAL BASIS

A. Fluctuation-dissipation
1. Brownian noise

We use the fluctuation-dissipation theorem (FDT) and
the resulting principle derived by Levin [2]. Recall briefly
that the FDT states that the power spectral density (PSD) of
Brownian noise in an elementary dynamical system de-
scribed by a degree of freedom x and a driving force F is
given by
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where T is the temperature of the system, kp the
Boltzmann constant, and Z the mechanical impedance,
ie. Z=0/F, if v = x. At this point, Levin has shown
that at low frequency (far from mechanical resonance of
the mirror’s substrate) the real part of the impedance is
given by

R e|Z] = 4mfOU

where U is the elastic energy stored in the mirror by a static
pressure distribution having the transverse profile of the
intensity of the readout beam, and normalized to 1N, so
that U has dimension J/N2. ® is a loss angle characteriz-
ing internal dissipation (the inverse of the mechanical Q
factor). Obviously, at frequencies near resonances, the
theory becomes far more intricate (see [3,4]). The question
of the spectral density of noise nevertheless amounts there-
fore to the calculation of U for all possible beam profiles,
the low-frequency tail (a part of major interest) of the PSD
being simply:

4k T

5. =22

DU. (1

2. Thermoelastic noise

Another source of noise is related to the coupling of
temperature fluctuations with the linear thermal expansion
of the material. The Levin formula again holds, and we
have [5]

4k, T
0)2

5.(f) =

w 2)

where W is the averaged dissipated power. The pressure
distribution being normalized to 1N, W has dimension
W/N?. How to compute U and W is the scope of the
next paragraph.
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B. Basics of static linear elasticity

The aim of the present paragraph is to define notations to
be employed in the following. Recall briefly that under
applied internal and/or external forces, a stressed solid is
deformed so that the position of atoms inside moves ac-
cording to a displacement vector field (7). The aim of
elasticity theory [6] is to determine # from the applied
forces and boundary conditions. We consider an infinite
solid limited only by an infinite plane z = 0 and a pressure
distribution p(x, y) applied on that plane. (This is a picture
of a light beam hitting a mirror large with respect to the
beam transverse extension.)

1. Static strain energy

The elastic energy stored in the solid may be evaluated
in the case of only one interface (the plane z = 0) as

1
v=—3 [ peyutyz=0. G

Our problem is now reduced to compute u_ from p(x, y).
The strain tensor E;; is related to i by

Ey(D) = 510,(7) + 0,7}

In an isotropic medium and in the linear regime, the stress
tensor ©;;(7) is related in turn to the strain tensor by a
relation analogous to Hooke’s law:

where E = E; is the trace of the strain tensor, and where A
and u are the Lamé coefficients. Recall that the Lamé
coefficients are related to the Young modulus Y and to
the Poisson ratio o by

. oY . Y
T U+o00-20 P 2iro

The displacement vector must obey the elastodynamics
equation (p being the density of the bulk material):

82u,~ o
r).
o ()

In the static case, this reduces to the Navier-Cauchy equa-
tion:

A

aj®ij(?) =P

Moreover, the boundary conditions on the limiting plane

are
0,y z=0=pky), 0, (x,y,z2=0)=0, .
0,.(x,y,z=0)=0.

Another way of evaluating the strain energy is to compute
the energy density given by

[AEZ + 2M(EijEij)]-

1 1
€(x,y,2) = QEUQ‘./‘ -5

Then
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U=[ €(x, v, z)dxdydz (6)
%

where V is the space region of interest. Equation (3) may
be employed for the infinite substrate whereas Eq. (6) is
mandatory in the case of the coatings (limited slab).

2. Thermoelastic dissipated energy

The averaged dissipated energy (see Eq. (2)) due to
temperature fluctuations is related to the trace of the strain
tensor by [5,7,8]:

W=K T[

T=2o5C —O;Z)pc]z f (VE)2dV (7)

where « is the linear thermal expansion coefficient, p the
density and C the specific heat of the material.

C. Optical beams in the paraxial approximation of
diffraction

It is well known that long cavities having weakly curved
mirrors have eigen modes accurately described by the
paraxial theory of diffraction (PTD). In the PTD, a main
propagation direction (optical axis) is assumed, and we
take it in the z direction. The coordinates in the transverse
plane are either Cartesian (x, y) or polar (r, ¢). If the set of
all possible light amplitude distributions (i.e. of integrable
squared modulus) in some plane z = z is given the struc-
ture of a Hilbert space, there exist at least two well-known
complete bases, namely, the Hermite-Gauss and the
Laguerre-Gauss basis. Each basis is a family of wave
functions assumed to propagate along the z direction,
described at abscissa z by their complex amplitude and
labeled by 2 quantum numbers (n, m). For Hermite-Gauss
modes, the expression relevant for our purpose (ignoring
phase factors) is

oo e (£ 1)

m!n!
2
X exp(— r_2) (8)
w

where w is a width parameter, and where the H,(x) are the
Hermite polynomials. The corresponding intensity distri-
bution, needed according to the preceding subsection, is
thus

Lyn(x,y) = 1,,(x) X 1,(y) ©))
with (for any integer N and real 7):
I = 1|2 e Hy (3 )22
N 2NN '

For the Laguerre-Gauss modes, the transverse plane is
described in polar coordinates, and we have for the modu-

lus L% of the wave function:
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4 m! (2;’2 n/2 272
(n) _ = (m ="
Ln'(r, 4) \/(1 + 8,0)Tw?* (m + n)!\w2> Lo (wz)

2
X exp( ) cosng (10)
w?

where the L,(,?)(x) are the generalized Laguerre polyno-
mials. The intensity distribution is consequently:

2 m!

! 2r2\n 2r%\2
(r, ¢) (14 8,0)7Tw? (m + n)! \w? w2
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In all following calculations, the intensities are viewed (as
said in Sec. [T A) as pressure distributions normalized to
IN, so that I(r, ¢) or I(x, y) have dimension m~2.

II1. NOISE OF HERMITE-GAUSS MODES

A. Brownian noise: Substrate

It is possible to find a displacement vector i satisfying
the Navier-Cauchy equations and all but one boundary
conditions by taking the following displacement vector
field:

2r?
X exp(— —2)(1 + cos2nag). (11)
w
J
— kz(A + .
u(x,y, z) = f % 3 _Z+_(2 M)A(p, g)e keilPrta) dpdq
kz(A + . ,
uy(x,y,z) = / % )t+(2 M)A(p, g)e kel dpdg (12)
u.(x,y,2) = f ( /\ n Z,u) (p, g)e kel +aY) dpdq

where k = +/p?> + ¢° and where A(p, q) is an arbitrary
function of (p, g). If we consider a Hermite-Gauss mode,

the remaining boundary condition is thus:
0.(xyz=0=

where 1, ,(x, y) is given by (9). On the other hand, after
some calculations, we find:

1 2u(A+ u)
_ kA(p, ) 222 ° 22
4772 ][RZ (P, q) A+2u

Im,n(x’ y)

0.(xyz=0=

X elP ) dpdg
Y 1
= kA(p,
2(1 - o?) 4r? fRz (P 4)
X e"(P”qy)dpdq.
So that kA(p, g) appears as the Fourier transform of the
intensity distribution. We get

2(1 — o?)

kA(p, q) = — v

I.(p)I,(q)

with

i 2 1 s -
Iy(u) = \/;ZNN! fR e 2/ Hy (V2x /w) et  dx
-IZHN(z)zcos(i‘/gz)dz (13)

_2 b f "
ﬁ 28N S,
which is simply [9]:
Ty(u) = e /SLy(u?w?/4) (14)

where the Ly(x) = Lgf,)) (x) are the ordinary Laguerre poly-

|
nomials. The Fourier transform of the intensity is thus
Lon(p.q) = e 8L, (PPw? /4L, (¢w?/4). (15)

Owing to (12), we can consider A(p, g) as the Fourier
transform of u_(x, y, z = 0). We have the following expres-
sion for the elastical energy:

1
-3 fRZ dxdyu,(x,y,z

After the Parseval-Plancherel theorem (PPT), we have as
well in the Fourier space:

Uﬂ’l,ﬂ = = O)Im,n(x: y)'

1 ) )
Unn = =g f dpdqii,(p, g,z = 0)1,,,(p, q)
m Jre
or as well
1 — o2 1.
=—— dpd —I L q)?
mn = 3y fR pdq—1.(p, q)
1 —
2‘7 f diee™ v /4 f dal,,(kcosar)?
47°Y
X I, (k sina)?
and ﬁnally
Um,n - 2\/_YW _%/2‘[ dfﬂ_t / daL (tZCOS a)2

X L, (*sin’a)?.

In the case m = n = 0 (fundamental mode), we get
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which is the result first given in [4]. In all what follows, we
shall give results as relative to Uy, under the form of a
merit factor g expressing the PSD reduction obtained by
increasing the order of the mode. We have here, for HG
modes:

0 2
:W—s/zf d,e"z[ 7TdaLm(tzcos2a)zL,,(z‘zsinzoz)z.
0 0

We give on Table I the values of the first g, ,’s. Note that
the global PSD scales as 1/w. A general remark: All merit
factors g, here and in the following, result from infinite
integrals involving a Gaussian function times a more or
less complicated polynomial. These integrals are therefore
analytically and exactly computable using any symbolic
calculation software, giving a rational number (e.g.
8011 = 1275/2048). Owing to the approximative nature
of the theory, we give the result as a decimal number
(which is not the result of a numerical integration).

B. Brownian noise: Coatings

The coating, i.e. the thin reflective layer at the surface of
the mirror, has its own elastic parameters and loss angle.
The total strain energy of the mirror is therefore the sum of
the substrate energy, plus the coating contribution. In
Eq. (1), we may replace ¢U by ¢dsUg + ¢dpoUc, where
subscript S refers to the substrate, and subscript C to the
coating. For evaluating U, it is no more possible to use
Eq. (3); one has to integrate the energy density. The volume
integral reduces in fact, assuming almost constant stresses
in the layer, to a surface integral times the thickness 6. of
the coating. This leads [8] to

(I+o)(1—-20)

Uc=6¢ %

(O
with

o = [ dpdal,(p. a7 (16)
and where (), is a factor depending on the elastic constants

of the coating’s material [8]. In practical cases, (), is of the
order of unity, and exactly 1 if the constants are the same as
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the substrate’s. We note that the integral (16) is nothing but
the £? norm of the intensity profile, so that it can be
expressed either in the Fourier or the direct space (PPT).
We get
T
W) = ) 81.n,m-
w

The relevant merit factor is

81nm = Gm X Gn (17)

N — 0 N .

Table II gives the results for the first g, ,,,’s. Let us note
that the corresponding PSD scales as 1/w?.

C. Thermolastic noise: Substrates

It is easy to derive from (12) the trace of the strain tensor.
We have:

2(1 = 20)(1 + o)
4y

X f _dpdql,,, (p, g)e'?* ®ek
R

E(x,y,2) = —

from what we obtain, in particular,

JE\2 0E\2 0E\2
Jo e G+ ) (%) ]
R2 dx dy 0z
2(1 = 20)%(1 + 0)? -
_ ( 0') ( 0') [Zkzdpdqlnl,n(p’ q)Ze*ZkZ
R

T*Y?
(18)
and finally
= (1 -20)*(1 + o) =
[ (VE)?dv = 53 f kdpdql,,,(p, q)°
Y R2
or as well
. 4(1 — 20041 + o)?
f (VEPay = =25 5" gans

and finally, for the dissipated power

TABLE I. Some numerical values of g, . TABLE II.  Some numerical values of g, ,, .

m 0 1 2 3 4 5 m 0 1 2 3 4 5
n n

0 1 781 .683 .622 579 .546 0 1 5 .641 574 528 493
1 781 .623 .550 .504 471 446 1 5 .562 480 431 .396 .370
2 .683 550 488 449 421 400 2 .641 480 410 .368 .338 316
3 .622 504 449 414 .389 .370 3 574 431 .368 .330 .303 283
4 579 471 421 .389 .366 .348 4 528 .396 338 .303 279 .260
5 .546 446 400 .370 .348 332 5 493 .370 316 283 .260 .243
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TABLE III.  Some numerical values of the g, ,-

m 0 1 2 3 4 5
n
0 1 906 .866 .841 .824 811
1 906 791 741 712 .691 .676
2 .866 741 .688 .656 .634 .618
3 .841 712 .656 .623 .600 .583
4 .824 .691 .634 .600 577 .559
5 811 .676 .618 .583 .559 542

. 4KTa*(1 + o)?

- ﬁp2C2W3 82,mn
with

2

82,mn =

G

00 2
X f dirre " j i daL,(f*cos’a)’L,,(*sin’a)>.
0 0
The PSD of equivalent displacement is given by Eq. (2).
Table III gives the first values of the g5, ,. Let us empha-

size that the PSD scales as 1/w?.
|

u,(r,z) =

i (1, 2) = { Holr?) =0

u(rz) = [2 Au<k)(

A, (k) is an arbitrary function to be determined. In all the
following, the J,(z) are the Bessel functions of the first
kind. The stress component normal to the surface z = 0 is

0.(rz=0) = % " A0k
Y 00
ST ﬁ) A, (k) Jo(kr)i2dk.

The condition ©_(r, z = 0) = I (r) gives, after inverting
the Hankel transform of kernel J,:

1-— 0'1(,,)

Aa(k) = -2 % am(k) (20)
with the following definition:
1.k = [ Jo(kr) IS (r)rdr. 1)
0

This has been already calculated in [1], and the result is

(y = k*w?/8).
(22)

~(n | .
70,k = 57€ L)Ly in ()

The z component of the displacement is (at z = 0)
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d. Thermoelastic noise: Coatings

Thermoelastic noise in coatings has been discussed by
several authors (we do not repeat the details, see [10,11]);
the theory foresees a scaling law in w analogous to that of
coating Brownian noise, so that the relative merit factors
are identical and already given by Table II.

IV. NOISE OF LAGUERRE-GAUSS MODES

A. Brownian noise: Substrate

The case of Laguerre-Gauss modes is more difficult. We
have an intensity profile which is (see Eq. (11)) the sum of
two terms, one is axially symmetrical, the second has
angular parity cos2n¢. Each of the two terms causes its
own displacement vector. The theory being linear, the
global displacement is thus the sum of two displacement
vectors: ii,(r,z) for the axisymmetrical part, and
i, (r, ¢, z) for the ¢-dependent term. An axisymmetrical
displacement giving null tangential stresses on the plane
z = 0 and satisfying the Navier-Cauchy equations has the
form of a Hankel transform:

= [3 A (k) Y ek g (kr)kdk

A+2u
19)

+ e kz) K Jo(kr)kdk

.
Ug = —2——— f 10 (k) Jo(kr)dk.
0
Let us consider now the ¢-dependent term. The corre-
sponding displacement vector giving null tangential
stresses on the plane z = 0, satisfying the Navier-Cauchy
equations and having the right angular parity, is

_ [ L —kz(A+ )
0 6,2 = [ A0, Iy (et E T
X dk cos2n¢
o ] o= kz(A + w)
I _ kz
uy(r, b, 2) fo Ay (et A
X dk sin2n ¢
00 _ A+ u
u(r, ¢, z) = j; A(k)J,, (kr)e kz(l + kz g 2M>

X kdk cos2nd. (23)

The boundary condition reads

f " A(K) Ty, (kK2 dk cos2nd = 19(r) cos2n b
0

from what we get, after inverting the Hankel transform of
kernel J,,,
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1 1
Ay = 21 =71 T
Y

with the definition

"%k) = [ " 1, (kDI (P rdr (24)

0
The result is (see [12])
(n) _ —}n(”) 2 = 7.2,,,2
I (k) = ( - ), YL (y)° (= kEw?/8).
(25)

At this point, the global pressure distribution is
p(r, ) = I (r) + I} (1) cos2np

whereas the global z component of the displacement at z =
0is

1—0

uz(r: d)) ==

( f diJo(kr) T, (k)?

+ f koZn(kr)i‘,:;)(k)2 cos2n¢)
0
and consequently

1 00 T
U = -5 L dkrdr L 7 dgu.(r. $)p(r, §)

27T(1 - 0'2) (n) 1 (n)
= Y <w0,a,m + Ewo,m>
with the definitions

00 - 1
=) dkI), (k)? =
O.am _[) (0 4732y

G,

@y = f dkI} (k)> = = /2 G

with

2 00
Gg,l})n = 2\/;/;) dxe L, (x?)*L,, ., (x?)>
G(n) =9 2( ) / dxe=2% 4nL(”)(x2)4
(m + n)‘

and at the end

and

Ui’ = Uoo8tm (26)
with
g, =GO gl =G+ 2G<">( # 0).

See Tables IV and V.
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TABLE IV. Some numerical values of the g, (m

m 0 1 2 3 4 5
n

0 1 .598 462 .390 .343 310
1 781 558 458 .398 357 326
2 .623 A75 402 .356 323 297
3 .540 427 .368 .330 302 .280
4 486 393 344 310 .286 267
5 448 .367 324 295 273 256

B. Brownian noise: Coating

The fact already mentioned that the Brownian noise of
the coating depends on the £? norm of the intensity, which
can be evaluated in the direct or Fourier space, makes the
result very simple. Indeed, due again to the PPT, the L2
norms of both radial distributions of intensity (correspond-
ing to the axisymmetrical term and to the term in cos2n¢
respectively) for the Laguerre-Gauss modes are given by
the two equivalent integrals:

(n) _— m! )2[ —2x 2n (n)( 4
W= — L d

<(m + n)! (x)*dx
=2 [T L P Ly (o
0

each of these gives the merit figure for an axisymmetrical

LG mode. Now, considering the factor of 1/2 arising
from the angular integration (of cos?>2n ¢), the global merit
figure corresponding to the sum of the two contributions is

8im = (1 +

See Table VI for the merit figures (keeping in mind that the
PSD scales in 1/w?). We recall the results (Table VII) for
axisymmetrical LG modes (modes in exp(in¢)).

)“’)( 00 0 =79 @

C. Thermoelastic noise: Substrate

Here the trace of the strain tensor is again shared be-
tween the axisymmetrical part and the angle dependent
part. For the axisymmetrical part £, we have [8]

TABLE V. Recall some numerical values of the Ga m corre-
sponding to axial symmetry (modes in exp(ing)).

m 0 1 2 3 4 5

0 1 .598 462 .390 .343 310
1 .687 496 409 .356 319 292
2 571 440 374 331 .301 278
3 .505 402 .348 312 .286 265
4 459 374 328 297 274 255
5 426 352 311 284 263 .246
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TABLE VI. Some numerical values of the g(")

1,m*

m 0 1 2 3 4 5
n

0 1 5 344 .266 218 .186
1 75 469 351 285 241 210
2 562 375 292 242 .208 183
3 469 322 256 215 .187 .166
4 410 287 231 .196 172 153
5 .369 261 212 181 .160 144

TABLE VII. Some numerical values of the J 5,2').

m 0 1 2 3 4 5
n

0 1 5 344 .266 218 186
1 5 312 234 .190 161 .140
2 375 250 .194 161 .139 122
3 312 215 .170 143 125 111
4 273 191 154 131 114 .102
5 246 174 141 121 107 .096

B =21 2“;)(1 o) fo " RdkI, ()T (kr)e .

The angularly dependent part is

E (r.d) 2(1 = 20)(1 + o)

Y
X foo kdkI® (k)Jo, (kr)e ™ cos2n .
0

Now the gradient of E,, has the following components:

3,E,(r,z, ¢) = E cos2ne
1 .
v 04E,(r, 2, ) = E;sin2n¢
aZEn(r; 2, d)) = 53 COS2nd)

with, respectively,

2(1 —20)(1 + 00 »
E(r,2) = ( (;)( 7) / K2dkI (k)T (kr)e ™%
0
2(1 —20)(1 + 0 - 2
&y(r, ) = — 2L 22001+ 0) f Rk () 2" 1, (kr)
Y 0 kr
X e~k

o)1+ o)

2(1 —2
53(r,z)=— ( Y

]0 " RdkIY (k) s, (kr)
X ek

so that

fo T(VE,2d = m(E2 + & + £).

Now, we have on one hand:

2(1 = 20)(1 + o)
Y

X [ ¥ IRAKT (k)T (kr)e
0

gl+52:

and on the other hand the product £;&, vanishes in a radial
integration because for n # 0, the function J,,, is zero both
at » = 0 and at r = oo, We get, therefore,

27T 00 > 00
/ dgb/ rdr(VE,)> = 77'/ rdr[(&, + &) + 5%]
0 0 0

and at the end, using the closure relation for Bessel func-
tions,

47(1 — 20)*(1 + o)?
Y2

W)

[ (VE,)2dV =
with
@, = fo " kI (k)2
An entirely analogous calculation can be carried out for the

axisymmetrical part E,, except that a factor of 27 appears
in the azimuthal integration instead of 7, so that

N _ 2 + 2
[(VEn)de _ 8m(1 202 1+ o) o,
Y >

with
Wy = j " RdRT), (k)2
0

Now we have after some straightforward calculation

1 (n) 1 (n)

2arJaw’ 2" 4 D awd e

with:

2 m! 2 foo >
Gy = 81/—(4) f 2L () e di
Zm a\(m +n)') Jo n (1)

and

2 foo
Gy = S\ﬁ f L, (PV Ly, (P e dt.
a, wJo
By adding the two contributions to W, we get at the end:

W= 4(1 - 20')22(1:‘ 0')2 g(2n)
JTYw "

(28)
with

1
g(z",)n -G 4 —Gg’; (n #0), and g(z(,); =G0

2,a,m 2 2,m*

See in Table VIII the first values of the g(z”; keeping in
mind that the PSD scales as w?.
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TABLE VIIL.  Some numerical values of the g3

0 1 2 3 4 5
1 154 .642 573 526 490
.906 749 .667 .612 571 .539

191 .658 591 .546 513 487
134 .610 .549 .509 479 456
.698 578 521 484 456 434
.673 .556 .500 465 439 418

N N =N =]

TABLE IX. Some numerical values of the G(Z"(),m case of
axisymmetrical LG modes (modes in exp(ing)).

m 0 1 2 3 4 5
n

0 1 754 .642 573 .526 490
1 437 .390 357 333 314 .299
2 .329 .306 287 272 .260 250
3 275 261 .248 238 229 221
4 242 231 222 214 207 201
5 218 210 .203 197 191 .186

We recall hereafter (Table IX) the values for axisym-
metrical LG modes. The thermoelastic noise being directly
related to strain gradient, we are not surprised to see that
modes having intensity nodes give worse merit factors than
the axisymmetric modes of same quantum numbers.

D. Thermoelastic noise: Coatings

As in the preceding sections, the scaling law being
analogous to the case of Brownian noise, the relative merit
factors are already given by Tables VI and VII.

V. CLIPPING

The preceding calculations were dealing with infinite
mirrors. This makes sense for beams of cross section which
are reasonably small compared to the radius a of the
mirror. It also makes sense to compare HG and LG modes
in the same conditions. But we keep in mind that in real
world, mirrors have finite radii. If the w parameter is
imposed from geometrical considerations, the preceding
numerical results are sufficient. In the case where w can be
freely chosen, one has to choose it for obtaining the largest
cross section consistent with negligible clipping losses (i.e.
the fraction of light power escaping the mirror). It is well
known that the effective cross section is an increasing
function of the order (n, m). The ratio p,,, = a/w,,
giving (arbitrarily) 1 ppm loss for the H ,,,, (or the ratio
pg,'f) =a/ wf,ﬁ’) for £5,’1’)) is thus an increasing function of
(m, n), and this should be included in the comparison
between modes. To be specific, the results of the two
preceding tables should be corrected, giving a new factor:
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TABLE X. Some numerical values of the ratio p = a/w for
1 ppm clipping losses (Hermite-Gauss modes).

m 0 1 2 3 4 5

n

0 2.628 2.889 3.123 3.333 3.525 3.703
1 2.889 3.093 3.295 3.485 3.662 3.829
2 3.123 3.295 3.475 3.647 3.812 3.968
3 3.333 3.485 3.647 3.807 3.961 4.108
4 3.525 3.662 3.812 3.961 4.106 4.245
5 3.703 3.829 3.968 4.108 4.245 4.379
TABLE XI. Some numerical values of the ratio p = a/w for
1 ppm clipping losses (Laguerre-Gauss modes).

m 0 1 2 3 4 5

n

0 2.628 3.145 3.548 3.891 4.197 4.475
1 2.889 3.347 3.720 4.044 4.336 4.603
2 3.093 3.520 3.873 4.184 4.465 4.723
3 3.267 3.675 4.014 4313 4.586 4.830
4 3.423 3.815 4.143 4.434 4.699 4916
5 3.565 3.946 4.265 4.549 4.803 4.968

P m)s+1
P00

where s is the scaling factor (s = 0 for the Brownian
thermal noise in the substrate, s = 1 for the Brownian or
thermoelastic thermal noise in the coating, s = 2 for the
thermoelastic noise in the substrate, see [11]). We therefore
give in the two following Tables X and XI the values of the
ratio, obtained by a numerical integration.

gn,m =gn,m X(

VI. CONCLUSION

The calculation of relative figures of merit for arbitrary
Hermite or Laguerre Gaussian beams shows that axial
symmetry is always preferable. Regarding Brownian noise,
it shows that the efficiency of increasing the order of the
modes is a general property, whatever the symmetry prop-
erties of the intensity distribution of the beam are. At
comparable order, the efficiency is however the best for
axially symmetrical LG modes, then for nonaxially sym-
metrical LG, and eventually for HG modes. Regarding
thermoelastic noise, it is clear that it may increase with
the order of the readout beam if the w parameter is taken
into account (in particular in the substrate case).

The global conclusion is that there is a benefit in using
high-order modes. These assessments were made in the
approximation of an infinite mirror surface, and we are
trying to extend the analysis to finite mirrors.

The gain in the various kinds of thermal noises is ob-
viously not the only criterion in the design of a real optical
configuration. Numerical simulations and laboratory ex-

042003-8



THERMAL NOISE IN ADVANCED GRAVITATIONAL WAVE ...

periments are necessary to assess the compatibility of high-
order modes operation with the locking systems and the
stability of the mirrors steering control loops in an actual
interferometer.

PHYSICAL REVIEW D 82, 042003 (2010)
ACKNOWLEDGMENTS

I wish to thank Dr. Walid Chaibi for useful remarks and
suggestions during this work.

[1] B. Mours, E. Tournefier, and J-Y. Vinet, Classical
Quantum Gravity 23, 5777 (2006).

[2] Yu. Levin, Phys. Rev. D 57, 659 (1998).

[3] F. Gillespie and F. Raab, Phys. Rev. D 52, 577 (1995).

[4] F. Bondu, P. Hello, and J-Y. Vinet, Phys. Lett. A 246, 227
(1998).

[5] Y.T. Liu and K.S. Thorne, Phys. Rev. D 62, 122002
(2000).

[6] L.Landau and E. Lifshitz, Theory of Elasticity (Pergamon,
New York, 1986), 3rd ed..

[7]1 V.B. Braginsky and S.P. Vyatchanin, Phys. Lett. A 264, |
(1999).

[8] J-Y. Vinet, On Special Optical Modes and Thermal Issues
in Advanced Gravitational Wave Interferometric
Detectors, http://relativity.livingreviews.org/Articles/lrr-
2009-5/.

[9] F. Oberhettinger, Tabellen zur Fourier Transformation
(Springer, Berlin, 1957).

[10] M.M. Fejer et al., Phys. Rev. D 70, 082003 (2004).

[11] G. Lovelace, Classical Quantum Gravity 24, 4491
(2007).

[12] F. Oberhettinger, Tables of Bessel Transforms (Springer,
New York, 1972).

042003-9


http://dx.doi.org/10.1088/0264-9381/23/20/001
http://dx.doi.org/10.1088/0264-9381/23/20/001
http://dx.doi.org/10.1103/PhysRevD.57.659
http://dx.doi.org/10.1103/PhysRevD.52.577
http://dx.doi.org/10.1016/S0375-9601(98)00450-2
http://dx.doi.org/10.1016/S0375-9601(98)00450-2
http://dx.doi.org/10.1103/PhysRevD.62.122002
http://dx.doi.org/10.1103/PhysRevD.62.122002
http://dx.doi.org/10.1016/S0375-9601(99)00785-9
http://dx.doi.org/10.1016/S0375-9601(99)00785-9
http://dx.doi.org/10.1103/PhysRevD.70.082003
http://dx.doi.org/10.1088/0264-9381/24/17/014
http://dx.doi.org/10.1088/0264-9381/24/17/014

