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The Wheeler-DeWitt equation arising from a Kantowski-Sachs model is considered for a

Schwarzschild black hole under the assumption that the scale factors and the associated momenta satisfy

a noncanonical noncommutative extension of the Heisenberg-Weyl algebra. An integral of motion is used

to factorize the wave function into an oscillatory part and a function of a configuration space variable. The

latter is shown to be normalizable using asymptotic arguments. It is then shown that on the hypersurfaces

of constant value of the argument of the wave function’s oscillatory piece, the probability vanishes in the

vicinity of the black hole singularity.
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I. INTRODUCTION

Pioneering work in the context of quantum gravity and
string theory [1] has led to great interest in noncommuta-
tivity aspects of quantum gravity, quantum field theory
[2,3] and quantum mechanics [4]. It is generally believed
that some sort of noncommutativity may arise as one
approaches the Planck scale. Noncommutativity is also
shown to be relevant in the context of black holes (BHs)
physics [5–8]. To avoid having to deal with an infinite
number of degrees of freedom, one usually resorts to
minisuperspace models. Starting from a suitable metric,
one obtains via the Arnowitt-Deser-Misner procedure the
Wheeler-DeWitt (WDW) equation. Most often the solu-
tions of the latter are not square integrable and thus one
faces the problem of determining a ‘‘time’’ variable and a
measure, such that on constant time hypersurfaces, the
wave function is normalizable and the square of its modu-
lus is a bona fide probability density. A square integrable
wave function would allow us, for instance, to address the
problem of the BH singularity by computing the probabil-
ity near the singularity.

Some steps in that direction were taken in Refs. [5–7].
The Kantowski-Sachs (KS) metric was chosen, as it is
integrable and it involves two scale factors, which is the
minimum number of degrees of freedom for incorporating
noncommutativity. Moreover, by a surjective mapping, one

can describe the interior of the Schwarzschild BH by the
KS model. In Ref. [7] only configuration space noncom-
mutativity was considered: ½�; �� ¼ i�, where �, � are
the scale factors and � is a real constant. However, it is
found in the cosmological and BH context that this type of
noncommutativity does not lead to any new qualitative
features with respect to the commutative problem. On the
other hand, it was shown in Refs. [5,6] that by imposing
noncommutativity in the momentum sector as well, i.e.,
½P�; P�� ¼ i�, where � is a real constant and P�, P� are

momenta conjugate to �, �, respectively, two interesting
features arise: (i) For the Schwarzschild BH, it is found that
the potential for the Schrödinger-like problem has a stable
minimum. In the neighborhood of this minimum, one is
able to perform a saddle point evaluation of the partition
function and compute the relevant BH temperature and
entropy. (ii) The solution of the WDWequation was shown
to factorize into the product of an oscillatory function and a
function which displays a conspicuous damping behavior.
This damping does not lead to a full-fledged square inte-
grable function, but the wave function does vanish at
infinity, where the BH singularity is located. This leads
one to conjecture whether another type of noncommuta-
tivity might yield a truly normalizable wave function. In
this article it is shown that this is indeed possible. The crux
of the argument lies on the choice of a noncanonical non-
commutative algebra, which is nevertheless isomorphic to
the Heisenberg-Weyl (HW) algebra. By noncanonical, it is
meant that the commutation relations are not constants.
Algebras of this kind have been thoroughly investigated in
noncommutative quantum field theory (see, for instance,
[9] and references therein) and in mathematical physics.
For instance, the algebraic structure of the reduced phase-
space formulation of systems with second class constraints
is typically a noncanonical noncommutative one [10].
In what follows, the KS metric formulation of the

Schwarzschild BH is reviewed, and the noncommutative
algebra and the isomorphic mapping to the HWalgebra are
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defined. From this map, a quantum representation of the
noncanonical algebra is determined, which is then used to
obtain the noncommutative WDW equation. Through a
suitable constant of motion, the WDWequation is reduced
into an ordinary differential equation. By resorting to
asymptotic arguments and some results from the spectral
theory of operators, it is shown that the solutions of this
ordinary differential equation are square integrable.

II. PHASE-SPACE NONCOMMUTATIVE
QUANTUM COSMOLOGY

In here the following system of units is used: @ ¼ c ¼
G ¼ 1. The Schwarzschild BH is described by the follow-
ing metric,

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2; (1)

where r is the radial coordinate and d�2 ¼ d�2 þ
sin2�d’2. For r < 2M the time and radial coordinates
are interchanged (r $ t) so that space-time is described
by the metric [6]

ds2 ¼ �
�
2M

t
� 1

��1
dt2 þ

�
2M

t
� 1

�
dr2 þ t2d�2: (2)

This is an anisotropic metric; thus for r < 2M a
Schwarzschild BH can be described as an anisotropic
cosmological space-time. Indeed, the metric (2) can be
mapped by the KS metric [6,7], which, in the Misner
parametrization, can be written as

ds2 ¼ �N2dt2 þ e2
ffiffi
3

p
�dr2 þ e�2

ffiffi
3

p
�e�2

ffiffi
3

p
�d�2; (3)

where � and � are scale factors, and N is the lapse
function. For r < 2M, the identification

N2 ¼
�
2M

t
� 1

��1
; e2

ffiffi
3

p
� ¼

�
2M

t
� 1

�
;

e�2
ffiffi
3

p
�e�2

ffiffi
3

p
� ¼ t2

(4)

allows for turning the metric Eq. (3) into the metric Eq. (2).
The black hole singularity lies at t ¼ 0. Inverting the last

two equations in (4), one finds e2
ffiffi
3

p
� ¼ ð2M� tÞ=t and

e�2
ffiffi
3

p
� ¼ tð2M� tÞ. Thus, the singularity corresponds to

�,� ! þ1. Notice that the lapse function vanishes at the
singularity.

In the present work, one considers the following non-
canonical extension of the HW algebra:

½�̂; �̂� ¼ i�

�
1þ ���̂þ ��2

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p P̂�

�
;

½P̂�; P̂�� ¼ ið�þ �ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p Þ2�̂þ ��ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ÞP̂�Þ;
½�̂; P̂�� ¼ ½�̂; P̂�� ¼ ið1þ ��ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p Þ�̂þ ��2P̂�Þ;

(5)

where �, � and � are positive constants and � ¼ �� < 1.
The remaining commutation relations vanish. For � � 0 it
implies that the noncommutative commutation and uncer-
tainty relations are themselves position and momentum
dependent. Also notice that � ¼ 0 corresponds to the ca-
nonical phase-space noncommutativity [5,6,11]. One could
add that the well known Darboux’s theorem ensures that
one can always find a system of coordinates, where locally
the algebra looks like the HWalgebra. For this algebra, this
statement also holds globally, so that the algebra is iso-
rmorphic to the HW algebra. Actually, the algebra of the
equations in (5) is the simplest noncanonical extension that
is globally isomorphic to the HW algebra. It is an open
issue whether this algebraic structure can be physically
motivated or derived from a more fundamental theory.
The present study shows, on the other hand, that this non-
canonical extension has a direct impact on the singularity
problem, as discussed below.
The isomorphism between the algebra of the equations

in (5) and the HW algebra is called a Darboux (D) trans-
formation. D transformations are not unique. Indeed, the
composition of a D transformation with a unitary trans-
formation yields another D transformation. Suppose that

ð�̂c; P̂�c
; �̂c; P̂�c

Þ obey the HW algebra:

½�̂c; P̂�c
� ¼ ½�̂c; P̂�c

� ¼ i: (6)

The remaining commutation relations vanish. Then a suit-
able transformation would be

�̂ ¼ ��̂c � �

2�
P̂�c

þ E�̂2
c;

�̂ ¼ ��̂c þ �

2�
P̂�c

P̂� ¼ �P̂�c
þ �

2�
�̂c;

P̂� ¼ �P̂�c
� �

2�
�̂c þ F�̂2

c:

(7)

Here, �, � are real parameters such that ð��Þ2 � ��þ
�
4 ¼ 0 , 2�� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

, and one chooses the posi-

tive solution given the invariance of the physics on the D
map [11], and

E ¼ � �

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p F;

F ¼ � �

�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þ:
(8)
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The inverse D is easily computed:

�̂c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
��̂þ �

2�
P̂�

�
;

P̂�c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

�
�P̂� � �

2�
�̂

�
;

�̂c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
��̂� �

2�
P̂�

�
;

P̂�c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

�
�P̂� þ �

2�
�̂

� F�ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
�̂þ �

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p P̂�

�
2
�
:

(9)

It can be shown using Eqs. (7) and (9) that the algebra of
Eq. (5) implies the HWalgebra, Eq. (6), and vice versa. Of
course, as already pointed out, one could consider other
quadratic transformations relating the two algebras. These
other possibilities are obtained from D by composition
with a unitary transformation. They all lead to the same
physical predictions.

One considers now the Hamiltonian associated to the
WDW equation for the KS metric and a particular factor
ordering [5],

Ĥ ¼ �P̂2
� þ P̂2

� � 48e�2
ffiffi
3

p
�̂: (10)

Upon substitution of the equations in (7), one obtains

Ĥ ¼ ��2P̂2
�c

� �2

4�2
�̂2

c � ��̂cP̂�c
þ�2P̂2

�c
þ �2

4�2
�̂2

c

þ F2�̂4
c � ��̂cP̂�c

þ 2�F�̂2
cP̂�c

� �F

�
�̂3

c

� 48 exp

�
�2

ffiffiffi
3

p
��̂c þ

ffiffiffi
3

p
�

�
P̂�c

� 2
ffiffiffi
3

p
E�̂2

c

�
: (11)

In the previous expression, the HW operators have the

usual representation: �̂c ¼ �c, �̂c ¼ �c, P̂�c
¼ �i @

@�c

and P̂�c
¼ �i @

@�c
. Let us now define the operator Â, which

is analogous to the constant of motion that was defined for
the problem discussed in Ref. [5] (which considers the
same space-time setup, but assumes a canonical phase-
space noncommutative algebra):

Â ¼ �P̂�c
þ �

2�
�̂c: (12)

A simple calculation reveals that for the noncommutative

algebra of Eq. (5), Â also commutes with the Hamiltonian

Ĥ, Eq. (10), ½Ĥ; Â� ¼ 0. This quantity corresponds to the
momentum P� shifted by ð�=ð2�2ÞÞ�, which can be seen

as analogous to the canonical conjugate momentum in the
presence of a gauge field, where �=2�2 corresponds to the
electric charge and � to the gauge field. Thus, one seeks
for solutions c ð�c; �cÞ of the WDW equation,

Ĥc ¼ 0; (13)

which are simultaneous eigenstates of Â. The most general

solution of the eigenvalue equation Âc ¼ ac with a real
is

c að�c; �cÞ ¼ Rð�cÞ exp
�
i�c

�

�
a� �

2�
�c

��
; (14)

where Rð�cÞ is an arbitrary C2 function of �c, which is
assumed to be real.
From Eqs. (11), (13), and (14), one gets after some

algebraic manipulation

�2R00 � 48 exp

�
� 2

ffiffiffi
3

p
�

�c � 2
ffiffiffi
3

p
E�2

c þ
ffiffiffi
3

p
�a

��

�
R

� 2�

�
ð�c þ F�3

cÞRþ F2�4
cRþ a2R

þ
�
�2

�2
þ 2aF

�
�2

cR ¼ 0: (15)

The dependence on �c has completely disappeared and
one is effectively left with an ordinary differential equation
for Rð�cÞ. Through the substitution, �c ¼ �z,

d2=d�2
c ¼ 1

�2
d2

dz2
and Rð�cðzÞÞ :¼ �aðzÞ, one obtains a

second-order linear differential equation, which is a
Schrödinger-like equation

��00
aðzÞ þ VðzÞ�aðzÞ ¼ 0; (16)

where the potential function, VðzÞ, reads
VðzÞ ¼ �ð�z� aÞ2 � F2�4z4 � 2F�2ð�z� aÞz2

þ 48 exp

�
�2

ffiffiffi
3

p
z� 2

ffiffiffi
3

p
�2Ez2 þ

ffiffiffi
3

p
�a

��

�
: (17)

Equation (16) depends explicitly on the noncommutative
parameters �, �, � and the eigenvalue a.
Notice that E> 0. One concludes from Eq. (17) that

asymptotically (z ! 1), the potential function is domi-
nated by the term

VðzÞ � �F2�4z4; (18)

which leads to L2ðIRÞ solutions of the Schrödinger equa-

tion (16). Indeed, the Hamiltonian H ¼ � @2

@z2
� F2�4z4

has a continuous and real spectrum [12] in L2, and the
eigenfunction corresponding to the eigenvalue zero and

eigenvalue a of Â has the asymptotic form

�aðzÞ � 1

z
exp

�
�i

F�2

3
z3
�
: (19)

Consequently, a generic solution of the WDWequation can
be written as

c ð�c; �cÞ ¼
Z

CðaÞc að�c; �cÞda; (20)
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where CðaÞ are arbitrary complex constants and
c að�c; �cÞ is of the form

c að�c; �cÞ ¼ B�a

�
�c

�

�
exp

�
i�c

�

�
a� �

2�
�c

��
: (21)

Here �að�=�Þ is a the solution of Eq. (16) and B is a
normalization constant such that

Z
jc að�c; �cÞj2d�c ¼ B2

Z ���������a

�
�c

�

���������
2

d�c ¼ 1:

(22)

Given that the wave function is oscillatory in �c, it is
natural to fix a constant �c hypersurface. This suggests
that a measure d� ¼ 	ð�� �cÞd�d�c should be consid-
ered for the definition of the inner product in L2ðIR2Þ and
for the computation of probabilities. For the wave function
(20) one then finds

kc kL2ðIR2;d�Þ ¼
�Z

c ð�c; �Þc �ð�c; �Þd�
�
1=2 ¼

�Z
CðaÞC�ða0Þ

�Z
c að�c; �cÞc �

a0 ð�c; �cÞd�c

�
dada0

�
1=2

; (23)

and since the wave functions c að�c; �cÞ are solutions of a
hyperbolic-type equation, in general, they are not orthogo-
nal to each other, and hence one uses the Cauchy-Schwartz
inequality to compute the L2ðIR2; d�Þ inner product be-
tween c að�c; �cÞ and c �

a0 ð�c; �cÞ. It follows that
kc kL2ðIR2;d�Þ �

Z
jCðaÞjkc að�c; �cÞkL2ðIR2;d�Þda

¼
Z

jCðaÞjda; (24)

where, in the last step, the relation (22) was used. One
concludes that for CðaÞ 2 L1ðIRÞ the wave function (20)
belongs to L2ðIR2; d�Þ; i.e. it is squared integrable on
constant �c hypersurfaces. Hence, the BH probability
Pðr ¼ 0; t ¼ 0Þ at the singularity can now be calculated:

Pðr ¼ 0; t ¼ 0Þ ¼ lim
~�c;�c!þ1

Z þ1
~�c

Z þ1

�1
jc ð�c; �Þj2d�

¼ lim
~�c;�c!þ1

Z þ1
~�c

jc ð�c; �cÞj2d�c ¼ 0;

(25)

where, in the last step, c ð�c; �cÞ 2 L2ðIR2; d�Þ has been
used and so the integral in �c vanishes, independently of
the value of �c.

III. CONCLUSIONS

In this work a KS cosmological model for the interior of
a Schwarzschild BH is considered. It is shown that a non-
canonical form of the phase-space noncommutativity leads
to a natural factorization of the solutions of the WDW
equation into an oscillatory function of the scale factor
�c and a square integrable function of �c. This is the key
property of the model. The fact that the general solution of
the WDWequation is square integrable on the constant �c

hypersurfaces makes it possible to use the standard rules of
quantum mechanics to compute the probability of finding
the BH at a specific configuration (this computation is, of

course, meaningless for the case of nonsquare integrable
wave functions, like the ones obtained in the model studied
in Ref. [6]). Using asymptotic arguments, the probability
of finding the BH in the vicinity of the Schwarzschild
singularity was then shown to vanish. This result seems
to be quite robust, as the asymptotic property upon which it
is based is shared by all the solutions of the WDW equa-
tion, and is thus valid independently of the particular wave
function.
This is the most one can expect from the quantum

approach to the Schwarzschild BH. One does not have a
metric, but only a wave function and the associated proba-
bility distribution for a set of possible metrics. In the
standard approach, the metric is obtained from the wave
function c ð�c; �cÞ through semiclassical arguments (see
[13] and references therein). This yields semiclassical
corrections to the KS metric (3). But from the above
discussion, one can conclude that, independently of the
particular wave function c ð�c; �cÞ that solves the WDW
equation, the semiclassical KS metric will not display the
Schwarzschild singularity.
The encountered regularization of the BH singularity is

a relevant novel result and relies on several steps. One first
approaches the Schwarzschild BH through a map to the KS
cosmological model. Noncanonical phase-space noncom-
mutative relations are then imposed for the KS scale fac-
tors and the respective canonical conjugate momenta. The
identification of a constant of motion of the associated

classical problem leads to the operator Â, which commutes
with the Hamiltonian of the system. Through the eigen-

value equation of Â it is possible to reduce the problem of
determining the solutions of the WDWequation to the one
of solving a Schrödinger-like ordinary second-order dif-
ferential equation, whose potential is asymptotically domi-
nated by a quartic term. The corresponding solutions of the
Hamiltonian operator are L2 and their asymptotic behavior
admits a suitable probability definition at the singularity,
which is shown to be vanishing.
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