PHYSICAL REVIEW D 82, 037502 (2010)

Effect of η - η' mixing on $D \to PV$ decays

Bhubanjyoti Bhattacharya* and Jonathan L. Rosner[†]

Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, USA (Received 9 July 2010; published 19 August 2010)

Charmed meson decays to a light pseudoscalar (P) and light vector (V) meson are analyzed taking account of η - η' mixing. A frequently-used octet-singlet mixing angle of 19.5° is compared with a value of 11.7° favored by a recent analysis of $D \rightarrow PP$ decays.

DOI: 10.1103/PhysRevD.82.037502 PACS numbers: 13.25.Ft, 11.30.Hv, 14.40.Lb

Decays of the charmed mesons D^0 , D^+ , and D_s^+ to a light pseudoscalar meson P and a light vector meson V were analyzed within the framework of flavor SU(3) in Refs. [1,2]. A frequently-used octet-singlet mixing angle between η and η' of $\theta_{\eta}=19.5^{\circ}$ was used in Ref. [1], while Ref. [2] used $\theta_{\eta}=14.4^{\circ}$ based on a recent KLOE analysis [3]. In a study of $D_{(s)} \rightarrow PP$ [4], a best fit to Cabibbo-favored decay rates was found for $\theta_{\eta}=11.7^{\circ}$. In the present paper we update fits to $D_{(s)} \rightarrow PV$ decays including two decay modes not considered in [1], and compare fits based on $\theta_{\eta}=19.5^{\circ}$ and 11.7° .

We review our notation [4]. The angle θ_{η} describing octet-singlet mixing between η and η' is defined by

$$\eta = -\eta_8 \cos \theta_{\eta} - \eta_1 \sin \theta_{\eta},
\eta' = -\eta_8 \sin \theta_{\eta} + \eta_1 \cos \theta_{\eta},$$
(1)

where

$$\eta_8 \equiv (u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6},
\eta_1 \equiv (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3},$$
(2)

Our previous analysis of PV decays utilized $\theta_{\eta} = \arcsin(1/3) = 19.5^{\circ}$, for which

$$\eta = (s\bar{s} - u\bar{u} - d\bar{d})/\sqrt{3},
\eta' = (2s\bar{s} + u\bar{u} + d\bar{d})/\sqrt{6}.$$
(3)

We consider also $\theta_{\eta} = 11.7^{\circ}$, for which an exact fit was found in Ref. [4] to Cabibbo-favored decays.

We refer to Ref. [1] for notation. Amplitudes defined there include color-favored tree (T), color-suppressed tree (C), exchange (E), and annihilation (A), with a subscript P or V denoting the meson containing the spectator quark. Fitting the Cabibbo-favored data quoted there, we found two solutions ("A" and "B"), distinguished by $|T_V| < |C_P|$ (A) and $|T_V| > |C_P|$ (B). Fits to singly-Cabibbo-suppressed data then favored solutions consistent with the set "A," which we shall consider from now on. In Table I we show the results of this fit.

We then fit amplitudes involving η and η' , obtaining values for the amplitudes T_P , C_V , and E_V . These are compared for the two-most-favored solutions (denoted by A1 and A2) in Tables II and III. Predictions for the branching fraction $\mathcal{B}(D^0 \to \bar{K}^{*0} \eta')$, listed in the last columns of Tables II and III, differ slightly between solutions A1 and A2.

Here we use a line of thought different from the analysis of Ref. [1]. We now calculate global χ^2 values for fits to singly-Cabibbo-suppressed $D^0 \to PV$ decays for the solutions A1 and A2. We compare the χ^2 values for the fit with $\theta_{\eta}=19.5^{\circ}$ [including branching fractions $\mathcal{B}(D^0 \to \eta \omega)=(0.221\pm0.023)\%$ [5] and $\mathcal{B}(D^0 \to \eta \phi)=(1.4\pm0.5)\times10^{-4}$ [6] omitted in the original article] with values for a fit to the same data with $\theta_{\eta}=11.7^{\circ}$. These results are shown in Tables IV and V, respectively.

We see that solution A1 is favored for both $\theta_{\eta}=19.5^{\circ}$ and $\theta_{\eta}=11.7^{\circ}$. The solution A2 is disfavored since its prediction for $\mathcal{B}(D^0\to\eta\phi)$ is much higher than the experimental value in both cases. The same conclusion is reached in Ref. [2] for $\theta_{\eta}=14.4^{\circ}$. We will now disregard the A2 solution and only use the A1 solution for the rest of the analysis.

The next step is to use observed Cabibbo-favored decays to obtain the annihilation amplitudes A_P and A_V using the amplitudes for $D_s \to (\bar{K}^{*0}K^+, \bar{K}^0K^{*+}, \pi^+\omega)$ (as quoted in Table VI) and the A1 solutions. Since we use only 3 independent inputs to obtain 4 independent parameters (real and imaginary parts of A_P and A_V) instead of obtaining unique solutions, we obtain a zone of allowed parameter space. We first form a grid of $|A_P|$ and $|A_V|$ values, and for every point on this grid, use the amplitudes for $D_s \to (\bar{K}^{*0}K^+, \bar{K}^0K^{*+})$ to obtain the phases of A_P and A_V relative to T_V (assumed real, as previously.) Thus for every point on

TABLE I. Solution in Cabibbo-favored charmed meson decays to PV final states favored by fits [1] to singly-Cabibbo-favored decays.

PV amplitude	Magnitude (10 ⁻⁶)	Relative strong phase
$\overline{T_V}$	3.95 ± 0.07	
C_P	4.88 ± 0.15	$\delta_{C_P T_V} = (-162 \pm 1)^{\circ}$
E_P	2.94 ± 0.09	$\delta_{E_P T_V} = (-93 \pm 3)^{\circ}$

^{*}bhujyo@uchicago.edu

rosner@hep.uchicago.edu

TABLE II. Solutions for T_P , C_V , and E_V amplitudes in Cabibbo-favored charmed meson decays to PV final states. Solutions A1 and A2 correspond to $|T_V| < |C_P|$. Here the η - η' mixing angle is $\theta_{\eta} = 19.5^{\circ}$.

No.	PV ampl.	Magnitude (10 ⁻⁶)	Relative strong phase	$\mathcal{B}(D^0 \to \bar{K}^{*0} \eta') \ (10^{-4})$
A1	T_P	7.46 ± 0.21	Assumed 0	
	C_V	3.46 ± 0.18	$\delta_{C_V T_V} = (172 \pm 3)^\circ$	1.52 ± 0.22
	E_V	2.37 ± 0.19	$\delta_{E_V T_V} = (-110 \pm 4)^{\circ}$	
A2	T_P	6.51 ± 0.23	Assumed 0	
	C_V	2.47 ± 0.22	$\delta_{C_V T_P} = (-174 \pm 4)^{\circ}$	1.96 ± 0.23
	E_V	3.39 ± 0.16	$\delta_{E_V T_V} = (-96 \pm 3)^{\circ}$	

TABLE III. Same as Table II but with $\theta_{\eta} = 11.7^{\circ}$.

No.	PV ampl.	Magnitude (10 ⁻⁶)	Relative strong phase	$\mathcal{B}(D^0 \to \bar{K}^{*0} \eta') \ (10^{-4})$
A1	T_{P}	7.69 ± 0.21	Assumed 0	
	C_V	4.05 ± 0.17	$\delta_{C_V T_V} = (162 \pm 4)^{\circ}$	1.19 ± 0.12
	E_V	1.11 ± 0.22	$\delta_{E_V T_V} = (-130 \pm 10)^{\circ}$	
A2	T_P	5.68 ± 0.23	Assumed 0	
	C_V	1.74 ± 0.23	$\delta_{C_V T_P} = (-162 \pm 6)^{\circ}$	2.19 ± 0.16
	E_V	3.82 ± 0.15	$\delta_{C_V T_V} = (-87 \pm 3)^c$	

TABLE IV. Global χ^2 values for fits to singly-Cabibbo-suppressed $D^0 \to PV$ decays. Also included are the process that contribute the most to a high χ^2 value. Here we have taken $\theta_\eta = 19.5^\circ$.

No.	Global		Worst processes (Highest $\Delta \chi^2$ va	alues)	
	χ^2	Decay channel	$\mathcal{B}_{ ext{th}}(\%)$	$\mathcal{B}_{\mathrm{expt}}(\%)$	$\Delta \chi^2$
A1	55.9	$D^0 o \eta \phi$	$(4.0 \pm 0.4) \times 10^{-2}$	$(1.4 \pm 0.5) \times 10^{-2}$	16.8
		$D^0 \rightarrow \eta \omega$	0.33 ± 0.02	0.221 ± 0.023	11.3
A2	82.4	$D^0 \rightarrow \eta \phi$	$(5.9 \pm 0.4) \times 10^{-2}$	$(1.4 \pm 0.5) \times 10^{-2}$	45.8
		$D^0 \rightarrow \pi^0 \rho^0$	0.27 ± 0.02	0.373 ± 0.022	10.1

TABLE V. Same as Table IV but with $\theta_{\eta}=11.7^{\circ}.$

No.	Global		Worst processes (Highest $\Delta \chi^2$ va	alues)	
	χ^2	Decay channel	${\cal B}_{ ext{th}}(\%)$	$\mathcal{B}_{\mathrm{expt}}(\%)$	$\Delta \chi^2$
A1	35.8	$D^0 \rightarrow \pi^+ \rho^-$	0.39 ± 0.03	0.497 ± 0.023	8.5
		$D^0 o \eta \omega$	0.30 ± 0.02	0.221 ± 0.023	6.7
A2	131.4	$D^0 o \eta \phi$	$(9.2 \pm 0.6) \times 10^{-2}$	$(1.4 \pm 0.5) \times 10^{-2}$	100.0
		$D^0 \rightarrow \pi^0 \rho^0$	0.27 ± 0.02	0.373 ± 0.022	11.4

TABLE VI. Branching ratios [6] and invariant amplitudes for Cabibbo-favored decays of D_s used to obtain A_P and A_V . θ_{η} is the η - η' mixing angle. $\phi_1 = \arcsin(1/\sqrt{3}) = 35.3^{\circ}$.

Meson	Decay mode	Representation	\mathcal{B} [6] (%)	p^* (MeV)	$ \mathcal{A} (10^{-6})$
$\overline{D_s^+}$	$ar{K}^{*0}K^+$	$C_P + A_V$	3.9 ± 0.6	682.4	3.97 ± 0.31
	$ar{K}^0K^{*+}$	$C_V + A_P$	5.3 ± 1.2	683.2	4.61 ± 0.52
	$\pi^+\omega$	$\frac{1}{\sqrt{2}}(A_V+A_P)$	0.25 ± 0.09	821.8	0.76 ± 0.14
	$\rho^{+}\eta$	$T_P \cos(\theta_{\eta} + \phi_1) - \frac{A_P + A_V}{\sqrt{2}} \sin(\theta_{\eta} + \phi_1)$	13.0 ± 2.2	723.8	6.63 ± 0.56
	$\rho^{+}\eta^{\prime}$	$T_P \sin(\theta_{\eta} + \phi_1) + \frac{A_P + A_V}{\sqrt{2}} \cos(\theta_{\eta} + \phi_1)$	12.2 ± 2.0	464.8	12.5 ± 1.0

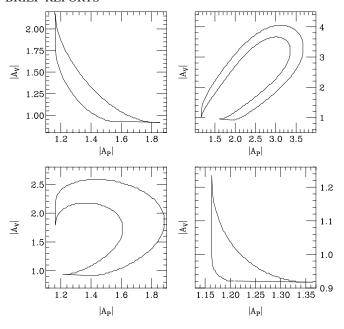


FIG. 1. Allowed values for $|A_P|$ and $|A_V|$ for $\theta_{\eta} = 19.5^{\circ}$. In order to obtain the phase of $A_{P(V)}$ we either add (denoted by +) or subtract (denoted by -) its phase relative to $C_{V(P)}$ from the phase of $C_{V(P)}$. Clockwise from top left the 4 panels represent the phase choices: (a) + +, (b) + -, (c) - -, and (d) - +. Thus one may associate a unique value of the phase of $A_{P(V)}$ with every point on the parameter space in these plots.

this grid we now have an amplitude for the decay $D_s \to \pi^+ \omega$ using the amplitude representation from Table VI. We now select only those points on this grid that are allowed by the experimental value $|\mathcal{A}(D_s \to \pi^+ \omega)|$ including its one-sigma error bar.

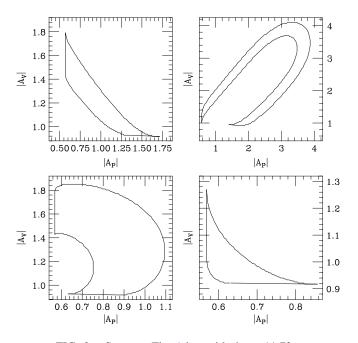


FIG. 2. Same as Fig. 1 but with $\theta_{\eta} = 11.7^{\circ}$.

Since there is a twofold discrete ambiguity in choosing the phase of A_P relative to C_V or that of A_V relative to C_P , we obtain four different sets of allowed zones on the parameter space defined by $|A_P|$ and $|A_V|$. The allowed zones for $\theta_\eta=19.5^\circ$ and $\theta_\eta=11.7^\circ$ are shown in Figs. 1 and 2, respectively. One may associate unique phases with A_P and A_V (that may be determined following the method explained above) for every point on the $|A_P|$ - $|A_V|$ plane in each of these figures.

To conclude one may now use the range of possible A_P and A_V values to predict $\mathcal{B}(D_s \to \eta \rho^+)$ and $\mathcal{B}(D_s \to \eta' \rho^+)$. In Ref. [1] we used the solution:

$$|A_P| = 1.36^{+1.16}_{-1.04}, \qquad \delta_{A_P} = (-151^{+83}_{-74})^{\circ}$$
 (4)

$$|A_V| = 1.25^{+0.34}_{-0.31}, \qquad \delta_{A_V} = (-19^{+10}_{-9})^{\circ}$$
 (5)

which led us to obtain $\mathcal{B}(D_s \to \eta \rho^+) = (5.6 \pm 1.2)\%$ and $\mathcal{B}(D_s \to \eta' \rho^+) = (2.9 \pm 1.2)\%$. Over the region of allowed values for $A_{P(V)}$, the central values for these Cabibbo-favored D_s branching ratios vary over the ranges shown in Table VII.

The predictions for $\mathcal{B}(D_s \to \eta \rho^+)$ are a bit higher in the new fit using $\theta_{\eta} = 11.7^{\circ}$ and slightly closer to the experimental value [6] quoted in Table VI. No improvement is seen in the prediction for $\mathcal{B}(D_s \to \eta' \rho^+)$ in the new fit using $\theta_{\eta} = 11.7^{\circ}$. The experimental values for both these branching ratios [6], as quoted in Table VI, are much higher than the predictions using this analysis. As mentioned in Ref. [1], the relation

$$|A(D_s \to \rho^+ \eta')|^2 = |T_P|^2 + |A(D_s \to \pi^+ \omega)|^2 - |A(D_s \to \rho^+ \eta)|^2$$
(6)

is very badly obeyed with the present values of $\mathcal{B}(D_s \to \eta \rho^+)$ and $\mathcal{B}(D_s \to \eta' \rho^+)$, leading us to suspect either that they have been overestimated experimentally, or that disconnected diagrams (as studied in [4]) play a larger role than anticipated. The scarcity of available data for Cabibbo-favored processes prevents such an analysis in the $D \to PV$ case.

This work was supported in part by the United States Department of Energy under Grant No. DE-FG02-90ER40560.

TABLE VII. Range of predicted branching ratios for $D_s \rightarrow (\eta, \eta')\rho^+$ using both $\theta_{\eta} = 19.5^{\circ}$ and $\theta_{\eta} = 11.7^{\circ}$.

Decay mode	$\theta_{\eta} = 19.5^{\circ}$		$\theta_{\eta} = 11.7^{\circ}$	
	Min(%)	Max(%)	Min(%)	Max(%)
$\overline{\mathcal{B}(D_s \to \eta \rho^+)}$	3.80	6.39	6.27	8.35
$\mathcal{B}(D_s \to \eta' \rho^+)$	2.71	3.41	2.45	3.04

- [1] B. Bhattacharya and J. L. Rosner, Phys. Rev. D **79**, 034016 (2009); Phys. Rev. D **81**, 099903 (2010).
- [2] H.-Y. Cheng and C.-W. Chiang, Phys. Rev. D **81**, 074021 (2010).
- [3] F. Ambrosino *et al.* (KLOE Collaboration), J. High Energy Phys. 07 (2009) 105.
- [4] B. Bhattacharya and J. L. Rosner, Phys. Rev. D 81, 014026

(2010).

- [5] R. Kass (BABAR Collaboration) EPS2009, Krakow, Poland, http://pos.sissa.it/cgi-bin/reader/conf.cgi? confid=84.
- [6] C. Amsler *et al.* (Particle Data Group), Phys. Lett. B **667**, 1 (2008), and partial 2009 update for the 2010 edition of Review of Particle Physics.