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We discuss results of the most accurate to-date test of the low-energy electroweak sector of the standard

model of elementary particles. Combining previous measurements with our high-precision calculations

we extracted the weak charge of the 133Cs nucleus, QW ¼ �73:16ð29Þexpð20Þth [S. G. Porsev, K. Beloy,

and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009)]. The result is in perfect agreement with QSM
W

predicted by the standard model, QSM
W ¼ �73:16ð3Þ, and confirms energy dependence (or running) of the

electroweak interaction and places constraints on a variety of new physics scenarios beyond the standard

model. In particular, we increase the lower limit on the masses of extra Z-bosons predicted by models of

grand unification and string theories. This paper provides additional details to the earlier paper. We discuss

large-scale calculations in the framework of the coupled-cluster method, including full treatment of single,

double, and valence triple excitations. To determine the accuracy of the calculations we computed

energies, electric-dipole amplitudes, and hyperfine-structure constants. An extensive comparison with

high-accuracy experimental data was carried out.
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I. INTRODUCTION

Atomic parity violation (APV) places powerful con-
straints on new physics beyond the standard model of
elementary particles [1]. The APV measurements are in-
terpreted in terms of the weak nuclear charge QW , quanti-
fying the strength of the electroweak coupling between
atomic electrons and quarks of the nucleus. At the tree
level the weak nuclear charge is given by a simple formula

QW ¼ �N þ Zð1� 4sin2�WÞ; (1)

where N is the number of neutrons, Z is the nuclear charge,
and �W is the Weinberg angle. Since sin2�W is close to
0.23, the weak nuclear charge QW is numerically close to
�N.

In Ref. [2] we reported the most accurate to-date deter-
mination of this coupling strength by combining previous
measurements [3,4] with high-precision calculations in the
cesium atom. We found the result QWð133CsÞ ¼
�73:16ð29Þexpð20Þth [2] to be in a perfect agreement with

QSM
W predicted by the standard model (SM), QSM

W ¼
�73:16ð3Þ [5]. In this work we provide a detailed account
of the calculation carried out in Ref. [2].

Historically, APV helped to establish the validity of the
SM [6–8]. While a number of APVexperiments have been
carried out [9–15], the most accurate measurement is due
to Wieman and collaborators [3]. They determined the
ratio of EPNC=� ¼ 1:5935ð56Þ mV=cm (where EPNC is
the parity nonconserving amplitude defined below by
Eq. (2) and � is the vector transition polarizability) on
the forbidden 6S1=2 ! 7S1=2 transition in atomic cesium

with an accuracy of 0.35%. This measurement does not
directly translate into an electroweak observable of the
same accuracy, as the interpretation of the experiment
requires input from atomic theory, which links QW to the
signal. QW is treated as a parameter and by combining
EPNC calculations with measurements, the value of QW is
extracted and can be compared with the SM value either
revealing or constraining new physics.
The parity nonconserving (PNC) amplitude for the

6S1=2 ! 7S1=2 transition in cesium may be evaluated as

EPNC ¼ X
n

h7S1=2jD0jnP1=2ihnP1=2jHW j6S1=2i
E6S1=2 � EnP1=2

þX
n

h7S1=2jHW jnP1=2ihnP1=2jD0j6S1=2i
E7S1=2 � EnP1=2

: (2)

Here D and HW are electric-dipole and weak interaction
operators, and Ei appearing in the denominators are atomic
energy levels. The effective weak interaction mediated by

Z-bosons averaged over quarks reads HW ¼
� GFffiffi

8
p QW�5�ðrÞ, where GF is the Fermi constant, �5 is

the Dirac matrix, and �ðrÞ is the neutron-density
distribution.
Interpretation of the PNC measurements requires eval-

uating Eq. (2). Although the underlying theory of quantum
electrodynamics (QED) is well established, the atomic
many-body problem is intractable. Reaching theoretical
accuracy equal to or better than the experimental accuracy
of 0.35% has been a challenging task (see Fig. 1). An
important 1% accuracy milestone has been reached by
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the Novosibirsk [16] and Notre Dame [17] groups in the
late 1980s. More recently, several groups have contributed
to understanding sub-1% corrections, primarily due to the
Breit (magnetic) interaction and radiative QED processes
[18–22] (reviewed in [23]). The results of these calcula-
tions are summarized by the ‘‘World average ’05’’ point of
Fig. 1, which has a 0.5% error bar reflecting this progress.
As of 2005, the sensitivity to new physics has been limited
by the accuracy of solving the basic correlation problem.
Here we report important progress in solving it.

We wish to evaluate accurately the sum (2). The cesium
atom has one loosely bound valence electron v ¼
6s1=2; 6p1=2; . . . outside a closed-shell core

1s22s22p2
1=2 . . . 5d

6
5=2. We compute atomic wave functions,

energies, and matrix elements and sum over the intermedi-
ate states. We solve the eigenvalue problem Hj�vi ¼
Evj�vi and find atomic wave functions and energies.
Our specific scheme [23–26] of solving the atomic many-
body problem is rooted in the coupled-cluster method [27].
Details will be provided in the next section.

The paper is organized as follows. In Sec. II we describe
the coupled-cluster (CC) approximation including single,
double, and valence triple excitations and present the re-
sults for the low-lying energy levels. In Sec. III we evaluate
the hyperfine-structure constants, the matrix elements of
the electric-dipole moment, and the PNC amplitude. An
analysis of uncertainty of the PNC amplitude is also pre-
sented. In Sec. IV we extract the weak nuclear charge from
the theoretical and experimental quantities and discuss
implications for particle physics. If not stated otherwise
atomic units (@ ¼ jej ¼ me ¼ 1) are used throughout.

II. COUPLED-CLUSTER APPROXIMATION

We employ an approximation rooted in the coupled-
cluster method [28,29]. The key difference compared to
the previous CC-type calculations for univalent atoms (see,
e.g., Refs. [30–35]) is our additional inclusion of valence
triple excitations in the expansion of the cluster amplitude.
We refer to this approximation as the coupled-cluster
single, double, and valence triple (CCSDvT) method.
Details of our approximation may be found in Refs. [23–
26]. Below we briefly recapitulate its main features and
present numerical results.
We choose the lowest-order Hamiltonian to include the

relativistic kinetic energy operator of electrons and their
interaction with the nucleus and the VN�1 (frozen-core)
Dirac-Hartree-Fock (DHF) potential. The single-particle
orbitals and energies "i are found from the set of the
frozen-core DHF equations. With the DHF single-particle
orbitals, the second-quantized Hamiltonian reads

H ¼ H0 þG ¼ X
i

"iN½ayi ai� þ
1

2

X
ijkl

gijklN½ayi ayj alak�:

(3)

HereH0 is the one-electron lowest-order Hamiltonian,G is

the residual Coulomb interaction, ayi and ai are the crea-
tion and annihilation operators, and N½� � �� is the normal
product of operators with respect to the core quasivacuum
state j0ci. Indices i, j, k, and l range over all possible
single-particle orbitals, and gijkl are the Coulomb matrix

elements.
The exact many-body state j�vi can be represented as

follows:

j�vi ¼ N½expðKÞ�j�ð0Þ
v i

¼
�
1þ K þ 1

2!
N½K2� þ � � �

�
j�ð0Þ

v i; (4)

where j�ð0Þ
v i is the lowest-order DHF state. The cluster

operator K is expressed in terms of connected diagrams of
the wave operator. In our approach the operator K is
approximated by

with the double-headed arrow representing the valence
state. Here Sv and Dv (Sc and Dc) are the valence (core)
singles and doubles, and Tv are the valence triples.
Compared to the core excitations, the valence amplitudes
involve excitations of the valence electron. A popular
singles-doubles (SD) approximation [30] corresponds to
neglecting nonlinear terms in the expansion (4) and va-
lence triples in Eq. (5).

FIG. 1 (color online). Progress in evaluating the PNC ampli-
tude. Points marked Paris ’86, Novosibirsk ’89, or Notre Dame
’90 correspond to Refs. [16,17,64]. The point ‘‘World average
’05’’ is due to efforts of several groups [18–22] on sub-1% Breit,
QED, and neutron-skin corrections reviewed in Ref. [23]. The
strip corresponds to a combination of the standard model QW

with measurements [3,4]. The edges of the strip correspond to
�� of the measurement. Here we express EPNC in conventional
units of ijejaBð�QW=NÞ � 10�11, where e is the elementary
charge and aB is the Bohr radius. These units factor out a ratio of
QW to its approximate value, �N.
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Below we present the topological structure of the equa-
tions for valence cluster amplitudes in the CCSDvT ap-
proximation. The equations in the coupled-cluster singles-
doubles approximation (i.e., without triples) are presented
in explicit form in Ref. [36]. A detailed tabulation of the
formulas for the valence triple amplitudes is given in
Ref. [25]. Since we do not take core triples into considera-
tion, the CCSDvTequations for the core amplitudes Sc and
Dc are the same as in [36].

The total energy of the valence electron is given by the
sum of the DHF value and the correlation energy, �Ev,

Etot
CCSDvT ¼ EDHF þ �Ev: (6)

Following the notation of Ref. [26], we can represent the
correlation valence energy �Ev as

�Ev ¼ �ESD þ �ECC þ �EvT; (7)

where the correction �ESD is obtained within the SD
approach, the correction �ECC comes from nonlinear CC
contributions, and �EvT is due to valence triples.

The topological structure for the valence singles and
valence doubles equations may be represented as [26]

�½H0; Sv� þ �EvSv � SDþ Sv½Sc � Sv� þ Sv½Sc � Sc�
þ Sv½Sc �Dv� þ Sv½Sv �Dc�
þ Sv½Tv�; (8)

�½H0; Dv� þ �EvDv � SDþDv½Sc � Sv� þDv½Sc � Sc�
þDv½Sc �Dv� þDv½Sv �Dc�
þDv½Sc �Dc� þDv½Dc �Dv�
þDv½Tv�: (9)

Here ½H0; SðDÞv� are commutators. Sv½Sc � Sv� stands for
a contribution resulting from a product of clusters Sc and
Sv. All other terms are defined in a similar fashion. SD
terms encapsulate contributions from the SD approxima-
tion [30].

For valence triple amplitudes we obtain symbolically

� ½H0; Tv� þ �EvTv � Tv½Dc� þ Tv½Dv�: (10)

The contributions Tv½Dc� and Tv½Dv� denote the effect of
core and valence doubles on valence triples, respectively.
In the present analysis we include only these effects, while
omitting the effect of valence triples on valence triples and
nonlinear CC contributions [26]. These are higher-order
effects that are prohibitively time-consuming for the 55-
electron cesium atom.

A numerical solution of the CCSDvTequations provides
us with the cluster amplitudes and correlation energies.
With the obtained wave functions for two valence states w
and v we may evaluate various matrix elements (MEs),

Zwv ¼
h�wj

P
ij
hijzjjiayi ajj�vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�wj�wih�vj�vi
p : (11)

The corresponding CCSDvT expressions are given in
Ref. [25]. There are two important modifications compared
to the earlier computations [17]: (i) explicit inclusion of
valence triples in the expressions for matrix elements and
(ii) dressing of lines and vertices in expressions for matrix
elements. The dressing mechanism [24] may be explained
as follows: when the CC exponent is expanded in Eq. (11),
we encounter an infinite number of terms. The resulting
series may be partially summed by considering the topo-
logical structure of the product of cluster amplitudes,
which may be classified using the language of n-body
insertions. We include two types of insertions: particle-
and hole-line insertions (line ‘‘dressing’’) and two-particle
and two-hole random-phase-approximation-like insertions.
Our CCSDvT code is an extension of the relativistic SD

code [34] which employs a B-spline basis set [37]. Our
present version uses a more robust dual-kinetic-balance B-
spline basis set [38] as described in Ref. [39]. This basis
numerically approximates a complete set of single-particle
atomic orbitals. Here, for each partial wave ‘we use 35 out
ofNbas ¼ 40 positive-energy basis functions generated in a
cavity of radius Rcav ¼ 75 bohr. Basis functions with
‘max � 5 are used for single and double excitations. For
triple excitations we employ a more limited set of basis
functions with ‘maxðTvÞ � 4. Excitations from core sub-
shells [4s; . . . ; 5p] are included in the calculations of tri-
ples while excitations from subshells [1s; . . . ; 3d] are
discarded. A basis set extrapolation correction to infinitely
large ‘max, Nbas, and Rcav is added separately.
Computations were done on a nonuniform grid of 500

points with 15 points inside the nucleus. The nuclear
charge distribution was approximated by �ðrÞ ¼ �0=ð1þ
exp½ðr� cÞ=a�Þ both when solving the DHF equations and
evaluating weak interaction matrix elements. For 133Cs,
c ¼ 5:6748 fm and a ¼ 0:52338 fm.
Numerical results for the energies are presented in

Table I. The dominant contribution to the energies comes
from the DHF values. Correlation corrections (�ESD,
�ECC, and �EvT) are dominated by the SD contribution.
We also incorporate small complementary corrections due
to the Breit interaction, basis extrapolation (�Eextrap), and

quantum-electrodynamic (QED) radiative corrections. The
agreement between our ab initio and experimental values is
at the level of 0.3% for the 6S state and 0.1–0.2% for all
other states (experimental uncertainties are negligible for
comparisons at this level).
Since the CCSDvT method is an approximation, we

miss certain correlation effects (due to omitted quadruple
and higher-rank excitations). This is the cause of the
difference between computed and experimental energies
in Table I. To partially account for the missing contribu-
tions in calculations of matrix elements, we additionally
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correct the CCSDvTwave functions using a semiempirical
procedure suggested in Ref. [43] (see justification in
Ref. [26]). In this approach, the valence singles, Sv, are
rescaled by the ratio of experimental and theoretical cor-
relation energies. A consistent definition of the experimen-
tal correlation energies (�E

exp
v ) requires removing the Breit

and QED corrections from the experimental energy, i.e.,

�Eexp
v ¼ Eexp � EDHF � �EBreit � �EQED: (12)

We will refer to results obtained using the described pro-
cedure as ‘‘scaling.’’

III. EVALUATION OF THE PARITY
NONCONSERVING AMPLITUDE AND

SUPPORTING QUANTITIES

Below we present details for the evaluation of the parity
nonconserving amplitude for the 6S1=2 ! 7S1=2 transition
given by Eq. (2). The CCSDvT method is an approxima-
tion, and an important part of the entire problem lies with
evaluating the theoretical accuracy of the computed PNC
amplitude. The PNC amplitude cannot be directly com-
pared to an experimental measurement. As seen from
Eq. (2), one needs to know the matrix elements of the
electric-dipole operator, the energies, and the matrix ele-
ments of the weak interaction HW . The quality of calcu-
lations of the dipole transition amplitudes and energy
levels can be established by comparing them with experi-
mental data, while for the matrix elements of the weak
interaction such a direct comparison is not possible.
Instead, we may consider the operator of the hyperfine
interaction. Matrix elements of both the hyperfine and
weak interaction are accumulated near the origin.
Therefore, calculating hyperfine-structure (HFS) constants
for the low-lying states and comparing them with the
experimental data allows us to assess the quality of the
constructed wave functions near the nucleus.
The results of calculations of the HFS constants and

dipole matrix elements between the low-lying states are

TABLE I. Contributions to removal energies of 6S1=2, 6P1=2,
7S1=2, and 7P1=2 states for cesium in cm�1 in different approx-

imations. A comparison with experimental values is presented in
the bottom panel; experimental uncertainties are negligible at the
level displayed.

6S1=2 6P1=2 7S1=2 7P1=2

EDHF 27 954 18 790 12 112 9223

�ESD 3868 1610 827 460

�ECC �379 �178 �60 �43
�EvT �151 �44 �30 �12
Etot
CCSDvT 31 292 20 178 12 849 9628

�EBreit
a 2.6 �7:1 0.3 �2:5

�EQED
b �17:6 �4:1 �0:4 �0:1

�Eextrap 32.2 15.5 7.1 4.6

Etot
final 31 309 20 182 12 856 9630

Eexperim
c 31 406 20 228 12 871 9641

aReference [40];
bReference [41];
cReference [42].

TABLE II. Magnetic-dipole hyperfine-structure constants A (in MHz) for 133Cs. Results of calculations and comparison with
experimental values are presented. See text for the explanation of entries.

Að6S1=2Þ Að6P1=2Þ Að7S1=2Þ Að7P1=2Þ
DHF 1424.9 160.90 391.53 57.61

SD 2436.7 310.73 560.85 98.34

� (CC) �110:1 �22:40 �13:43 �5:26
� (vT) �29:6 2.35 �1:92 1.18

� (scaling) 14.7 2.59 0.38 0.41

Complementary corrections:

Line and vertex dressing �9:4 �1:92 �1:22 �0:53
Breita 4.9 �0:52 1.15 �0:15
QED �9:7b �0:05c �2:30d �0:02d

Basis extrapolation 9.1 0.71 1.08 0.10

Final results 2306.6 291.49 544.59 94.07

Experiment 2298.16 291.9135(15)e 545.90(9)f 94.35(4)g

291.9309(12)h

Difference 0.36% �0:15% �0:24% �0:30%

aReference [40];
bReference [44];
cReference [45];
dThe QED corrections for the 7S1=2 and 7P1=2 states were obtained by scaling those for the 6S1=2 and 6P1=2 states;
eReference [46];
fReferences [47];
gReference [48];
hReference [49].
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presented in Tables II and III. For the HFS calculations we
assumed a uniform distribution of the nuclear magnetiza-
tion (magnetization radius of 5.6748 fm) and used the
nuclear g-factor of 0.737 72. We explicitly list DHF and
SD values. The entry � (CC) indicates the change in the
value caused by including the nonlinear terms in the equa-
tions for core and valence singles and doubles. Likewise,
� (vT) and � (scaling) arise due to a subsequent addition
of valence triples and scaling. We also incorporated
smaller corrections: line and vertex dressing (discussed
in detail in [24]), the Breit interaction, the QED correc-
tions, and the corrections due to the basis set extrapolation.
In the lower panels of the tables we compare our theoreti-
cal results with the most accurate experimental results. We
find that the discrepancies between theoretical and experi-
mental values for the HFS constants are 0.15–0.35% (ex-
perimental uncertainties for HFS constants being well
below this level). For dipole matrix elements the theoreti-
cal values are within the error bars of the experiments. The
uncertainty estimate of EPNC can be carried out using

geometric means
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnS1=2An0P1=2

q
[58], as the relative uncer-

tainty of this combination mimics the relative uncertainty
of the ME of the weak interaction hnS1=2jHW jn0P1=2i.
Deviations of these combinations from experimental data
are shown in the upper panel of Fig. 2. We find that the
standard deviation of our theoretical values for these com-
binations from the experimental values is 0.2%.

FIG. 2 (color online). Deviations of computed values (red
filled circles) from experimental data (centered at zero). The
upper panel displays combinations of magnetic hyperfine-

structure constants
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnS1=2An0P1=2

q
which mimic matrix elements

of the weak interaction. For these combinations, experimental
error bars are negligible compared to the theoretical accuracy.
The lower panel exhibits deviations of the computed dipole
matrix elements from the most accurate experimental results
[53,65].

TABLE III. Reduced matrix elements of the electric-dipole moment operator D (in atomic units [a.u.]) for 133Cs. Results of
calculations and comparisons with experimental values are presented. See text for the explanation of entries.

jh6P1=2jjDjj6S1=2ij jh7P1=2jjDjj6S1=2ij jh6P1=2jjDjj7S1=2ij jh7P1=2jjDjj7S1=2ij
DHF 5.2777 0.3717 4.4131 11.009

SD 4.4831 0.2969 4.1984 10.256

� (CC) 0.0717 0.0058 0.0528 0.045

� (vT) �0:0423 �0:0302 0.0038 0.009

� (scaling) �0:0123 0.0033 �0:0138 �0:010
Complementary corrections:

Line and vertex dressing 0.0036 0.0016 �0:0004 0.001

Breita �0:0010 0.0019 0.0049 �0:003
QED 0.0027b,c �0:0028c �0:0043c 0.005c

Basis extrapolation 0.0038 0.0005 0.0036 0.005

Final result 4.5093 0.2769 4.2450 10.307

Experiment 4.5097(45)d 0.2825(20)e 4.233(22)f 10.308(15)g

4.4890(65)h 0.2757(20)i

Other results 4.5064(47)j

aReference [40];
bReference [50];
cReference [41];
dReference [51];
eReference [52] (as reevaluated in Ref. [53]);
fReference [54];
gReference [55];
hReference [56];
iReference [53];
jReference [57].
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Now we proceed to evaluate the PNC amplitude (2) by
directly summing over the intermediate nP1=2 (n ¼ 6–9)
states [17]. These states contribute 99% to the final EPNC

value. In Table IV we present the matrix elements of the
electric-dipole operator and HW , as well as the energy
differences. Contributions from the 6–9P1=2 states to

EPNC are also listed. The matrix elements were computed
in the CCSDvTapproximation with dressing. We also used
the scaling procedure. Energy differences were based on
the experimental energies with the Breit and QED correc-
tions removed. For the 6S1=2, 6P1=2, 7S1=2, and 7P1=2 states

we used the following ‘‘corrected’’ energies:

Ecorr ¼ Eexp � �EBreit � �EQED: (13)

The contribution of the higher-energy intermediate 8P1=2

and 9P1=2 states to the PNC amplitude is suppressed; for

these states we used the full experimental energies.
The results for the PNC amplitude are presented in

Table V. Each subsequent line in the upper panel of the
table corresponds to an increasingly more complex ap-
proximation. We start from the SD approximation.
Inclusion of nonlinear CC terms (‘‘CC’’ entry) modifies
the SD result by almost 2%. At the next step we incorporate
valence triples. Because of the importance of these terms
we present a detailed breakdown of the associated effects.
We distinguish between indirect and direct contributions
from the valence triples. Indirect effects of triples come
from modifying energies and single and double excitations
through the Schrödinger equation. In Table V the relevant
values are marked with ‘‘no vT in MEs.’’ The direct con-
tribution arises from explicit presence of valence triples
(vT) in expressions for the MEs. We also list the results
obtained without scaling [‘‘vT (no vT in MEs; pure)’’] and
including it [‘‘vT (no vT in MEs; scaled)’’]. We find that
the PNC amplitude is insensitive to scaling. Note that a

TABLE IV. Contribution to EPNC from intermediate states 6–9P1=2. Dipole matrix elements are of the form hnLJ;mJ ¼
1=2jDzjn0L0J0;mJ0 ¼ 1=2i. Assessment of the theoretical uncertainty is described in the text.

6S1=2 perturbed

n h7S1=2jDjnP1=2i hnP1=2jHW j6S1=2i E6S1=2 � EnP1=2
Contribution

a.u. 10�11ið�QW=NÞ a.u. a.u. 10�11ið�QW=NÞ a.u.
6 1.7327 0.055 75 �0:050 949 �1:8962
7 4.2071 �0:031 69 �0:099 227 1.3435

8 0.3769 �0:021 18 �0:117 208 0.0681

9 0.1423 �0:016 05 �0:125 993 0.0181

7S1=2 perturbed

n hnP1=2jDj6S1=2i h7S1=2jHW jnP1=2i E7S1=2 � EnP1=2
Contribution

a.u. 10�11ið�QW=NÞ a.u. a.u. 10�11ið�QW=NÞ a.u.
6 �1:8402 �0:026 97 0.033 573 1.4783

7 0.1134 0.01525 �0:014 705 �0:1176
8 0.0305 0.010 24 �0:032 686 �0:0096
9 0.0128 0.007 76 �0:041 471 �0:0024
Total 0.8823(17)

TABLE V. Contributions to EPNC in different approximations.
EPNC and � are in units of ijejaBð�QW=NÞ � 10�11, where N ¼
78 is the number of neutrons in 133Cs nucleus. In the upper panel
of the table � is the difference between the results given in this
row and the previous row. In the lower panels � determines the
respective contribution to EPNC. Assessment of the theoretical
uncertainty is described in the text.

Approximation EPNC �

‘‘Main’’ term:

SD 0.8952

CC 0.8800 �0:0152
vT (no vT in MEs; pure) 0.8911 0.0111

vT (no vT in MEs; scaled) 0.8915 0.0004

vT (no vT in MEs; scaled, Ecorr) 0.8885 �0:0030
vT (scaled, Ecorr) 0.8856 �0:0029
Line-dressing 0.8825 �0:0031
Vertex dressing 0.8823 �0:0002
Final main (n ¼ 6–9) 0.8823(17)

Tail:

n 	 10 0.0195

Core contribution �0:0020
Basis extrapolation �0:000 06
Total 0.8998(24)

Complementary corrections:

Breita �0:0054
QEDb �0:0024
Neutron skin c �0:0017
e-e weak interactiond 0.0003

Sum of corrections �0:0092
Final EPNC 0.8906(24)

aReference [40];
bReference [22];
cReference [19];
dReferences [21,59].
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similar conclusion was drawn in Ref. [58]. As the next step
we replace the calculated energies in the denominators of
Eq. (2) by the experimental energies Ecorr as explained
above. The resulting entries include the Ecorr qualifier.
We also include line and vertex dressing; the resulting
matrix elements and detailed breakdown of results are
listed in Table IV. We also add contributions of intermedi-
ate states above 9P1=2, including continuum, and contribu-

tions from core excitations. These contributions are
denoted as ‘‘n 	 10’’ and ‘‘Core contribution,’’ respec-
tively. Finally, the lower panel summarizes well-
established non-Coulomb contributions such as the mag-
netic interaction between the electrons (Breit), radiative
(QED), and other smaller corrections.

The accuracy of the PNC amplitude was estimated by
comparing theoretical results for energies, dipole matrix
elements, and magnetic hyperfine constants with high-
precision experimental data (see Tables I, II, and III). We
find that the experimental energies are reproduced with an
accuracy of 0.1–0.3%. Relevant dipole matrix elements are
within the error bars of the experiments. Finally, since
the hyperfine constants A are accumulated in the nuclear
region, matrix elements of the weak interaction
hnS1=2jHW jn0P1=2imay be tested by forming the geometric

mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnS1=2An0P1=2

q
; see Ref. [58]. We find that the stan-

dard deviation of theoretical values from experiment is
0.2%. As a test of stability of the final result, we also
computed the main term using ab initio (i.e., without
scaling) CCSDvT matrix elements and energies. The re-
sult, 0.8839, deviates by 0.18% from our scaled value of
0.8823 in Table V. Based on these tests, we assign an error
of 0.2% to the main term. Finally, the ‘‘tail’’ lumps con-
tributions of remaining excited nP1=2 states (including

continuum) and core-excited states. The tail was computed
using a blend of many-body approximations and we assign
a 10% uncertainty to this contribution based on the spread
of its value in different approximations. The final result
includes smaller non-Coulomb corrections and its uncer-
tainty was estimated by adding individual uncertainties in
quadrature.

Our uncertainty in EPNC represents a two-fold improve-
ment over calculations [58] and a four-fold improvement
over Ref. [17]. Both calculations report a value of 0.908 for
the total Coulomb-correlated value, larger by 0.9% than
our 0.27%-accurate result. The reason for the shift in our
more complete calculations is three-fold: (i) direct contri-
butions of the triple excitations to matrix elements (0.3%),
(ii) line-dressing of diagrams for matrix elements (0.3%),
and (iii) consistent removal of Breit and QED corrections
from experimental energies used in the scaling procedure
(0.3%). Representative diagrams are shown in Fig. 3.

As discussed, we make a distinction between the indirect
and direct contributions of Tv to matrix elements [25].
Indirect effects of triples come from modifying energies
and single and double excitations. In the previous work

[17,58] it was approximately accounted for by a semi-
empirical scaling of single valence excitation (or
Brueckner orbitals) to the ratio of the theoretical to experi-
mental correlation energies. Direct Tv contributions to
matrix elements, however, cannot be reproduced by the
scaling and, moreover, require storing triples; due to large-
memory requirements this was not done in Ref. [17,58].
The size of the effect, �0:0029, is given by the difference
between entries ‘‘vT (no vT in MEs; scaled, Ecorr)’’ and
‘‘vT (scaled, Ecorr)’’ in Table V. The line-dressing [24] was
also not attempted previously. The line-dressing comes
from resumming nonlinear contributions to wave func-
tions, Eq. (4), in expressions for matrix elements. A struc-
ture of the all-order equations for the dressed hole lines is
presented in Fig. 3. The value of the line-dressing correc-
tion, �0:0031, is listed in Table V. The direct Tv contribu-
tions are most pronounced for the 6S1=2 � 7P1=2 dipole

amplitude, where they shift the value by 3%; their omission
leads to a 4� deviation from experiment [53]. Similarly,
discarding line-dressing shifts the theoretical values of
A6P1=2

by 0.8%.

IV. WEAK NUCLEAR CHARGE AND
IMPLICATIONS FOR PARTICLE PHYSICS

With the computed EPNC we proceed to extract the
electroweak observable. The experiment [3] determined
the ratio of EPNC=� ¼ 1:5935ð56Þ mV=cm. The most ac-
curate � comes from a combined determination [4,58],
� ¼ �26:957ð51Þa3B. As a result we arrive at the nuclear
weak charge

QWð133CsÞ ¼ �73:16ð29Þexpð20Þth; (14)

where the first uncertainty is experimental and the second
uncertainty is theoretical. Taking a weighted average,

FIG. 3. Many-body diagrams responsible for the shift of the
PNC amplitude compared to previous calculations. Top row:
sample direct contributions of valence triples to matrix elements
(wavy capped line) [25]. Bottom row: iterative equation for line-
dressing of the hole line in expressions for matrix elements [24]
(similar equation holds for particle lines; exchange diagrams are
not shown).
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� ¼ �26:99ð50Þa3B, of two determinations [4,53] results in
QWð133CsÞ ¼ �73:25ð29Þexpð20Þth. Both values are in a

perfect agreement with the prediction of the standard
model, QSM

W ¼ �73:16ð3Þ of Ref. [5].
While our result is consistent with the SM, it plays a

unique and at the same time complementary role to high-
energy physics experiments. Our result (i) confirms energy
dependence (or running) of the electroweak interaction and
(ii) places constraints on a variety of new physics scenarios
beyond the standard model.

In physics, the vacuum is never still. Each particle
carries a cloud of continuously sprouting virtual particle-
antiparticle pairs. The strength of the mutual interaction
between two particles becomes dependent on their relative
collision energy: at higher energies, the collision partners
tend to penetrate deeper inside the shielding clouds.
According to the SM, the interaction strength at low en-
ergies differs by about 3% from its value at 100 GeV; see
Fig. 4. For low energies, where the shielding clouds are
penetrated the least, previous analyses [22,23] were con-
sistent with no running. Here we improve the accuracy of
probing these least energetic electroweak interactions.

Compared to conventional particle-physics experiments,
our result provides a reference point for the least energetic
electroweak interactions. With our weak charge, we find
the effective interaction strength, sin2�effW ðE ! 0Þ ¼
0:2382ð11Þ. The result is in agreement with the SM value
[60] of 0.2381(6). While an earlier evidence for running of
sin2�W has been obtained in the parity violating electron-
scattering experiment at SLAC [61], the prediction of the
SM was outside their experimental error bars. Our work
provides a higher-confidence confirmation of the predicted
running of the electroweak coupling at low energies.

Notice that the relevant momentum transfer for 133Cs
atom is just 
30 MeV [21], but the exquisite accuracy of
the interpretation probes minute contributions of the sea of
virtual (including so-far undiscovered) particles at a much
higher mass scale. The new physics brought by the virtual
sea is phenomenologically described by weak isospin-
conserving S and isospin-breaking T parameters [62]:
QW �QSM

W ¼ �0:800S� 0:007T. At the 1� level, our

result implies jSj< 0:45. The parameter S is important,
for example, in indirectly constraining the mass of the
Higgs particle [62]. Similarly, the extra Z-boson, Z0

�, dis-

cussed in Ref. [2], would lead to a deviation [1] QW �
QSM

W � 84ðMW=MZ0
�
Þ2. We find MZ0

�
> 1:4 TeV=c2, im-

proving the present lower bound on the Z0 mass from direct
collider searches [63].

ACKNOWLEDGMENTS

We thank O. Sushkov, M. Kozlov, J. Erler, W. Marciano,
and M. Ramsey-Mussolf for discussions. This work was
initiated with support from the NIST precision measure-
ment grant program and supported in part by the NSF.

[1] W. J. Marciano and J. L. Rosner, Phys. Rev. Lett. 65, 2963
(1990); 68, 898 (1992).

[2] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev.

Lett. 102, 181601 (2009).
[3] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L.

Roberts, C. E. Tanner, and C. E. Wieman, Science 275,
1759 (1997).

[4] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484
(1999).

[5] C. Amsler et al., Phys. Lett. B 667, 1 (2008).

[6] I. B. Khriplovich, Parity Non-Conservation in Atomic
Phenomena (Gordon and Breach, New York, 1991).

[7] M.-A. Bouchiat and C. Bouchiat, Rep. Prog. Phys. 60,
1351 (1997).

[8] J. S.M. Ginges and V.V. Flambaum, Phys. Rep. 397, 63
(2004).

[9] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S.
Nakayama, Phys. Rev. Lett. 74, 2654 (1995).

[10] P. A. Vetter, D.M. Meekhof, P. K. Majumder, S. K.
Lamoreaux, and E.N. Fortson, Phys. Rev. Lett. 74, 2658

FIG. 4 (color online). Running of the electroweak force. The
strength of the electroweak coupling varies depending on the
energy scale probed by an experiment. The plot shows the
amount of variation relative to the strength at zero energies.
The solid line is the prediction [66] of the SM. High-energy
experiments at CERN and SLAC have measured the strength of
electroweak force at 91 GeV with an accuracy of 
0:1%. In
2005, a SLAC electron-scattering experiment [61] had deter-
mined the strength at 0.2 GeV with an accuracy of about 0.5%.
Our analysis of atomic parity violation probes the least energetic
(30 MeV) electroweak interactions measured so far and the
result is in perfect agreement with the SM. Overall, the predicted
running of the electroweak force is confirmed over an energy
range spanning 4 orders of magnitude.

S. G. PORSEV, K. BELOY, AND A. DEREVIANKO PHYSICAL REVIEW D 82, 036008 (2010)

036008-8

http://dx.doi.org/10.1103/PhysRevLett.65.2963
http://dx.doi.org/10.1103/PhysRevLett.65.2963
http://dx.doi.org/10.1103/PhysRevLett.68.898
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1088/0034-4885/60/11/004
http://dx.doi.org/10.1088/0034-4885/60/11/004
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1103/PhysRevLett.74.2654
http://dx.doi.org/10.1103/PhysRevLett.74.2658


(1995).
[11] D.M. Meekhof, P. A. Vetter, P. K. Majumder, S. K.

Lamoreaux, and E.N. Fortson, Phys. Rev. A 52, 1895
(1995).

[12] S. J. Phipp, N.H. Edwards, P. E. G. Baird, and S.
Nakayama, J. Phys. B 29, 1861 (1996).

[13] M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N.
Stacey, and J. P. Hoare, Phys. Rev. Lett. 67, 2784
(1991).

[14] K. Tsigutkin, D. Dounas-Frazer, A. Family, J. E. Stalnaker,
V. V. Yashchuk, and D. Budker, Phys. Rev. Lett. 103,
071601 (2009).

[15] K. Tsigutkin, D. Dounas-Frazer, A. Family, J. E. Stalnaker,
V. V. Yashchuk, and D. Budker, Phys. Rev. A 81, 032114
(2010).

[16] V. A. Dzuba, V.V. Flambaum, and O. Sushkov, Phys. Lett.
A 140, 493 (1989).

[17] S. A. Blundell, W.R. Johnson, and J. Sapirstein, Phys.
Rev. Lett. 65, 1411 (1990).

[18] A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000).
[19] A. Derevianko, Phys. Rev. A 65, 012106 (2001).
[20] O. P. Sushkov, Phys. Rev. A 63, 042504 (2001); V. A.

Dzuba et al., Phys. Rev. A 63, 044103 (2001); M.G.
Kozlov and S. G. Porsev, Phys. Rev. Lett. 86, 3260
(2001); W.R. Johnson et al., Phys. Rev. Lett. 87,
233001 (2001); M.Yu. Kuchiev and V.V. Flambaum,
Phys. Rev. Lett. 89, 283002 (2002); J. Sapirstein et al.,
Phys. Rev. A 67, 052110 (2003); A. I. Milstein et al., Phys.
Rev. A 67, 062103 (2003).

[21] A. I. Milstein, O. P. Sushkov, and I. S. Terekhov, Phys.
Rev. Lett. 89, 283003 (2002).

[22] V.M. Shabaev, K. Pachucki, I. I. Tupitsyn, and V.A.
Yerokhin, Phys. Rev. Lett. 94, 213002 (2005).

[23] A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 517
(2007).

[24] A. Derevianko and S. G. Porsev, Phys. Rev. A 71, 032509
(2005).

[25] S. G. Porsev and A. Derevianko, Phys. Rev. A 73, 012501
(2006).

[26] A. Derevianko, S. G. Porsev, and K. Beloy, Phys. Rev. A
78, 010503(R) (2008).

[27] I. Lindgren and J. Morrison, Atomic Many-Body Theory
(Springer-Verlag, Berlin, 1986), 2nd ed..
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