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In the standard model with a fourth generation of quarks, we study the relation between the Jarlskog

invariants and the triangle areas in the 4� 4 Cabibbo-Kobayashi-Maskawa matrix. To identify the leading

effects that may probe the CP violation in processes involving quarks, we invoke small mass and small

angle expansions, and show that these leading effects are enhanced considerably compared to the three-

generation case by the large masses of fourth-generation quarks. We discuss the leading effect in several

cases, in particular, the possibility of large CP violation in b ! s processes, which echoes the heightened

recent interest because of experimental hints.
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I. INTRODUCTION AND MOTIVATION

The experimental discovery [1] of CP violation (CPV)
in 1964 came as a surprise, but it provided the clue that led
Sakharov to suggest [2] the three conditions that need to be
satisfied to explain a long standing and profound puzzle:
the disappearance of antimatter from the very early
Universe. It was Kobayashi and Maskawa (KM) who pro-
posed [3], in 1973, that CPV can arise from charged current
weak interactions, if there is a third generation of quarks.
This proposal became part of the standard model (SM).
The 3� 3 quark mixing matrix can describe all flavor
physics measurements to date, the crowning glory being
the measurement of the fundamental CPV phase in modes
such as B0 ! J=cKS by the B factory experiments [4].
However, even the Nobel committee noted [5] that the KM
phase is insufficient for the Sakharov conditions, typically
by a factor of 10�10 or worse.

The numerics for the 10�10 factor can be most easily
seen by a dimensional analysis of the so-called Jarlskog
invariant CPV measure [6,7] of the three-generation stan-
dard model (SM3),

J ¼ ðm2
t �m2

uÞðm2
t �m2

cÞðm2
c �m2

uÞðm2
b �m2

dÞðm2
b �m2

sÞ
� ðm2

s �m2
dÞA; (1)

and comparing with the baryon-to-photon ratio nB=n� of

our Universe, which is of order 10�9. In Eq. (1), A ’ 3�
10�5 [4] is the area of, e.g. the triangle formed by the three
sides of the unitarity relation V�

udVub þ V�
cdVcb þ

V�
tdVtb ¼ 0 of SM3. Note that all possible triangle areas

have the same value in SM3. Since J has 12 mass dimen-
sions, normalizing by say v, the vacuum expectation value
of electroweak symmetry breaking, or more trivially the
electroweak phase transition temperature TEW ’ 100 GeV,
one finds J=T12

EW & 10�20 falls short of nB=n� by at least

10�10.
The main suppression factor of J comes mainly from the

small masses, m2
sm

2
cm

4
bð=T8

EWÞ, rather than from A. Noting

this, one of us had suggested [8] that, if one had an extra
generation of quarks, i.e. a four-generation standard model
(SM4), then an analog to J in SM3,

Jsbð2;3;4Þ ¼ ðm2
t0 �m2

cÞðm2
t0 �m2

t Þðm2
t �m2

cÞðm2
b0 �m2

sÞ
� ðm2

b0 �m2
bÞðm2

b �m2
sÞAsb

234; (2)

would be enhanced by �15 orders of magnitude with
respect to J. The staggering enhancement is brought about
by the heavy t0, b0 quark masses, which are taken to be in
the range of 300 to 600 GeV. A phenomenological analysis
[9] for Asb

234 ¼ Im½ðVtsV
�
tbÞ�Vt0sV

�
t0b� has been taken into

account. It was further argued [8] that the proximity to
the md ffi ms ffi 0 degeneracy limit [7] on the scale v
implies an almost three-generation world involving 2-3-4
generation quarks, in which Eq. (2) is indeed the leading
term. Unlike the case for SM3, this large enhancement
likely allows SM4 to provide sufficient CPV for the matter
or baryon asymmetry of the Universe, which provides
strong support for the possible existence of a fourth gen-
eration. The scenario can be directly searched for quite
definitely [10] at the LHC. In fact, because of recent
experimental activities at the Tevatron, be it direct search
for the t0 [11] or b0 [12] quarks, or CPV studies in Bs !
J=c� [13,14] or the recent hint of dimuon asymmetry
[15], interest in the fourth generation has been steadily
growing [16,17]. Our interest here, however, is more
fundamental.
It may still be questioned whether the analogy of Eq. (2)

and (1) between SM4 and SM3 covers the whole truth.
Indeed, the expression of invariants probing the CP non-
conservation becomes much more complicated when one
adds a fourth generation, and one should inspect all the
invariant quantities in SM4 more carefully. In the follow-
ing section, we first review the various discussions of
necessary and sufficient conditions for CPV. We then in-
voke the ‘‘natural ordering’’—the apparent hierarchy of
mass-mixing parameters in the quark sector—to make a
small mass expansion. The fact that mixing angles involv-
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ing the fourth generation cannot be large is less useful,
since the pattern of mixing angles (e.g. jVt0sj vs. jVt0bj) is
less clear at the moment, precisely because of the recent
hints for possibly large CPV effects in b ! s transitions.
However, we are able to identify, from the phenomeno-
logical indication that b ! d transitions appear consistent
with SM3, the condition that simplifies the Jarlskog invar-
iants further, and confirm that, in our world, Eq. (2) is
indeed (close to) the leading effect for CPV. In the above
process, we are also able to find the next-to-leading terms.
We offer some discussion on the approximations made,
before giving our conclusion. More tedious algebra and a
discussion on the relations between triangle areas are given
in the Appendices.

II. CONDITIONS FOR CP CONSERVATION

Many studies have been made on the necessary and
sufficient conditions for CP conservation with three and
four (or more) generations. In SM3, which is a very special
case, we have only one condition for CP conservation:

1
6 Im tr½S; S0�3 ¼ �Im trðS2S0SS02Þ ¼ Jð1; 2; 3Þ

¼ vð1; 2; 3Þv0ð1; 2; 3ÞA ¼ 0; (3)

where Sð0Þ is the up(down)-type Hermitian squared mass
matrix, defined as S ¼ MMy with M the quark mass
matrix. All the primed symbols hereafter denote down-
type quantities. In Eq. (3), v is the Vandermonde determi-
nant of squared masses,

vð�;�; �Þ ¼ ðm2
� �m2

�Þðm2
� �m2

�Þðm2
� �m2

�Þ; (4)

and Jð1; 2; 3Þ [which is identical to J in Eq. (1)] is the
Jarlskog invariant,

Jð�;�; �Þ ¼ vð�;�; �ÞIm trðP�S
0P�S

0P�S
0Þ; (5)

where P� is the projection operator for the indicated flavor,
SP� ¼ m2

�P�.
That the number of conditions for CP conservation in

SM3 is exactly one reflects the unique CPV phase in the
quark mixing matrix. With fourth generations, we have two
more Cabibbo-Kobayashi-Maskawa (CKM) phases, hence
more conditions are needed for CP conservation. The
number of conditions may, however, be larger than three
due to the complexity of, and interdependency between,
invariants. For instance, Botella and Chau [18] showed that
there are nine independent triangle areas in SM4, rather
than the single area in SM3, and CP is conserved if and
only if all nine areas vanish. Note that these triangles are
not ‘‘unitary triangles,’’ since in SM4 the unitarity relations
give quadrangles. However, every two sides of these quad-
rangles still form triangles, and we refer to these triangles
as ‘‘CKM triangles.’’ Namely,

Au1u2
d1d2

� Im½ðVu1d1V
�
u1d2

Þ�Vu2d1V
�
u2d2

� ¼ 0; 8 u1 � u2;

d1 � d2 (6)

is defined quite in the same way as the conventions in SM3.
One can see the number of total possible triangles is
ðC4

2Þ2 ¼ ð4!=2!2!Þ2 ¼ 36, but the unitarity conditions re-
duce this number to ðC3

2Þ2 ¼ ð3!=2!Þ2 ¼ 9 (the correspond-
ing numbers for SM3 are therefore 9 and 1, respectively).
These CKM triangles, though rephasing invariant, may not
be fully independent of each other (see Appendix B for a
discussion). Furthermore, quark masses do not appear ex-
plicitly, although we know that CPV would vanish under
certain mass degeneracy conditions.
Equation (3), which gives the Jarlskog invariant CPV

measure for SM3 as in Eq. (1), is of course invariant under
any change of flavor basis. Extending to SM4, Jarlskog
showed [7] that it is the sum over four Jarlskog invariants
of the form in Eq. (5), or three-cycles, that is

�Im trðS2S0SS02Þ ¼ Jð2; 3; 4Þ þ Jð1; 3; 4Þ þ Jð1; 2; 4Þ
þ Jð1; 2; 3Þ: (7)

The Jarlskog proposal is that one would have CP conser-
vation if and only if all four invariants vanish. This pro-
posal shows a transparent analogy between SM3 and SM4.
There are other basis-independent approaches, however,

to the conditions for CP conservation. Gronau, Kfir, and
Loewy (GKL) introduced [19] five more invariants in
addition to Eq. (3), and proposed that CP is conserved in
SM4 if and only if all six invariants vanish,

Im trðS2S0SS02Þ ¼ Im trðS2S0SS03Þ ¼ Im trðS2S02SS03Þ
¼ Im trðS0SS02SS03Þ ¼ Im trðS3S0SS02Þ
¼ Im trðS3S0SS03Þ ¼ 0: (8)

Whether these two sets of conditions are really sufficient
for CP conservation has been debated [7,20,21]. What is
certain is that, if CP is violated, some of these quantities
would be nonzero. Both sides do agree that the two sets of
conditions are equivalent if there is no vanishing element
in the quark mixing matrix V in SM4.
The pragmatic question is how these quantities appear in

process amplitudes that give rise to observablemeasures of
CP violation. In SM3, we know that the Jarlskog invariant
enters various CPV measures. It further encodes the notion
that, if any two like-charge quarks are degenerate in mass,
or if the CKM triangle area vanishes, there would be no CP
violation. Taking this as a hint, it is clear that the CKM
triangle areas should enter various CPV measures, together
with some mass difference factors, so the GKL and
Jarlskog invariants should play a role in these measures.
The generation labels of the CKM triangles in the measure
should tell us what the related processes are for the search
of CP violation. Note that the GKL and Jarlskog invariants
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are basis independent, and thus more likely to appear in
physical quantities.

The invariants in Eqs. (5) and (8) are, however, rather
complicated, and it is not apparent how the fourth genera-
tion effect on CP violation emerges. In contrast, the sug-
gested leading effect of Eq. (2) is much more intuitive, and
rather similar to the SM3 result of Eq. (1), but with the
emphasis placed clearly on b ! s transitions. We should
try to express the invariants, whether of the GKL [19] or
Jarlskog [7] kind, in terms of mass difference factors and
CKM triangle areas, just like in SM3, and then identify the
leading terms by considering the physical limits, such as
physical quark masses. An extensive work that expands the
GKL invariants into the nine CKM triangles [18] has been
done in Ref. [22], but no comparison between different
terms were made. For example, one has,

Im trðS2S0SS02Þ ¼ X
vð1; i; jÞv0ð1; a; bÞAij

ab; (9)

where the summation is over ði; jÞ and ða; bÞ 2
fð2; 3Þ; ð3; 4Þ; ð4; 2Þg, with similar expansions for the other
invariants in Eq. (8). Comparing different GKL invariants
would be less meaningful, however, as there are several
different mass dimensions. Even if they are shown to enter
some CPVmeasure, it would be difficult to tell whether the
fourth generation enhances the CP violation or not. On the
other hand, all the Jarlskog invariants have the same di-
mension, and the general form of Eq. (5) is maintained as
one extends from SM3 to SM4.

In the following, we will express the Jarlskog invariants
in terms of the nine CKM triangles, then identify the
leading terms in these invariants, by adopting proper physi-
cal limits. We find that the suggestion of Eq. (2) is indeed
the leading term, but various next-to-leading terms are only
smaller by roughly a factor of 10.

III. SMALL MASS AND ANGLE EXPANSION OF
JARLSKOG INVARIANTS

A. Jarlskog invariants and CKM triangles

Let us express the Jarlskog invariants of Eq. (5) in terms
of the nine CKM triangles of Eq. (6). For convenience, we

choose to decompose the down-type Jarlskog invariants
into CKM triangle areas. The up-type relations can be
obtained analogously. Since the invariants can be evaluated
in any basis, we are allowed to choose S0 to be diagonal and
write Ŝ ¼ VyMV, where V is the familiar quark mixing
matrix. The Jarlskog invariants become

J0ða; b; cÞ ¼ �v0ða; b; cÞIm trðP0
aSP

0
bSP

0
cSÞ

¼ �v0ða; b; cÞImðŜabŜbcŜcaÞ

¼ v0ða; b; cÞ X4
i;j;k¼1

m2
i m

2
jm

2
k

� ImðViaV
�
ibVjbV

�
jcVkcV

�
kaÞ; (10)

where the indices a, b, c are chosen all differently within
f1; 2; 3; 4g, but not summed. With an eye toward Eq. (2), we
use the unitarity relation

V1aV
�
1b ¼ �V2aV

�
2b � V3aV

�
3b � V4aV

�
4b þ �ab; (11)

to eliminate all 1’s for the indices that are summed over.
We factor out any real factor that appears in Imð� � �Þ of
Eq. (10), and the remaining four CKM matrix elements
then form a CKM triangle area.
After some algebra, which is rendered to Appendix A,

the four down-type Jarlskog invariants are reduced to

J0ð2; 3; 4Þ ¼ �v0ð2; 3; 4Þ�234;

J0ð1; 3; 4Þ ¼ v0ð1; 3; 4Þ½�234 � vð1; 3; 4ÞA34
34

� vð1; 2; 3ÞA23
34 � vð1; 4; 2ÞA42

34�;
J0ð1; 2; 3Þ ¼ v0ð1; 2; 3Þ½�234 � vð1; 3; 4ÞA34

23

� vð1; 2; 3ÞA23
23 � vð1; 4; 2ÞA42

23�;
J0ð1; 4; 2Þ ¼ v0ð1; 4; 2Þ½�234 � vð1; 3; 4ÞA34

42

� vð1; 2; 3ÞA23
42 � vð1; 4; 2ÞA42

42�;

(12)

where

�234 ¼ ðm2
2 �m2

1Þðm2
3 �m2

1Þ½ðm2
4 �m2

2ÞðjV22j2A23
34 þ jV23j2A23

42 þ jV24j2A23
23Þ

� ðm2
4 �m2

3ÞðjV32j2A23
34 þ jV33j2A23

42 þ jV34j2A23
23Þ�

þ ðm2
3 �m2

1Þðm2
4 �m2

1Þ½ðm2
2 �m2

3ÞðjV32j2A34
34 þ jV33j2A34

42 þ jV34j2A34
23Þ

� ðm2
2 �m2

4ÞðjV42j2A34
34 þ jV43j2A34

42 þ jV44j2A34
23Þ�

þ ðm2
4 �m2

1Þðm2
2 �m2

1Þ½ðm2
3 �m2

4ÞðjV42j2A42
34 þ jV43j2A42

42 þ jV44j2A42
23Þ

� ðm2
3 �m2

2ÞðjV22j2A42
34 þ jV23j2A42

42 þ jV24j2A42
23Þ�: (13)

This rather compact form, though still quite complicated,
should be compared with the many terms of Ref. [22],
obtained by expanding the six GKL invariants [19] of

Eq. (8) in terms of the nine CKM triangle areas [18] of
Eq. (6). We note again that the GKL invariants are of
several different mass dimensions, and it is not easy to
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compare the relative importance of the numerous possible
terms. In contrast, all four Jarlskog invariants have the
same mass dimension, hence are more readily compared
with one another. As remarked already, for SM4 with no
vanishing CKM mixing matrix elements, GKL and
Jarslkog approaches are equivalent, but the latter is clearly
more convenient for our purpose.

B. Small mass and angle expansions

One of our goals is to identify the leading effects in the
Jarlskog invariants. We now depart from generality by
noting the fact of a clear hierarchy of physical quark
masses in nature, namely m2

b0 	 m2
b 	 m2

s 	 m2
d. This

implies that the last two factors in Eq. (12) are much
more suppressed than the first two. Likewise, the up-type
hierarchy m2

t0 >m2
t 	 m2

c 	 m2
u further suppresses the

first and third terms in �234, as well as the terms with
factors vð1; 2; 3Þ and vð1; 2; 4Þ in J0ð1; 3; 4Þ. Dropping these
m2

s and m2
c suppressed terms, Eqs. (12) and (13) become

J0ð2; 3; 4Þ ’ �ðm2
b0 �m2

sÞðm2
b0 �m2

bÞðm2
b �m2

sÞ�234;

J0ð1; 3; 4Þ ’ ðm2
b0 �m2

dÞðm2
b0 �m2

bÞðm2
b �m2

dÞ
� ½�234 � ðm2

t0 �m2
uÞðm2

t0 �m2
t Þ

� ðm2
t �m2

uÞAtt0
bb0 �; (14)

�234 ’ ðm2
t �m2

uÞðm2
t0 �m2

uÞ½ðm2
t �m2

cÞð�jVtsj2Att0
bb0

þ jVtbj2Att0
sb0 � jVtb0 j2Att0

sbÞ þ ðm2
t0 �m2

cÞ
� ðjVt0sj2Att0

bb0 � jVt0bj2Att0
sb0 þ jVt0b0 j2Att0

sbÞ�; (15)

where we have returned all indices to physical labels, and
kept the small subtracted masses in the explicit mass
differences in these remainder terms, for sake of corre-
spondence with Eq. (2).

As there are still quite a few terms in Eq. (15), we
expand further in the strength of jVijj2. Phe-

nomenologically, we now know [17] that the rotation
angles in the CKM matrix are small, i.e. jVijj2 
 jVkkj2 �
1, which holds not only in SM3, but seems to extend into
SM4 as well. The Cabibbo angle appears to be the largest
rotation angle, while jVtsj cannot be much different from
the SM3 value of ’ 0:04, and jVt0sj2 and jVt0bj2 should be of
order 10�2 or less [23]. Assuming small rotation angles, we
drop the off-diagonal jVijj2 terms in �234, and get

J0ð2; 3; 4Þ � �ðm2
t0 �m2

uÞðm2
t �m2

uÞðm2
b0 �m2

sÞ
� ðm2

b0 �m2
bÞðm2

b �m2
sÞ½ðm2

t �m2
cÞjVtbj2Att0

sb0

þ ðm2
t0 �m2

cÞjVt0b0 j2Att0
sb�; (16)

J0ð1; 3; 4Þ � ðm2
t0 �m2

uÞðm2
t �m2

uÞðm2
b0 �m2

dÞðm2
b0 �m2

bÞ
� ðm2

b �m2
dÞ½ðm2

t �m2
cÞjVtbj2Att0

sb0

þ ðm2
t0 �m2

cÞjVt0b0 j2Att0
sb � ðm2

t0 �m2
t ÞAtt0

bb0 �:
(17)

If one looks at the order of magnitude of quark masses,
Eq. (16) is similar to Eq. (2). But they are not exactly the
same: more than one CKM area carry the heaviest mass
factor m4

t0m
2
t m

4
b0m

2
b, and the masses of u, d quarks also

enter the expression.
In Eqs. (16) and (17), we have used ‘‘�’’ rather than

‘‘’ ,’’ because we have treated the CKM triangle areas as
‘‘free parameters’’ while dropping the off-diagonal jVijj2
terms. These areas are characterized not only by the
strength of CKM matrix elements, but also their relative
phases, which makes clear that these two equations are for
illustrative purposes only. Note that we have not assumed
further hierarchical structure in the mixing elements. This
is because of the possible indication of a large CPV effect
involving b ! s transitions; hence, we do not know
whether the hierarchy structure of jVubj2 
 jVcbj2 

jVusj2 
 1 would extend to elements involving the fourth
generation. We remark that, without assuming further
structure in the CKM elements, unlike the application of
mass hierarchies that lead to Eqs. (14) and (15), had we
applied jVijj2 
 jVkkj2 � 1 (where i � j) first to Eqs. (12)

and (13), not much simplification would be gained, and
there would still be four Jarlskog invariants.
What CKM angle pattern could be noteworthy for fur-

ther simplifications?

C. Leading effect of Jarlskog invariants

For our purpose of finding the leading effect of CPV,
what pattern of small off-diagonal elements in the CKM
matrix could provide additional approximate relations be-
tween triangle areas as defined in Eq. (6)? Taking note of
the three specific triangle areas that enter Eq. (15), we note
that the unitarity quadrangle

VtdV
�
t0d þ VtsV

�
t0s þ VtbV

�
t0b þ Vtb0V

�
t0b0 ¼ 0; (18)

a special case of our starting Eq. (11), would approach a
triangle, if jVtdV

�
t0dj is small compared to the other terms. If

this is the case, then any two of the other three sides would
form the same triangle area, i.e.

Att0
sb ’ �Att0

sb0 ’ Att0
bb0 ; for jVtdV

�
t0dj 
 1; (19)

which relates the three CKM triangles appearing in�234 of
Eq. (15). Applying Eq. (19) to Eq. (15), we get

�234 ’ ðm2
t �m2

uÞðm2
t0 �m2

uÞ½�ðm2
t �m2

cÞð1� jVtdj2ÞAtt0
sb

þ ðm2
t0 �m2

cÞð1� jVt0dj2ÞAtt0
sb�

’ ðm2
t �m2

uÞðm2
t0 �m2

uÞðm2
t0 �m2

t ÞAtt0
sb; (20)
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where we have assumed the smallness of both jVt0dj2 and
jVtdj2 in the second step, which is somewhat stronger than
what is needed for Eq. (19) to hold. Substituting Eq. (20)
into Eq. (14), we obtain

J0ð2; 3; 4Þ ’ �ðm2
b0 �m2

sÞðm2
b0 �m2

bÞðm2
b �m2

sÞðm2
t �m2

uÞ
� ðm2

t0 �m2
uÞðm2

t0 �m2
t ÞAtt0

sb; (21)

J0ð1; 3; 4Þ ’ 0þ subleading terms: (22)

With Asb
234 ¼ Att0

sb, J
0ð2; 3; 4Þ in Eq. (21) is indeed the

same as Jsbð2;3;4Þ of Eq. (2), except that m
2
c is replaced by

m2
u, which makes little difference since m2

u and m2
c are

negligible compared with m2
t and m2

t0 . What seems a little

curious is that the starting point of Eq. (18) is more relevant
for t0 ! t transitions, but it leads to the result in Eq. (21)
[through Eq. (19)], which seems more relevant to b ! s
transitions.

In Ref. [23], the authors also showed that Att0
sb0 and Att0

sb

have similar area through a phenomenological study. Such
a study started [9] from the hint of new physics CPV in
b ! s transitions, while b ! d transitions (including Bd

mixing-dependent CPV) mimic SM3, as first noted by
Ref. [24]. If we take the approximation in Eq. (19), it
implies that jVtsj and jVt0sj are stronger than the counter-
parts involving d, which implies interesting CPVeffects in
b ! s processes, including in Bs ! J=c� [9,17,25]. This
is precisely where we are finding several experimental
hints [13–15]! We have thus clarified the phenomenologi-
cal link and reasoning behind Eq. (21), which echoes quite
well those given in Ref. [8] for Eq. (2), but in a more hand-
waving way.

One may question whether our choice to eliminate the
index ‘‘1’’ via Eq. (11) can keep its generality, once we
introduce the hierarchy of quark masses. To check this, we
note that one could apply small mass expansion to Eq. (10)
directly and obtain the same results without passing any
algebra, or even using Eq. (11). Taking Eq. (2) as a guide,
by collecting terms with factor m4

t0m
2
t in the summation in

J0ð2; 3; 4Þ in Eq. (10), one has

J0ð2; 3; 4Þ �m4
t0m

2
t m

4
b0m

2
b½jVt0b0 j2Att0

sb � jVt0bj2Att0
sb0

þ jVt0sj2Att0
bb0 �;

J0ð1; 3; 4Þ � �m4
t0m

2
t m

4
b0m

2
b½jVt0b0 j2Att0

sb � jVt0bj2Att0
sb0

þ ðjVt0sj2 � 1ÞAtt0
bb0 �;

(23)

which is exactly what we have in Eqs. (14) and (15) when
neglecting any terms of order equal to or smaller than
m2

t =m
2
t0 . If we invoke jVt0dj to be much smaller than the

other three elements, and Eq. (19) is satisfied, then we
again get a formula for J0ð2; 3; 4Þ that is in line with
Eq. (21), while J0ð1; 3; 4Þ cancels away as in Eq. (22).

One may then question the utility of the algebra, which
constitutes the bulk of the paper. Note that Eq. (23) does

not satisfy the requirements for the t� t0 degeneracy limit.
This can be remedied by collecting the m2

t0m
4
t terms as

well. But if one wishes to explore other subleading effects,
then Eq. (23) offers no guidance, and to explore these, one
might as well resort to Eqs. (12) and (13). As we will show
in the discussion below, it is possible, through the structure
of the CKMmatrix, that Eq. (21) [hence Eq. (23)] in fact is
absent. Thus, Eqs. (12) and (13) offer the general starting
point, independent of the quark mass hierarchy. It provided
an easy way to evaluate the leading effects with the hier-
archy taken into account, and can always be used in dis-
cussing special CKM structures. Our formulas show the
complete mass factors in front of each CKM triangle area,
which all have the form of difference of mass squares. This
feature allows us to explore some more general cases, as
we will discuss in the next section.

IV. DISCUSSION

At the end of the previous section, we have seen the
implications for very small jVtdj and jVt0dj and quark mass
hierarchy. Only one of the four Jarlskog invariants,
J0ð2; 3; 4Þ of Eq. (21), remains nonzero, while the other
three are subleading, and hence could in principle vanish if
we have exact jVtdj ¼ jVt0dj ¼ 0 and mu ¼ mc. In this
case, it would be an effective three-generation world,
where the first generation decouples from the other three
heavier generations, when taking the extra freedom in jVcdj
provided by u� c degeneracy. This seems to be in contrast
to the assertion by Jarlskog in Ref. [7] that when three of
these invariants vanish exactly, the fourth would also van-
ish. However, as Jarlskog mentioned, this assertion is not
valid in the present case. In fact, this assertion is not valid
whenever one generation decouples from the other three
generations (zeros in the CKM matrix).
Using the small mass expansion is quite different from

taking mass degeneracy limits mathematically. If one has
mass degeneracy, extra freedom in the quark mixing matrix
must be taken into account. In Ref. [7], the author also
treated exact degeneracy differently to avoid possible sin-
gularity. Nevertheless, in our real world, we do not have
any two quarks with the same mass, so it is reasonable to
consider only the smallness of quarks but not degeneracy,
though these two ways seem similar physically. It should
be further noted that, if one applies t� t0 degeneracy, then
J0ð2; 3; 4Þ and J0ð1; 3; 4Þ do not seem to vanish,
which seems paradoxical. This can be traced, however, to
Eq. (10), where the mass-squared difference appears in the
denominator in defining the projection operators, and the
second equality cannot apply in the t� t0 degeneracy limit.
To address this issue, rather than flipping the definition of
primed versus unprimed objects, we could inspect the
behavior of b� b0 degeneracy limit instead of t� t0.
One immediately sees that, if one maintains mb0 �mb >
ms > md while letting ms ! 0, then taking b0 � b degen-
eracy limit, all four Jarlskog invariants would properly
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vanish, hence the previous paradox is an artefact of choos-
ing to decompose down-type Jarlskog invariants. But we
then see that ‘‘t� t0 degeneracy’’ (that mimic true b� b0
degeneracy) indeed cannot be applied. We therefore gain
an insight that, while massless degeneracy of the first two
generations can simultaneously be applied for up- and
down-type quarks [because of vanishing mass protection
in reaching second equality of Eq. (10)], this is not so for
the degeneracy of the massive third and fourth generations.

In the previous section, we considered only the case with
small jVtdj and jVt0dj. Now let us consider more scenarios
when some of the elements in the CKM matrix are ex-
tremely small, leading to some vanishing triangle areas.
First, let us consider the case where the fourth generation is
totally decoupled from the first three generations. One then
expects an effective three-generation theory, and the CPV
effect should be the same as in SM3. Because of the
decoupling, all rotation angles which link the fourth gen-
eration and lower generations are zero. That is,

V14 ¼ V24 ¼ V34 ¼ V41 ¼ V42 ¼ V43 ¼ 0;

and it follows that any Au1u2
d1d2

that contains 4 in its label is

zero. �234 is also zero because every term in �234 contains
at least one zero factor. The four invariants then become

J0ð2; 3; 4Þ ¼ J0ð1; 3; 4Þ ¼ J0ð1; 4; 2Þ ¼ 0;

J0ð1; 2; 3Þ ¼ �v0ð1; 2; 3Þvð1; 2; 3ÞA23
23;

(24)

which is exactly what we have in SM3, and there is no CPV
effect induced by the fourth generation, as expected.

But if the fourth generation exists, it is hard to conceive
that it decouples from all other generations. Consider the
case where the fourth generation decouples from the first
two generations, that is,

V14 ¼ V24 ¼ V41 ¼ V42 ¼ 0;

then the only nonvanishing triangle areas in Eq. (12) are
A23
23 and A34

34. One can show from Eqs. (B1) and (B2) that

one must have either A23
23 ¼ A34

34 ¼ 0 or V34 ¼ V43 ¼ 0.
The first solution means there is no CPV at all, and the
third generation also decouples from the first two gener-
ations, which contradicts experimental observation. The
second solution, on the other hand, means that the fourth
generation decouples also from the third generation, which
is the previous scenario we have just discussed. This result
shows that if the fourth generation does exist, it must either
couple with at least two lower generations, or must fully
decouple from all three lower generations.

However, even if the fourth generation is present and
couples to all other generations, it is still possible that we
have only one CPV phase. Consider, for instance, having b0
decoupled from u and c, which gives V14 ¼ V24 ¼ 0. Then
any triangle areas Au1u2

d1d2
with a ‘‘4’’ in lower indices and an

‘‘1’’ or a ‘‘2’’ in upper indices will vanish. In addition,
there are other triangle areas that would also vanish by

using the unitarity condition,

A34
14;42;34 ¼ �A14

14;42;34 � A24
14;42;34 ¼ 0: (25)

The only nonvanishing triangle areas used in Eq. (12) are
A23
23, A

34
23, and A42

23. But Eq. (B1) with ðu1; u2; u3; u4Þ ¼
ð1; 2; 3; 4Þ and (1, 3, 2, 4) gives

ðjV34j2 � jV44j2ÞA34
23 ¼ 0; jV34j2A23

23 ¼ �jV44j2A42
23:

(26)

Provided that jV34j2 � 0 and jV34j2 � jV44j2, there is only
one degree of freedom in triangle areas, hence only one
CPV phase. All the Jarlskog invariants are then propor-
tional to this area, and the leading effect is

J0ð2; 3; 4Þ � �ðm2
t0 �m2

t Þ2ðm2
c �m2

uÞðm2
b0 �m2

sÞ
� ðm2

b0 �m2
bÞðm2

b �m2
sÞjVtb0 j2Act

sb; (27)

J0ð1; 3; 4Þ � ðm2
t0 �m2

t Þ2ðm2
c �m2

uÞðm2
b0 �m2

dÞðm2
b0 �m2

bÞ
� ðm2

b �m2
dÞjVtb0 j2Act

sb; (28)

which is smaller than Eq. (16) due to the factorm2
c, but it is

still enhanced by�1010 when compared with Eq. (1). One
sees that if the fourth generation does not totally decouple
from the other three, it will leave its fingerprint on some
CPV process(es).
For other possible scenarios, one can follow the same

recipe we used. First, the dependence of triangle areas are
determined by the relations in Eqs. (B1) and (B2). Then,
inserting these relations into Eqs. (12) and (13), one can
identify the leading effect in the corresponding scenario.
Finally, one should note that it is very unlikely to have any
exact zero in the quark mixing matrix from theoretical
perspective, and certainly not experimentally either.
These cases allow us to see the asymptotic behavior of
the leading effect.

V. CONCLUSION

The formula in Eq. (2), as if involving just 2-3-4 gen-
erations in a four-generation world, would be enhanced
above the three-generation Jarlskog invariant J of Eq. (1)
by an astounding 1015 or so. This is because the depen-
dence on the small mass-squared differences between the
two lightest generations get replaced by heavier masses at
the weak scale. The purpose of our study is to check to
what extent Eq. (2) is the leading CPV effect in the four-
generation standard model.
We chose the more convenient starting point of

Jarlskog’s extension to four invariants in SM4. As we
always maintain physical finite values for quark masses
and CKMmixing elements, this is equivalent in SM4 to the
more complicated Gronau, Kfir, and Loewy approach.
Through algebraic manipulations, the more tedious of
which are relegated to the Appendices, we arrive at the
general results of Eq. (12), which depend on an algebraic
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function �234 defined in Eq. (13). With full generality, this
does not offer too much insight. We then invoked the
hierarchy of physical quark masses, i.e. the aforemen-
tioned smallness of the first two generations masses on
the weak scale, to eliminate two Jarlskog invariants,
J0ð1; 2; 3Þ and J0ð1; 4; 2Þ, as subleading, as well as simplify
�234. Invoking the empirical condition of small rotations,
that off-diagonal elements in V are not larger than jVusj,
does not simplify further the result of Eq. (14). One needs
further knowledge of patterns of CKM elements (analo-
gous to the mass hierarchy). Because of recent hints in b !
s processes, this cannot yet be concluded. Instead, we
found the relation of Eq. (19) between triangle areas would
hold, given that b ! d transitions seem to conform with
the three-generation standard model. The resulting Eq. (21)
largely confirms the suggestion of Eq. (2). In fact, one
could have taken a much more efficient approach, for the
purpose of identifying the leading effect, by making small
mass expansion from the outset in Eq. (10), and arrive at
Eq. (23). This retains all features of the proposed Jsb2;3;4 in

Eq. (2), keeping to m2
t =m

2
t0 order, as well as order of CKM

elements, which could be as large as 0.1. We therefore see
that though Jsb2;3;4 in Eq. (2) does seem to be the leading

term in the presence of quark mass hierarchies and small
rotation angles—which is our world—there should be a
myriad of subleading terms that are perhaps only 10 times
smaller.

In the course of our study, we also uncovered the appar-
ent phenomenological condition for Jsb2;3;4 in Eq. (2) to be

the leading term. Current data suggest that CPV in b ! s
transitions, notably for mixing-dependent CPV in Bs !
J=c�, could be sizable, despite the B factory confirmation
of consistency with a three-generation source for b ! d
transitions (notably for mixing-dependent CPV in Bd !
J=cKS). Thus, Vtd and Vt0d seem subdued compared with

Vts and Vt0s in strength, respectively. In this case, we were
able to derive Eq. (21) which is extremely close to Eq. (2),
except for very minor differences. We thus conclude that,
in general the claim of a large enhancement by fourth-
generation masses is true, although there would be several
terms comparable to Jsb2;3;4 in Eq. (2). If, however, we do

discover sizable CPV effect in Bs ! J=c� that is much
enhanced over SM3 expectations, then indeed Jsb2;3;4 of

Eq. (2), or J0ð2; 3; 4Þ of Eq. (21), is the single leading
term. But there would still be subleading terms that could
be just an order of magnitude less in strength, depending on
the strength of associated CKM elements.

APPENDIX A: SOME ALGEBRA

We start from Eq. (10)

J0ða; b; cÞ ¼ v0ða; b; cÞ X4
i;j;k¼1

m2
i m

2
jm

2
k

� ImðViaV
�
ibVjbV

�
jcVkcV

�
kaÞ: (A1)

By replacing every term that contains m2
1 in the above

summation by the unitarity condition, the summation be-
comes

X4
i;j;k¼2

ðm2
i �m2

1Þðm2
j �m2

1Þðm2
k �m2

1Þ

� ImðViaV
�
ibVjbV

�
jcVkcV

�
kaÞ; (A2)

where now the sum is overall possible i, j, k in the set
f2; 3; 4g. Note that since a, b, c are all different, there exists
no term like �aa ¼ 1 in Eq. (A2).
We can apply a similar trick to the down-type indices of

V. Consider the case a ¼ 1 and b, c are chosen differently
from f2; 3; 4g

Im ðVi1V
�
ibVjbV

�
jcVkcV

�
k1Þ ¼ �ImðVi2V

�
ibVjbV

�
jcVkcV

�
k2Þ � ImðVi3V

�
ibVjbV

�
jcVkcV

�
k3Þ � ImðVi4V

�
ibVjbV

�
jcVkcV

�
k4Þ

þ ImðV�
ibVjbV

�
jcVkcÞ�ik

¼ �ImðVibV
�
ibVjbV

�
jcVkcV

�
kbÞ � ImðVicV

�
ibVjbV

�
jcVkcV

�
kcÞ � ImðVidV

�
ibVjbV

�
jcVkcV

�
kdÞ

þ ImðV�
ibVjbV

�
jcVkcÞ�ik

¼ �ImðVidV
�
ibVjbV

�
jcVkcV

�
kdÞ þ ImðV�

ibVjbV
�
jcVkcÞ�ik þ jVibj2Ajk

bc � jVkcj2Aij
bc; (A3)

where d is taken to be different from a, b, c, and the second equality follows from replacing 2, 3, 4 by b, c, d, by reordering
the first three terms. Real factors are taken out in the third equality, and we also used

Aij
bc ¼ Im½ðVibV

�
icÞ�VjbV

�
jc�: (A4)

Substituting Eqs. (A2) and (A3) back into Eq. (A1), we have
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J0ð1; b; cÞ ¼ v0ð1; b; cÞ
� X4
i;j¼2

ðm2
i �m2

1Þ2ðm2
j �m2

1ÞAij
bc �

X4
i;j;k¼2

ðm2
i �m2

1Þðm2
j �m2

1Þðm2
k �m2

1ÞImðVidV
�
ibVjbV

�
jcVkcV

�
kdÞ

þ X4
i;j;k¼2

ðm2
i �m2

1Þðm2
j �m2

1Þðm2
k �m2

1ÞðjVibj2Ajk
bc � jVkcj2Aij

bcÞ
�
: (A5)

The third summation would vanish, since the upper indices
of A are antisymmetric; hence, each component will cancel
one another.

Define now

�dbc ¼ � X4
i;j;k¼2

ðm2
i �m2

1Þðm2
j �m2

1Þðm2
k �m2

1Þ

� ImðVidV
�
ibVjbV

�
jcVkcV

�
kdÞ: (A6)

We note that the indices of A and� are antisymmetric, and
hence we have

ðm2
i �m2

1Þ2ðm2
j �m2

1ÞAij
bc þ ðm2

j �m2
1Þ2ðm2

i �m2
1ÞAji

bc

¼ �vð1; i; jÞAij
bc: (A7)

Thus, the four Jarlskog invariants in SM4 can be written as

J0ð2; 3; 4Þ ¼ �v0ð2; 3; 4Þ�234;

J0ð1; 3; 4Þ ¼ v0ð1; 3; 4Þ½�234 � vð1; 3; 4ÞA34
34

� vð1; 2; 3ÞA23
34 � vð1; 4; 2ÞA42

34�;
J0ð1; 2; 3Þ ¼ v0ð1; 2; 3Þ½�234 � vð1; 3; 4ÞA34

23

� vð1; 2; 3ÞA23
23 � vð1; 4; 2ÞA42

23�;
J0ð1; 4; 2Þ ¼ v0ð1; 4; 2Þ½�234 � vð1; 3; 4ÞA34

42

� vð1; 2; 3ÞA23
42 � vð1; 4; 2ÞA42

42�:

(A8)

�234 can be expressed further in terms of triangle areas.
From Eq. (A6), we consider the following quantity:

�ðm2
i �m2

1Þðm2
j �m2

1Þðm2
k �m2

1ÞImðVibV
�
icVjcV

�
jdVkdV

�
kbÞ

¼ �Mijk
1 !ijk

bcd; (A9)

where we have defined the mass prefactor Mijk
1 � ðm2

i �
m2

1Þðm2
j �m2

1Þðm2
k �m2

1Þ and the imaginary part of six

CKM matrix elements !ijk
bcd � ImðVibV

�
icVjcV

�
jdVkdV

�
kbÞ.

Note that !ijk
bcd has the following properties:

X4
i¼2

!ijk
bcd ¼ �!1jk

bcd; !ijk
bcd ¼ !jki

cdb ¼ !kij
dbc;

!iii
bcd ¼ 0; !iji

bcd ¼ jVibj2Aij
cd:

(A10)

�bcd could be written as the following summation:

�bcd ¼ X4
i;j;k¼2

�Mijk
1 !ijk

bcd: (A11)

Note that from the second property of Eq. (A10),�bcd ¼
�dbc ¼ �cdb, while the first property of Eq. (A10) implies,

X4
i;j;k¼2

!ijk
bcd ¼ X4

j;k¼2

�!1jk
bcd ¼ X4

k¼2

!11k
bcd ¼ �!111

bcd ¼ 0:

(A12)

Combining Eqs. (A11) and (A12), we have

�bcd ¼ X4
i;j;k¼2

�ðMijk
1 �M234

1 Þ!ijk
bcd: (A13)

Since the upper indices ofM are symmetric and!iii
bcd ¼ 0,

ðMijk
1 �M234

1 Þ!ijk
bcd ¼ 0 if ði; j; kÞ are taken to be all

different or all the same from f2; 3; 4g. Thus, Eq. (A13)
could be written as

�bcd ¼ ½ðM234
1 �M232

1 Þð!232
bcd þ!232

cdb þ!232
dbcÞ

þ ðM234
1 �M323

1 Þð!323
bcd þ!323

cdb þ!323
dbcÞ�

þ other two cyclic permutations of ð2; 3; 4Þ;
(A14)

where we have used the symmetric property of the upper
indices of M and also the second property of Eq. (A10).
Using now the fourth property of Eq. (A10) and express
terms like !232

bcd in terms of triangle areas with real factors,

�bcd becomes

�bcd ¼ ½ðm2
2 �m2

1Þðm2
3 �m2

1Þðm2
4 �m2

2Þ
� ðjV2bj2A23

cd þ jV2cj2A23
db þ jV2dj2A23

bcÞ
� ðm2

2 �m2
1Þðm2

3 �m2
1Þðm2

4 �m2
3Þ

� ðjV3bj2A23
cd þ jV3cj2A23

db þ jV3dj2A23
bcÞ�

þ other two cyclic permutations of ð2; 3; 4Þ:
(A15)

Substituting (2, 3, 4) for ðb; c; dÞ one obtains Eq. (13).

APPENDIX B: RELATIONS BETWEEN TRIANGLE
AREAS

Since there are only three independent phases in the
CKM matrix in SM4, one expects there exists some rela-
tions among the nine triangle areas. For example, one can
obtain J0ð1; 3; 4Þ directly from J0ð2; 3; 4Þ by exchanging the
indices 1 and 2, rather than using the approach we pre-
sented. In this case, one would get two different expres-
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sions for J0ð1; 3; 4Þ. By comparing the two, one would find
nontrivial relations of some of the triangle areas.

There are in fact six relations, consisting of three up-
type relations,

½ðjVu1nj2 � jVu2nj2ÞAu1u2
lm þ ðjVu3nj2 � jVu4nj2ÞAu3u4

lm �
þ cyclic permu. of ðl; m; nÞ ¼ 0; (B1)

and three down-type relations,

½ðjVnd1 j2 � jVnd2 j2ÞAlm
d1d2

þ ðjVnd3 j2 � jVnd4 j2ÞAlm
d3d4

�
þ cyclic permu. of ðl; m; nÞ ¼ 0; (B2)

where u1 to u4 (or d1 to d4 for down-type) are taken all
differently from f1; 2; 3; 4g, and l, m, n are also taken all
differently from f1; 2; 3; 4g Different choices of ðl; m; nÞ
would in fact give equivalent relations, so throughout this
Appendix we will regard ðl; m; nÞ as given labels, say (2, 3,
4), without loss of generality.

Let us present a direct proof of these six relations. First,
we consider the up-type relations. We define the left-hand
side of Eq. (B1) to be

R u1u2u3u4 ¼ ½�ImðVu1nV
�
u1nVu1lV

�
u1mVu2mV

�
u2l
Þ

� ImðVu2nV
�
u2nVu2lV

�
u2mVu1mV

�
u1l
Þ

� ImðVu3nV
�
u3nVu3lV

�
u3mVu4mV

�
u4l
Þ

� ImðVu4nV
�
u4nVu4lV

�
u4mVu3mV

�
u3l
Þ�

þ other two cyclic permutations of ðl; m; nÞ;
(B3)

where we put back the real factors into Imð� � �Þ. With the
unitarity condition, we can replace Vu1nV

�
u1l

by

�Vu2nV
�
u2l

� Vu3nV
�
u3l

� Vu4nV
�
u4l
, and substitute this into

Eq. (B3). For example, the first term in Eq. (B3) would
become

� ImðVu1nV
�
u1nVu1lV

�
u1mVu2mV

�
u2l
Þ

¼ jVu2lj2ImðVu1nV
�
u1mVu2mV

�
u2nÞ

þ ImðVu3lV
�
u3nVu1nV

�
u1mVu2mV

�
u2l
Þ

þ ImðVu4lV
�
u4nVu1nV

�
u1mVu2mV

�
u2l
Þ

¼ jVu2lj2Au1u2
mn þ!u3u1u2

lnm þ!u4u1u2
lnm ; (B4)

where!
u3u1u2
lnm is defined in Eq. (A9). Applying the unitarity

condition to every term in Eq. (B3), we have

R u1u2u3u4 ¼ ½jVu2lj2Au1u2
mn � jVu1lj2Au1u2

mn þ jVu4lj2Au3u4
mn

� jVu3lj2Au3u4
mn þ!u3u1u2

lnm þ!u4u1u2
lnm

þ!
u3u2u1
lnm þ!u4u2u1

lnm þ!
u1u3u4
lnm þ!

u2u3u4
lnm

þ!u1u4u3
lnm þ!u2u4u3

lnm �
þ other two cyclic permutations of ðl; m; nÞ:

(B5)

The first four terms in the brackets in the right-hand side
together with the cyclic permutations amount to
�Ru1u2u3u4 . And due to the second property of

Eq. (A10), the cyclic permutations on !’s lower labels
can be moved to its upper labels when all cyclic permuta-
tions are summed, so the left 24 !’s can be written asP

ði;j;kÞ0!
ijk
lnm where ði; j; kÞ0 are taken all differently from

fu1; u2; u3; u4g, which is equivalent to the set f1; 2; 3; 4g. So
now we have

2Ru1u2u3u4 ¼
X

ði;j;kÞ0
!ijk

lnm

¼ X4
i;j;k¼1

!ijk
lnm � X4

i;j¼1

ð!iij
lnm þ!iji

lnm þ!jii
lnmÞ:

(B6)

In the second equality, we allow all possible i, j, k in the
summation and subtract back the extra terms. However,
from the first property of Eq. (A10),

P
4
a¼1 !

abc
lnm ¼ 0, so all

terms in the right-hand side of Eq. (B6) vanish when
summing over j from 1 to 4. Finally, we have

R u1u2u3u4 ¼ 0; (B7)

which proves Eq. (B1). The down-type relations Eq. (B2)
can be derived similarly.
As mentioned in [18], in SM4 there are nine independent

CKM triangle areas, but the relations shown in this appen-
dix seem to reduce the number of independent CKM
triangle areas to at most three. There is in fact no conflict.
Provided the magnitude of each CKM mixing matrix ele-
ment is known, the degree of freedom of the CKM triangles
can be further reduced to at most three, which equals the
number of physical phases, as shown in this appendix. This
result satisfies our intuition because one needs rotation
angles and phases to describe the mixing matrix. So if
one does not know the magnitude of matrix elements, the
degree of freedom of triangle areas would be larger than
the number of physical phases, but when those rotation
angles are known, one should be able to express some
CKM triangle areas in terms of others like what we pro-
posed in Eqs. (B1) and (B2).
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