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In a recent paper, we proposed a new class of supersymmetric SOð10Þ models for neutrino masses

where the TeV-scale electroweak symmetry is SUð2ÞL � SUð2ÞR � Uð1ÞB�L, making the associated

gauge bosons WR and Z0 accessible at the Large Hadron Collider. We showed that there exists a domain

of Yukawa coupling parameters and symmetry breaking patterns which give an excellent fit to all fermion

masses including neutrinos. In this sequel, we discuss an alternative Yukawa pattern which also gives a

good fermion mass fit, and then study the predictions of both models for the proton lifetime. Consistency

with current experimental lower limits on the proton lifetime require the squark masses of the first two

generations to be larger than�1:2 TeV. We also discuss how one can have simultaneous breaking of both

SUð2ÞR �Uð1ÞB�L and standard electroweak symmetries via radiative corrections.

DOI: 10.1103/PhysRevD.82.035014 PACS numbers: 12.10.Dm, 12.60.Cn

I. INTRODUCTION

The nature of TeV-scale new physics beyond the stan-
dard model (SM) is a question of enormous interest, as the
LHC is poised to collect data in this energy range. Clearly,
supersymmetry [especially the minimal supersymmetric
extension of the standard model (MSSM)] is one of the
prime candidates for this new physics since it not only
solves the gauge hierarchy problem, but also has a number
of attractive features such as the unification of gauge
couplings at a high scale, a potential dark matter candidate,
etc. An interesting question along these lines has always
been to see if any other new physics can coexist with TeV-
scale supersymmetry without conflicting with coupling
unification and dark matter, thereby broadening the scope
of the LHC physics search.

A particularly appealing possibility is that weak inter-
actions conserve parity asymptotically [1], with the asso-
ciated gauge group being SUð2ÞL � SUð2ÞR �Uð1ÞB�L so
that the resulting gauge bosons WR and Z0 are at the TeV
scale coexisting with supersymmetry. The case for
SUð2ÞL � SUð2ÞR �Uð1ÞB�L becomes more compelling
when the SM or MSSM are extended to understand small
neutrino masses via the seesaw mechanism [2]. As a ge-
neric possibility, this scenario is quite consistent with
current low-energy observations. Whether a TeV scale
SUð2ÞR symmetry is compatible with supersymmetric cou-
pling unification has been extensively investigated in the
literature [3,4]. With a few exceptions [4], it seems very
hard to reconcile this possibility with the observed value of
sin2�W .

In a recent paper [5], we pointed out a new supersym-
metric SOð10Þ scenario where the presence of a vectorlike
electroweak singlet and color triplet Higgs multiplet
[which is part of the 45 representation in SOð10Þ], in
addition to two bidoublets and two right-handed doublets
of the left-right electroweak group at the TeV scale, leads
to gauge coupling unification with TeV-scale right-handed

WR and Z0 bosons. It was shown that the model can
reproduce both the observed charged fermion and neutrino
masses, making it the first realistic SOð10Þ
supersymmetric-GUT (SUSY-GUT) model with TeV-scale
WR and Z0. This should provide impetus for adding a new
search agenda at the LHC in addition to the usual SUSY
and extra dimension particles.
Our model is different from other such scenarios con-

sidered in the literature [4] in that quark masses and mixing
arise in a simple manner. The neutrino masses arise out of
an inverse seesaw mechanism [6] and were shown [5] to
have interesting phenomenological consequences like lep-
tonic nonunitarity, leptonic CP-violation, lepton flavor
violation, etc. which may be testable in the near future.
This fit to the fermion masses defines one class of SOð10Þ
models with TeV-scale WR, which we call model (A).
In this paper, several new results for these SOð10Þ

models are presented: (i) we present an alternative fit to
fermion masses, which we call model (B); (ii) we discuss
the constraints of proton decay for both fermion mass
fits—the one in Ref. [5] and the new one discussed in
this paper; (iii) we also show how both B� L and electro-
weak symmetries can be broken radiatively in these
models.
The strength of proton decay has been studied exten-

sively in the context of many SUSY-GUTs (see Ref. [7] for
recent reviews). Although there has been no evidence for
proton decay so far, current experimental lower bounds on
the partial lifetimes of various proton decay modes tend to
put severe constraints on these models; e.g. they have now
ruled out the simplest versions of SUSY SUð5Þand suggest
possible modifications of such models [8]. They also con-
strain the choices of Higgs multiplets that can be used for
model building with the SOð10Þ group [9].
In the models we are discussing here, due to the fact that

all the Yukawa couplings responsible for proton decay are
constrained by the fermion mass fits, it is possible to
estimate the partial lifetimes for the various modes as
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functions of the squark masses. We get upper bounds on the
partial lifetimes of various proton decay channels in
model (A) for reasonable squark masses of the first two
generations. There are no such bounds in the second case
[model (B)]. We find that within a reasonable set of as-
sumptions, all our predicted upper bounds for model (A)
are consistent with the current experimental bounds, and
some of the modes may be accessible to the next genera-
tion proton decay experiments with megaton-size
detectors.

We also discuss the constraints imposed by radiative
breaking of both SUð2ÞR �Uð1ÞB�L and the SM gauge
symmetries via radiative corrections. The idea is to start
with positive soft mass squares at the Planck or GUT scale
and extrapolate the masses to the weak scale to see if the
SUð2ÞR �Uð1ÞB�L symmetry breaks at the TeV scale. We
then note that this breaking introduces, via D-terms, a
breaking of the SM gauge symmetry to Uð1Þem.

We also discuss the generalization of this model to
include R-parity breaking and its implications on proton
decay. In addition, we comment on some other interesting
aspects of the model such as neutron-antineutron (n� �n)
oscillation and TeV-scale resonant leptogenesis.

This paper is organized as follows: In Sec. II, we review
the basic structure of our model and the SOð10Þ symmetry
breaking. In Sec. III, we review the fermion mass fit for
model (A) already discussed in Ref. [5]. In Sec. IV, we
present a new fermion mass fit and define it as model (B).
Section V describes the radiative electroweak symmetry
breaking (EWSB) in this type of model. In Sec. VI, we
discuss the proton decay in both these models. In Sec. VII,
we comment on the effect of R-parity breaking terms in the
superpotential on proton decay. In Sec. VIII, we make
additional comments on some other aspects of the model,
namely, n� �n oscillation and leptogenesis. The results are
summarized in Sec. IX. In Appendix A, we present the
renormalization group equations (RGEs) for soft SUSY-
breaking masses in our supersymmetric left-right
(SUSYLR) model. In Appendix B, we derive the anoma-
lous dimensions of the dimension-5 proton decay operators
in our model. In Appendix C, we list the hadronic form
factors used in our proton decay calculations.

II. A BRIEF OVERVIEW OF THE MODEL

As in the usual SOð10Þ models, the three generations of
quark and lepton fields are assigned to three
16-dimensional spinor representations. In addition, we
add three SOð10Þ singlet matter fields to implement the
inverse seesaw mechanism. The B� L gauge symmetry is
broken at the TeV scale by 16-Higgs fields (denoted by
c H), whereas the rest of the gauge symmetry is broken at
�1016 GeV by 54 and 45 fields (denoted by E and Aa,
respectively). We require two 45-Higgs fields (a ¼ 1, 2),
one for symmetry breaking and the other to give rise to the
vectorlike color triplets at the TeV scale. The SM symme-

try is broken by two 10-Higgs fields (denoted by Ha). We
note that the field content of our model is found in many
string models after compactification, e.g. fermionic com-
pactification models [10], and it may therefore be easier to
embed this GUT model into strings.
The distinguishing feature of our model is that the GUT

symmetry breaks down to the left-right symmetric gauge
group SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L without
parity (D parity). The D parity is broken at the GUT scale
by the vacuum expectation value (VEV) of the 45-Higgs
field. A consequence of D-parity breaking is that only the
right-handed (RH) doublets from 16-Higgs fields survive
below the GUT scale. An interesting feature of this class of
models [5] is that if we have two RH Higgs fields
[�c; ��cð1; 1; 2;�1Þ], two bidoublet fields [�ð1; 2; 2; 0Þ]
(all color singlets), and a vectorlike color triplet but
SUð2ÞL � SUð2ÞR singlet field [�ð3; 1; 1; 43Þ þ c:c:] at the

TeV scale, the gauge couplings unify around 1016 GeV.
The bidoublet fields arise from 10-Higgs at the GUT scale
and the vectorlike color triplet fields arise from the
45-Higgs field. This is therefore a new class of SOð10Þ
SUSY-GUT theories with TeV-scale WR and Z0 bosons
which can be accessible at the LHC.
We consider the symmetry breaking chain

SOð10Þ!MG
3c2L2R1B�L!MR

3c2L1YðMSSMÞ !MSUSY
3c2L1YðSMÞ

!MZ
3c1Q; (1)

where, as an example of our notation, 3c means SUð3Þc. As
shown in Appendix A of Ref. [5], for consistency, we need
at least two 45 and one 54 representations of the Higgs
fields to break the SOð10Þ gauge group into the SUSYLR
gauge group SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L at
the scale MG ’ 4� 1016 GeV. Note that to have realistic
fermion masses and mixing, we need at least two SUð2Þ
bidoublets of the 10-Higgs representation to break the
SUð2ÞL �Uð1ÞY gauge group of the SM to Uð1ÞQ at the

weak scale MZ. With this minimal set of Higgs fields, we
were able to attain not only gauge coupling unification but
also the desired fermion masses and mixing at the GUT
scale [5]. Incidentally, since our gauge group above the
TeV scale is different from the MSSM, we needed to
extrapolate fermion masses using the left-right group (see
Appendix B of Ref. [5]), which has certain distinguishing
features in the running behavior in contrast to the MSSM
gauge group.
The superpotential for the model consists of several

parts:

W ¼ WSB þWm þW 0; (2)

where WSB is responsible for SOð10Þ GUT symmetry
breaking, doublet triplet splitting, and the remnant sub-
GUT-scale multiplets; Wm is the Yukawa superpotential
responsible for fermion masses and mixing; W 0 involves
the R-parity violating terms. When we impose an addi-
tional matter-parity symmetry under which c � ! �c �,
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S� ! �S�, and all other fields even, as was assumed in
Ref. [5], we getW 0 ¼ 0; i.e. all R-parity violating terms are
absent in the superpotential and the model has a stable dark
matter [11]. We discuss the effects of nonzero W 0 in a
subsequent section, where we show that even after includ-
ing arbitrary R-parity violating terms (i.e. giving up the
matter-parity assumption), the model does satisfy proton
lifetime bounds since W 0 conserves baryon number and,
after B� L breaking, leads to a highly suppressed ampli-
tude for proton decay. This feature is characteristic only of
SOð10Þ models with low B� L breaking.

The most general Yukawa superpotential of the model is
given by

Wm ¼ haij16i16j10Ha
þ f0aij

M
16i16j10Ha

45H

þ faij

M2
16i16j10Ha

45H45
0
H; (3)

where the first term is the usual Yukawa coupling term, and
the second and third terms are higher-dimensional terms.
The second term has two effective contributions (with two
different coupling matrices)—one of 10-Higgs type and
another of 120 type. The third has effective fermion cou-
plings of type 10, 120 as well as 126, again with different
coupling matrices. The effective 10 couplings from the
higher-dimensional terms could be absorbed into the first
term. Since we are looking to see if we get a fit for quark
and lepton masses in the model, we will assume that the
effective 120 couplings in the model are zero. We keep
only the fully antisymmetric combination in the last term
that acts as an effective 126H operator. This is sufficient for
getting a realistic fermion mass spectrum at the GUT scale,
as already discussed in Ref. [5]. We define this as our
model (A).

The superpotential WSB was discussed in detail in
Ref. [5], where it was noted that the following components
of the 54- and 45-Higgs fields acquire VEVs and leave the
left-right subgroup unbroken:

h54i ¼ diagða; a; a; a; a; a;�3
2a;�3

2a;�3
2a;�3

2aÞ;
h45i ¼ diagðb; b; b; 0; 0Þ: (4)

III. FERMION MASSES IN MODEL (A)

The model discussed in Ref. [5] is defined by the follow-
ing VEV pattern of the bidoublets:

h�1i ¼ �d 0
0 0

� �
; h�2i ¼ 0 0

0 �u

� �
: (5)

We define the ratio of the VEVs as tan� � �u

�d
as in the

MSSM. Then the fermion mass matrices at the GUT scale
are given by

Mu ¼ ~hu þ ~f; Md ¼ ~hd þ ~f;

Me ¼ ~hd � 3~f; M�D
¼ ~hu � 3~f;

(6)

where in the notation of Ref. [5], ~hu;d � �u;dhu;d. The
contribution from the effective 126H operator is assumed

to be the same for both up and down sectors, i.e. ~f ¼
�ufu ¼ �dfd; as a result, we have the relation fd ¼
fu tan�. Also note that the factor �3 between the quark
and lepton sectors is due to the same 126 operator. Using
the renormalization group analysis for the fermion masses
and mixing in the SUSYLR model (see Appendix B of
Ref. [5]), we obtain the GUT-scale fermion masses starting
from the experimentally known values at the weak scale.
Using these mass values, we obtain a fit for the coupling
matrices at the GUT scale defined in Eq. (6). Here we give
the results in a down-quark mass diagonal basis for two
cases. Case (a) is tan�MSSM ¼ 10. In this case, the GUT-
scale values of the charged fermion masses are found to be

mu ¼ 0:0017 GeV; mc ¼ 0:1908 GeV;

mt ¼ 77:7 GeV; md ¼ 0:0013 GeV;

ms ¼ 0:0263 GeV; mb ¼ 1:7001 GeV;

me ¼ 0:0004 GeV; m� ¼ 0:0910 GeV;

m	 ¼ 1:7061 GeV;

(7)

and tan�GUT ¼ 7. Note that the GUT-scale fermion masses
quoted here are slightly different from those given in
Ref. [5] because, in this case, we have set the S��
coupling �� ¼ 0 (of Ref. [5]) assuming R-parity conser-
vation. With these mass eigenvalues, we find a fit for the
GUT-scale couplings of the form

fu ¼ diagð1:26� 10�6;� 0:0001;�9:48� 10�6Þ; fd ¼ fu tan�GUT; hd ¼ diagð4:86� 10�5; 0:0019; 0:0752Þ;

hu ¼
7:46� 10�5 0:0002� 6:51� 10�5i 0:0002� 0:0028i

0:0002þ 6:51� 10�5i 0:0015 0:0118þ 1:26� 10�6i

0:0002þ 0:0028i 0:0118� 1:26� 10�6i 0:4908

0
BB@

1
CCA: (8)

Note that, for simplicity, we have chosen the f couplings to be diagonal. Our fit does not allow the off-diagonal
components to be too different from zero. Case (b) is for tan�MSSM ¼ 30. In this case, the GUT-scale values of the
charged fermion masses are found to be
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mu ¼ 0:0121 GeV; mc ¼ 0:3269 GeV; mt ¼ 120:53 GeV; md ¼ 0:0014 GeV; ms ¼ 0:0277 GeV;

mb ¼ 2:7958 GeV; me ¼ 0:0006 GeV; m� ¼ 0:1266 GeV; m	 ¼ 2:7737 GeV; (9)

and tan�GUT ¼ 20. With these mass eigenvalues, we obtain a fit for the couplings of the following form:

fu ¼ diagð1:5� 10�6;� 0:0002; 4:2� 10�5Þ; fd ¼ fu tan�GUT; hd ¼ diagð0:0002; 0:0078; 0:4163Þ;

hu ¼
0:0002 0:0003� 0:0001i �0:0008� 0:0081i

0:0002þ 0:0001i 0:0029 0:0144þ 0:0002i

�0:0008þ 0:0081i 0:0144� 0:0002i 0:9145

0
BB@

1
CCA: (10)

We note that in this model, larger values of tan�ð>30Þ are
not allowed. This can be seen analytically from the form of
the RGEs given in Appendix B of Ref. [5], where it is clear
that the up-quark sector masses will increase rapidly at
high energies for large tan� and the same effect is induced
in the down-quark sector, which makes the Yukawa terms
dominant over the gauge terms. This makes all the quark
masses run up to unacceptably large values at the GUT
scale. We believe this is a general feature of low-scale
SUSYLR models, in contrast to the MSSM case [12].

The neutrino mass matrix in this model is given by the
inverse seesaw formula [6] and involves, in addition to the
Dirac neutrino mass M�D

, the Majorana mass matrices of

the extra singlet S:

M� ’ M�D
M�1

N �ðM�1
N ÞTMT

�D
� F�FT: (11)

The Dirac neutrino mass M�D
is obtained from Eq. (6). As

shown in Ref. [5], to satisfy the nonunitary bounds, we
require the RH neutrino mass (together with S) to be *
1:1 TeV (assuming degenerate eigenvalues for MN). With
these inputs, we can fit the observed neutrino oscillation
data by fixing the singlet mass matrix elements of � in
Eq. (11). As an example, for tan� ¼ 10 and with the
following choice of �:

� ¼
�1:4874þ 0:0267i 0:2092� 0:0061i �0:0041þ 0:0086i
0:2092� 0:0061i �0:0300þ 0:0012i 0:0006� 0:0012i
�0:0041þ 0:0086i 0:0006� 0:0012i ð3:8þ 4:8iÞ � 10�5

0
@

1
A GeV; (12)

we find the neutrino masses and mixings to be

m1 ¼ 10�3 eV; m2 ¼ 4:88� 10�2 eV; m3 ¼ 4:95� 10�2 eV;

sin2�12 ¼ 0:312; sin2�23 ¼ 0:466; sin2�13 ¼ 0;
(13)

which satisfy the observed 2
 neutrino oscillation data
[13].

IV. A NEW FERMION MASS FIT: MODEL (B)

In this section, we consider an alternative mass fit within
the SOð10Þmodels with low-scale B� L. It follows from a
recent ansatz [14] that in generic SOð10Þ models which do
not use the type I seesaw mechanism to fit neutrino masses,
an alternative fit to fermion masses is possible using the
idea [14] that one has a rank-one 10-Higgs Yukawa cou-
pling matrix which dominates the fermion masses while
other couplings introduce small corrections; the third gen-
eration masses arise from the dominant rank-one coupling
matrix with smaller 126 and second 10 couplings generat-
ing the Cabibbo-Kobayashi-Maskawa mixing as well as
the second and the first generation fermion masses. This
idea can be applied to our case, since the neutrino mass is
given by the inverse seesaw formula which involves an
additional matrix �. The main difference of model (B) as

compared to model (A) resides in the VEV pattern of the
two Higgs bidoublets; i.e. in model (B), we have

h�1i ¼ �d 0
0 �u

� �
; h�2i ¼ �0

d 0
0 �0

u

� �
(14)

with vwk=
ffiffiffi
2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
u þ �2

d þ �02
u þ �02

d

q
. Also we must

have �u

�d
� �0

u

�0
d
in order to get the right fermion mixing

pattern. In the limit �u � �0
u, the RG analysis of

model (A) can be applied to this case to generate fermion
masses at the GUT scale, as well as the symmetry breaking
pattern via radiative corrections.
The resulting fermion mass formulas in terms of the

appropriately redefined Yukawa couplings are given as
follows [15]:

Mu ¼ ~hþ r2 ~fþ r3 ~h
0; Md ¼ r1ð~hþ ~fþ ~h0Þ;

Ml ¼ r1ð~h� 3~fþ ce ~h
0Þ; M�D

¼ ~h� 3~fþ c� ~h
0;
(15)
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where

~h ¼ �uh; ~f ¼ �u�
0
d

�d

f; ~h0 ¼ �u�
0
d

�d

h0;

r1 ¼ �d

�u

; r2 ¼ r3 ¼ �d�
0
u

�u�
0
d

:

(16)

As in the case of model (A), the f coupling above repre-
sents the effective 126 coupling arising from the
c cA1A2H2 term in the superpotential, and h0 arises
from a coupling of the form c cH2X (with a nonzero
VEV for the additional singlet field X). Note that if there
is an additional Z2 symmetry under which H2, A2, X are
odd and all other fields are even, one can have a super-
potential with only the h-, f-, h0-type contributions, as
given above, to the fermion mass formulas. In our case
with two Higgs bidoublets, ce ¼ 1 and c� ¼ r3. With the
GUT-scale mass eigenvalues obtained earlier, we obtain a
fit for these couplings as follows:

(i) tan�MSSM ¼ 10:

�u ¼ 173:2 GeV; r1 ¼ 0:0218;

r2 ¼ 0:14; h ¼ diagð0; 0; 0:45Þ;

f ¼
0 �0:0006 0:0019

�0:0006 0:0115 0:0101
0:0019 0:0101 0:0001

0
@

1
A;

h0 ¼ i
0 �0:0022 0:0005

0:0022 0 0:0181
�0:0005 �0:0181 0

0
@

1
A:

(17)

(ii) tan�MSSM ¼ 30:

�u ¼ 172:4 GeV; r1 ¼ 0:0231;

r2 ¼ 0:21; h ¼ diagð0; 0; 0:70Þ;

f ¼
0 �0:0016 0:0062

�0:0016 0:0140 0:0111
0:0062 0:0111 0:0019

0
@

1
A;

(18)

and h0 is the same as in case (i). It may be noted here
that in both cases, all the fermion mass values pre-
dicted using the couplings above agree with those
obtained from the RGEs within the experimental
uncertainty, the only exception being the up-quark
mass in case (i), where our predicted value is about 4
times larger. Note, however, that in our discussion,
we have not included contributions from threshold
corrections or higher-dimensional operators. Those
contributions can generally be of order MeVs when
their couplings are chosen appropriately, in which
case, they will not affect the second and third gen-
eration masses but could easily bring the up-quark
mass into agreement with RGE predictions.

As in model (A), the observed neutrino oscillation data
can be fitted with the following singlet Majorana mass
matrix �:

� ¼
�1:5213þ 0:2016i �0:0798� 0:0883i �0:0019� 0:0008i
�0:0798� 0:0883i �0:0021� 0:0089i �3:5� 10�5 � 0:0002i
�0:0019� 0:0008i �3:5� 10�5 � 0:0002i ð�1:7� 2:2iÞ � 10�6

0
@

1
A GeV: (19)

With the Yukawa couplings completely fixed in our
model, we can analyze the predictions for the proton decay
rate. But before doing so, we discuss the details of the
electroweak symmetry breaking in this model, which was
not done in the original paper [5]. This discussion applies
to both models (A) and (B).

V. SYMMETRY BREAKING BY RADIATIVE
CORRECTIONS

In this section, we propose a way to break both the
SUð2ÞR �Uð1ÞB�L and the SM symmetry via radiative
corrections from renormalization group extrapolation of
the scalar Higgs masses from the GUT to the TeV scale.
As is well known, the large top quark coupling enables us
to achieve a similar goal i.e. radiative EWSB in the case of
MSSM [16]. The simple generalization of that procedure
cannot work in our model since the bidoublet Higgs of LR
models contains both the Hu;d components of the MSSM;

as a result, large top quark coupling will necessarily turn

both their masses negative, and this is known not to give a
stable vacuum.
Our proposal is that we use a domain of parameter space

for the soft SUSY-breaking mass squares for the RH Higgs
doublets �c and ��c, where the mass square of one of them
turns negative by RG running to the TeV scale due to the
Lc ��cS Yukawa coupling being large. This leads to a break-
ing of the SUð2ÞR and B� L symmetry. The mass square
of the �c remains positive throughout but it acquires an
induced VEV. The differences in their VEVs, via the
D-term, can make the mass square of the Hu field negative
while keeping the mass square ofHd positive, as in the case
of the MSSM, thereby also giving rise to the EWSB. The
main point is that both symmetry breakings owe their
origin to one radiative correction.
In order to show that it is indeed possible to achieve

negative mass square for one of the RH Higgs doublets
while keeping all other soft mass squares positive, we need
to examine the RG running of all the soft mass parameters
from the GUT to the TeV scale. In this regime, the model is
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SUSYLR, for which the superpotential and soft SUSY-breaking Lagrangian are given by [17]

W ¼ ihaQ
T	2�aQ

c þ ih0aLT	2�aL
c þ i��

�c
pq
S��cT

p 	2 ��
c
q þ i��

Lc
p
S�LcT	2 ��

c
p þ iM�c�cT	2 ��

c þ��
�ab

S�Trð�T
a	2�b	2Þ

þM�ab
Trð�T

a	2�b	2Þ þ 1
6Y

���S�S�S� þ 1
2M

��
S S�S�; (20)

Lsoft ¼ �1
2ðM3~g ~gþM2L

~WL
~WL þM2R

~WR
~WR þM1

~B ~BþH:c:Þ � ½iAQa
~QT	2�a

~Qc þ iALa
~LT	2�a

~Lc

þ iA�
�c
pq
S��cT

p 	2 ��
c
q þ iA�

Lc
p
S� ~LcT	2 ��

c
p þ 1

6A
���
S S�S�S� þ A�

�ab
S�Trð�T

a	2�b	2Þ þ H:c:�
� ½iB�c

pq
�cT
p 	2 ��

c
q þ BabTrð�T

a	2�b	2Þ þ 1
2B

��
S S�S�� � ½m2

Q
~QT ~Q� þm2

Qc
~Qcy ~Qc þm2

L
~LT ~L�

þm2
Lc ~Lcy ~Lc þm2

�c�cy
p �c

p þm2
��c ��cy

p ��c
p þm2

�ab
Trð�y

a�bÞ þm2
S��

S�
�
S��; (21)

where we have suppressed the generational and SUð2Þ
indices, and a, b ¼ 1, 2 (for two bidoublets), p, q ¼ 1, 2
[for two SUð2ÞR doublets], and �, �, � ¼ 1, 2, 3 (for three
gauge singlets). Note that we do not have any �-term in
these expressions as there is no SUð2ÞL Higgs doublet in
our model. Also, we have an additional term in the super-
potential (the SLc�c term) and a corresponding trilinear
term in the soft-breaking Lagrangian (the S ~Lc ��c term) as
compared to the expressions given in Ref. [17]; this addi-
tional term in the superpotential is required for the inverse
seesaw mechanism to work. Moreover, if we assume
R-parity conservation, then the S�c ��c and S�� terms
are not allowed in the superpotential and also in the soft-
breaking Lagrangian; i.e. the couplings��c and�� as well
as Yabc in Eq. (20) and the corresponding terms in Eq. (21)
are set to zero and �Lc is the only nonzero coupling in
Eq. (20) which can be fixed by requiring b� 	 unification
at the GUT scale. In this section, we work with this
assumption; the effects of R-parity breaking will be dis-
cussed later.

Now we analyze the RG evolution of the gaugino and
soft mass parameters from the GUT to the TeV scale. It is
well known that in SUSY-GUTs, the � function for the
gaugino mass is proportional to the � function for the
corresponding gauge coupling. Explicitly, the RGEs for
the gaugino mass parameters are given by

dMi

dt
¼ 2bi

16�2
Mig

2
i ; (22)

where the �-function coefficients in our SUSYLR model
are [5] bi ¼ ð13; 2; 4;�2Þ, corresponding to i ¼ 1B�L, 2L,
2R, 3c, respectively. This implies that the three gaugino
masses, like the three gauge couplings, must unify at � ¼
MGUT. In order to solve Eq. (22), we adopt the universality
hypothesis at the GUT scale [as in typical minimal super-
gravity (mSUGRA)-type models],

M1 ¼ M2L ¼ M2R ¼ M3 � m1=2; (23)

together with the initial condition

g21 ¼ g22L ¼ g22R ¼ g23 � 4��GUT; (24)

where MGUT ’ 4� 1016 GeV and ��1
GUT ’ 20:3 in our

model [5]. Using these initial conditions, we can obtain
the running masses for the gauginos at the TeV scale,
starting with a given valuem1=2 at the GUT scale, as shown

in Fig. 1 for a typical value ofm1=2 ¼ 200 GeV. The value
of M3 increases, since it has a negative � function, while
the other gaugino masses decrease as we go down the
energy scale. Thus the gluino is much heavier than other
gauginos at the weak scale.
The one-loop RGEs for the soft SUSY-breaking mass

parameters are given in Appendix A. As initial conditions,
we assume universality and reality of the soft fermion and
Higgs masses at the GUT scale, i.e.

ðm2
QÞij ¼ ðm2

QcÞij ¼ ðm2
LÞij ¼ ðm2

LcÞij � m2
0�ij;

m2
�c ¼ m2

��c ¼ m2
0; ðm2

�Þab ¼ m2
0�ab; (25)

whereas a different scale is assumed for the soft singlet
scalar mass:

ðm2
SÞ�� ¼ m02

0 8 �;� ¼ 1; 2; 3: (26)

In principle, we can choose a different mass scale for the
Higgs bidoublets and even for different generations of
fermions. The only constraint due to the SOð10Þ symmetry
requires us to have the same mass for each generation of
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FIG. 1 (color online). RG evolution of gaugino masses from
GUT to TeV scale for m1=2 ¼ 200 GeV.
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fermions. Note that all the off-diagonal soft SUSY-
breaking scalar masses have been set to zero. The inter-
generational mixing at the low-energy scale then occurs
only via the superpotential Yukawa couplings. With these
initial conditions, we solve the coupled RGEs for the soft
masses given in Appendix A, along with the Yukawa RGEs
given in Ref. [5], to get the running soft masses at the low
scale. We find that it is indeed possible to find a parameter
space such that m2

��c < 0 [for SUð2ÞR breaking] and m2
�1

<

0 (for EWSB) while keeping all other mass squares posi-
tive. Figure 2 illustrates such a scenario for the choices
m1=2 ¼ 200 GeV, m0 ¼ 1:2 TeV, and m0

0 ¼ 1:27 TeV.
We have chosen the SLc ��c coupling �Lc ¼ 0:7 to achieve
a realistic fermion mass spectrum, and in particular, the
b� 	 unification at the GUT scale. Note that the RH
slepton masses evolve much more rapidly than their LH
counterparts due to this large coupling �Lc . The value of
m0

0 is chosen such that all the other eigenvalues (especially

m2
Lc
3
andm2

S) remain positive at the TeV scale. Note that the

low-energy values of m2
Lc
3
and m2

S are of order ð10 GeVÞ2.
However the physical masses of these particles also receive
a contribution from the h ��ci, which pushes the masses up to
a TeV scale. As far as the squark masses are concerned,
they evolve more than the slepton masses due to the strong
interaction loop contributions to their RGEs. The small
intragenerational mass splitting is due to the differences in
their electroweak interactions. We can see clearly that at
the weak scale, the values of m2

��c and m2
�1

are negative,

thus triggering the SUð2ÞR and electroweak symmetry
breaking, respectively. Note that both bidoublet mass

squares need not be negative, as one negative value will
induce the symmetry breaking via the cross terms of the
type �1�2 in the Lagrangian.
We also verify that the low-energy values of the sfer-

mion mass square matrices satisfy all the flavor changing
neutral current (FCNC) constraints [18], due to the small-
ness of the off-diagonal entries. As an example, we give the
values here for the parameter values shown in Fig. 2:

m2
Q ¼

1:63� 106 �1:45� 101 þ 8:64� 101i �4:79� 102 þ 3:57� 103i
�1:45� 101 � 8:64� 101i 1:63� 106 �2:31� 104 þ 1:68i
�4:79� 102 � 3:57� 103i �2:31� 104 � 1:68i 6:51� 105

0
B@

1
CA GeV2;

m2
Qc ¼

1:58� 106 �1:45� 101 þ 8:64� 101i �4:79� 102 þ 3:57� 103i
�1:45� 101 � 8:64� 101i 1:58� 106 �2:31� 104 þ 1:68i
�4:79� 102 � 3:57� 103i �2:31� 104 � 1:68i 5:99� 105

0
B@

1
CA GeV2;

m2
L ¼

1:39� 106 �7:28þ 8:39� 101i �2:59� 102 þ 3:45� 103i
�7:28� 8:39� 101i 1:39� 106 �1:25� 104 þ 7:45� 10�1i

�2:59� 102 � 3:45� 103i �1:25� 104 � 7:45� 10�1i 8:66� 105

0
B@

1
CA GeV2;

m2
Lc ¼

3:81� 105 �7:18þ 8:24� 101i �2:57� 102 þ 3:41� 103i
�7:18� 8:24� 101i 3:81� 105 �1:24� 104 þ 7:75� 10�1i

�2:57� 102 � 3:42� 103i �1:24� 104 � 7:75� 10�1i 5:00� 103

0
B@

1
CA GeV2:

VI. PROTON DECAY

In this section, we discuss the partial lifetimes of various
proton decay channels.

A. Proton decay operators

In generic SUSY-GUTs, there exist three sources for
proton decay:

(i) D-type (dimension-6) operators that arise from the
exchange of gauge bosons:

1

M2
G

Z
d2�d2 ���y��y�; (27)

which may be generated both by heavy gauge boson
exchange and by heavy chiral (Higgs) superfield
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FIG. 2 (color online). Evolution of the scalar mass parameters
for m1=2 ¼ 200 GeV, m0 ¼ 1:20 TeV, and m0

0 ¼ 1:27 TeV. For

the scalar masses, we actually plot the sign ðm2Þ 	 ffiffiffiffiffiffiffiffiffijm2jp
, so that

the negative values on the curves correspond to negative values
of m2.
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exchange. For a unification scale* 1016 GeV, these
contributions to proton decay are sufficiently small
and well beyond the range of current experiments.

(ii) F-type (dimension-5) operators that arise from the
exchange of color triplet Higgsino fields in 10-Higgs
fields as shown in Fig. 3(a):

1

MG

Z
d2�����; (28)

where �’s are used to denote quark and lepton
doublets. In the component language, they give rise

to dimension-5 operators of the form ðQQÞð ~Q ~LÞ and
ðQLÞð ~Q ~QÞ. As these operators involve squark and
slepton fields, they cannot induce proton decay at the
lowest order. Proton decay occurs by converting the
squark and slepton legs into quarks and leptons by
exchanging a gaugino, as shown in the box diagram
of Fig. 3(b).

(iii) Another class of dimension-5 operators can arise
from R-parity breaking Planck suppressed operators,
which are absent when we assume R parity. We
discuss them in Sec. VI and show that their effects
are very small due to the low B� L breaking scale.
These are absent in models where 126 Higgs fields
break B� L, but are present in our model.

There are two effective dimension-5 operators of LLLL
type that involve only left-handed quark and lepton fields,
given by Eq. (28), and a corresponding RRRR type, both
invariant under the MSSM [19]. In superspace notation,
these are explicitly given by

O L ¼
Z

d2����abcdQ�aiQ�bjQ�ckLdl; (29)

O R ¼
Z

d2����ðQcÞ�iðQcÞ�jðQcÞ�kðLcÞl; (30)

where �, �, � ¼ 1, 2, 3 are SUð3Þc color indices; a, b, c,
d ¼ 1, 2 are SUð2ÞL isospin indices; and i, j, k, l ¼ 1, 2, 3
are generation indices. It is clear from the form of these
operators that they break baryon number by one unit, but
preserve the B� L symmetry, leading to the proton decay
to a pseudoscalar and an antilepton. As argued in Ref. [20]
for kinematical reasons and explicitly shown in Ref. [21]
for a small to moderate tan� region of the SUSY parameter

space, the RRRR contributions are at least an order of
magnitude smaller than the LLLL contributions. We also
verify this explicitly in our model, as shown later; for the
time being therefore, we concentrate only on the LLLL
operator.
In component form, the effective superpotential due to

the LLLL operator is explicitly given by [22]

W �B¼1 ¼ 1

MT

���½ðCijkl � CkjilÞu�id�ju�kel
� ðCijkl � CikjlÞu�id�jd�k�l�; (31)

where MT is the effective mass of the color triplet Higgs
field belonging to the 10H representation and, in our model,
is of the order of the unification scaleMG (see Appendix A
of Ref. [5]). This superpotential leads to the effective
dimension-5 operators involving two fermions and two
sfermions, as shown in Fig. 3(b), which lead to proton
decay by four-Fermi interactions when ‘‘dressed’’ via the
exchange of gauginos, namely, gluinos, binos, and winos.
A typical diagram for the effective four-Fermi interaction
induced by this dressing is shown in Fig. 4.
The coefficients Cijkl associated with the superpotential

given by Eq. (31) can be expressed in terms of the products
of the GUT-scale Yukawa couplings. For model (A), this is
given by

Cijkl ¼ huijhukl þ x1hdijhdkl þ x2huijhdkl þ x3hdijhukl

þ 1
2½huijfukl þ fuijhukl þ x1ðhdijfdkl þ fdijhdklÞ

þ x2ðfuijhdkl þ huijfdklÞ þ x3ðhdijfukl þ fdijhuklÞ�
þ 1

4ðfuijfukl þ x1fdijfdkl þ x2fuijfdkl þ x3fdijfuklÞ;
(32)

while for model (B) this becomes

Cijkl ¼ hijhkl þ x1h
0
ijh

0
kl þ x2hijh

0
kl þ x3h

0
ijhkl

þ 1
2½x1ðh0ijfkl þ fijh

0
klÞ þ x2hijfkl þ x3fijhkl�

þ 1
4x1fijfkl; (33)

where xi’s are the ratios of the 10H color triplet Higgs
masses and mixings and the factor 1

2 is the Clebsch-Gordan

coefficient for the 10 	 10 	 126 coupling. Note that there
are only three mixing parameters, as there are only four

FIG. 3. (a) Supergraph giving rise to effective dimension-5 proton decay operators, and (b) box diagram involving gaugino exchange
that converts the dimension-5 operator of panel (a) into an effective four-Fermi operator that induces proton decay.
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color triplet Higgses in the MSSM gauge group, corre-
sponding to the two 10H fields in our model. As we are
interested only in the upper bound for the partial lifetimes
of various proton decay channels, we do not need to know
the detailed form for the xi parameters in terms of these
masses and mixings. We just vary these parameters nu-
merically to get the maximum value for the partial
lifetimes.

It can be shown that [23] in the limit of all squark masses
being degenerate as in typical mSUGRA-type models, the
gluino and bino contributions to the dressing of the
dimension-5 operators vanish. This basically follows
from the use of the Fierz identity for the chiral two com-
ponent spinors representing quarks and leptons. In realistic
models, the FCNC constraints allow only very small devi-
ations from universality of squark masses. Hence, these
gluino and bino contributions are expected to be small
compared to the wino contributions, and can be ignored
altogether. The charged wino dressing diagrams have been
evaluated earlier [24], and in the limit of degenerate squark
masses, this leads to the effective Lagrangian [22]

L �B¼1 ¼ 2I���ðCkjil � CijklÞ½uT�kCd�jdT�iC�l

þ uT�jCd�ku
T
�iCel�; (34)

where C denotes the charge-conjugation matrix and I is
given by

I ¼ �2

4�

m ~W

M2
~f

; (35)

m ~W being the wino mass andM~f the sfermion mass. Using

this expression and adding a similar contribution from the
neutral wino exchange diagram, we can write down the
total contribution to various proton decay channels. This is
summarized in Table I. We note that the proton decay
operators with the s quark lead to K-meson final states,
whereas the ones without s lead to � final states. As shown
in Table I, the amplitude for nonstrange quark final states
will be Cabibbo suppressed compared to the strange quark
final states. It is also important to mention here that the
total amplitude for final states involving neutrinos is the
incoherent sum of the rates for all three neutrino states.

This leads to large decay rates for p ! Kþ �� and p ! �þ ��
channels compared to the other decay channels due to the
large Yukawa couplings of the third generation.
Before proceeding to calculate the rate of proton decay

induced by these LLLL-type operators, let us estimate the
contribution from the RRRR-type operators in our model.
The gluino dressing graphs do not contribute in the limit of
universal sfermion masses by the same Fierz arguments as
for the LLLL case. Moreover, since all superfields in the
RRRR operator are SUð2ÞL singlets, there is no wino
contribution to the leading order. Also the bino dressing
generates an effective four-Fermi operator of the type

���ijkluc
T

�jCd
c
�ku

cT

�iCe
c
l which, in the flavor basis, is

antisymmetric in the flavor indices i and j and hence, in
the mass basis, must involve a charm quark. Thus to
leading order, the bino contribution also vanishes due to
phase space constraints. Thus the only dominant contribu-
tion comes from the Higgsino exchange, and the largest
amplitude in this case, which comes from stop intermediate
states, is estimated to be [22] (using the Cijkl values calcu-

lated later in our model)

C1323

mtm	Vub

16�2v2
wk sin� cos�

� 4:0� 10�10 (36)

for tan� ¼ 30, as compared to the LLLL contribution
which is typically of order

C1123

�2

4�
� 4:5� 10�9: (37)

As the RRRR contribution is proportional to 1
sin� cos� which

is� tan� for large �, for smaller tan�, this contribution is
further suppressed. This justifies why we can ignore the
RRRR contributions in the following calculation of the
proton decay rate.

B. Proton decay rate

In order to calculate the proton decay rate, we must
extrapolate these dimension-5 operators defined at the
GUT scale to the scale of mp ¼ 1 GeV. In our model,

TABLE I. The coefficients for various �B ¼ 1 dimension-5
operators obtained from the effective Lagrangian to leading
order. Here �C is the Cabibbo angle (with sin�C � 0:22) and
the Cijkl’s are products of the Yukawa couplings, as defined in

Eqs. (32) and (33).

Decay channel C coefficient

p ! Kþ ��l ðC112l � C121lÞ
p ! K0eþ ðC1121 � C1211Þ
p ! K0�þ ðC1122 � C1212Þ
p ! �þ ��l sin�CðC211l � C112lÞ
p ! �0eþ sin�CðC2111 � C1121Þ
p ! �0�þ sin�CðC2112 � C1122Þ

FIG. 4. The effective four-Fermi interaction diagram induced
by the gaugino dressing of the effective dimension-5 operator
given by Fig. 3(b).
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we can divide this whole energy range into three parts,
following the breaking chain given by Eq. (1):

(i) from the GUT scaleMG to the B� L breaking scale
MR (SUSYLR),

(ii) from MR to the SUSY-breaking scale MS (MSSM),
and

(iii) from MS to 1 GeV (SM).
The values of these extrapolation factors are given in the
literature [20,25–27] for both the SM and the MSSM, but
not for the SUSYLRmodel. In this section, we derive these
factors using the anomalous dimensions for the dimension-
5 operators in our model calculated in Appendix B. We
denote the overall extrapolation factor by Ae. We noted
some discrepancies in the values of the anomalous dimen-
sions quoted in different papers, but found that our results
for the SM and MSSM cases agree with those given in
Refs. [20,25] and quoted in Appendix E of Ref. [7].

We also need to include the QCD effects in going from
three quarks to a proton. As the low-energy hadrons are
involved in the decay, this is a highly nonperturbative
process, and it is difficult to calculate the exact form of
the hadronic mixing matrix element for the process. Even
though various QCDmodels have been constructed for this
purpose, the estimates vary by a factor of Oð10Þ between
the smallest and the largest [28]. As the partial width of the
decay is proportional to the matrix element squared, the
variation in the estimate of the proton lifetime in different
models will be Oð100Þ. A different approach using lattice
QCD techniques gives more consistent results [29]. We use
these recent results to estimate the chiral symmetry break-
ing effects which can be parametrized by two hadronic
parameters, D and F. Then the hadronic mixing matrix for

the proton decay can be written as �
f�
fðF;DÞ, where f� ¼

ð130:4� 0:04� 0:2Þ MeV [30] is the pion decay constant
and j�j ¼ 0:0120ð26Þ GeV3 [29] is a low-energy parame-
ter of the SUð3Þf baryon chiral Lagrangian with the baryon
number violating interaction. The factors fðF;DÞ for dif-
ferent final states are listed in Appendix C.

Finally, combining all the factors discussed above, the
proton decay rate for a given decay mode p ! Ml (M
denotes the meson and l the lepton) is given by [22]

�pðMlÞ ’ mp

32�M2
T

j�j2
f2�

�
�2

4�

�
2
�
m ~W

M2
~f

�
2
4jCj2jAej2jfðF;DÞj2

’ ð1:6� 10�49 GeVÞ
�
2� 1016 GeV

MT

�
2

�
�

m ~W

200 GeV

�
2
�
1 TeV

M~f

�
4jCj2jAej2jfðF;DÞj2;

(38)

where the coefficients C are given in Table I, the hadronic
factors fðF;DÞ are listed in Appendix C, and the extrapo-
lation factors Ae are derived below.

C. The extrapolation factors for the dimension-5
operator

As noted in the previous section, we need to extrapolate
the dimension-5 operators defined at the GUT scale to the
scale of 1 GeV. In our model, this whole energy range is
divided into three parts, with different running behavior for
the gauge couplings. First, we have the SM sector from
1 GeV to the SUSY-breaking scale MS, in which we have
the usual non-SUSY enhancement factor [25] for the
LLLL operator:

ANS
e ¼

�
�3ð1 GeVÞ
�3ðMSÞ

�
2=ð11�ð2=3ÞnfÞ

; (39)

where nf is the number of quark flavors below the energy

scale of interest. Here we have neglected the effects of
SUð2ÞL and Uð1ÞY couplings as they are much smaller
compared to that of SUð3Þc. In our model, as MS ¼
300 GeV>mt, the enhancement factor explicitly becomes

ANS
e ¼

�
�3ð1 GeVÞ
�3ðmcÞ

�
2=9

�
�3ðmcÞ
�3ðmbÞ

�
6=25

�
�3ðmbÞ
�3ðmtÞ

�
6=23

�
�
�3ðmtÞ
�3ðMSÞ

�
2=7

¼ 1:49 (40)

using the values of �3ð�Þ at � ¼ 1 GeV, mc and mb

obtained by interpolating the renormalization group equa-
tion for the effective QCD coupling [31], and at� ¼ mt by
the SM running from � ¼ mZ.
Now aboveMS, we have the usual MSSM till the B� L

breaking scale MR, and then the SUSYLR model till the
GUT scale MG. The extrapolation factor in this case is
given by

AS
e ¼ AMSSM

e ASUSYLR
e ; (41)

where the corresponding factors in the two sectors are
given by

AMSSM
e ¼ Y3

i¼1

�
�iðMSÞ
�iðMRÞ

�
�i=bi

and

ASUSYLR
e ¼ Y4

j¼1

�
�jðMRÞ
�jðMGÞ

�
�j=bj

: (42)

Here bi ¼ ð335 ; 1;�3Þ for i ¼ 1Y , 2L, 3c are the well-known

MSSM�-function coefficients; bj ¼ ð13; 2; 4;�2Þ for j ¼
1B�L, 2L, 2R, 3c are the �-function coefficients for the
SUSYLR model [5]; and �i’s are the anomalous dimen-
sions for the LLLL operator, calculated in Appendix B.
From these results, we obtain

AMSSM
e ¼

�
�3ðMSÞ
�3ðMRÞ

��4=3
�
�2LðMSÞ
�2LðMRÞ

�
3
�
�1Y ðMSÞ
�1Y ðMRÞ

�
1=33

¼ 0:91 (43)
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using the MSSM running of the gauge couplings, and
similarly,

ASUSYLR
e ¼

�
�3ðMRÞ
�3ðMGÞ

��2
�
�2LðMRÞ
�2LðMGÞ

�
3=2

�
�2RðMRÞ
�2RðMGÞ

�
3=4

�
�
�1B�L

ðMRÞ
�1B�L

ðMGÞ
�
1=26 ¼ 0:08 (44)

using the SUSYLR running of the gauge couplings [5].
Combining all these results, we get the overall extrapola-
tion factor in bringing the operators from the GUT scale
down to 1 GeV:

Ae ¼ ANS
e AMSSM

e ASUSYLR
e ¼ 0:11: (45)

D. Predictions for partial lifetimes

Substituting the extrapolation factor obtained in Eq. (45)
in the expression for the partial decay width given by
Eq. (38) and using MT ’ MU ’ 4� 1016 GeV in our
model, we obtain the partial lifetimes of different decay
modes:

	pðMlÞ ¼ @

�p

’ ð4:42� 1033 yrÞ
jfðF;DÞj2

�
10�14

jCj2
��
200 GeV

m ~W

�
2

�
� M~f

1 TeV

�
4
: (46)

The wino massm ~W has been constrained at the CERN LEP
to be larger than �100 GeV [32], essentially independent
of any specific model. As a typical value, we choose the
universal gaugino mass, m1=2 ¼ 200 GeV, which when

extrapolated to the weak scale gives m ~W ’ 134 GeV for
the wino mass.

E. Model (A)

As we are interested in obtaining an upper bound on the
partial lifetimes of various proton decay modes, we adopt
the strategy of varying the mixing parameters xi defined by
Eq. (32) to maximize the expression (46), and simulta-
neously satisfying the present experimental lower bounds
[33]. We find that the most stringent constraint comes from
the p ! Kþ �� decay mode, and for this decay rate to be
consistent with the present experimental bound, we must
have the sfermion massM~f 
 1:2ð2:1Þ TeV for the MSSM

tan� ¼ 10ð30Þ. This value ofM~f, when extrapolated to the

GUT scale, puts a lower limit on the universal squark mass
m0 for a given value of m1=2. The allowed region in the

m0 �m1=2 plane satisfying the proton decay constraints

and also satisfying the EWSB constraints is shown in
Fig. 5. It is clear that this model favors low values of tan�.

The model predictions for the upper bound on the partial
lifetime of various proton decay modes are given in

Table II. We also list the present experimental lower
bounds for comparison. As noted above, the most stringent
constraint on the parameter space comes from the p !
Kþ �� decay mode; this is due to the fact that the neutrino
final states add incoherently for the three generations, and
hence, the decay rate for the neutrino final states will be
much larger compared to the rates of other decay modes
due to the third generation Yukawa coupling dominance.
This also explains why the p ! �þ �� decay rate is so large,
even though it is Cabibbo suppressed. The predicted upper
bounds for these neutrino final states may be testable in the
future proton decay searches, as in the next round of Super-
Kamiokande [33] or megaton-type detector searches.

F. Model (B)

As in model (A), we maximize the function jCj�2 given
by Eq. (33) with respect to the xi parameters to find an
upper bound on the proton decay lifetime. However, due to
the particular structure of the Yukawa matrices in this
model, as given by Eqs. (17) and (18), the parameters x2
and x3 have no effect on the amplitude and the only
effective mixing parameter is x1. The experimental lower
bounds on the lifetime of various proton decay modes will

then put a lower bound on the ratio
M2

~f

x1m ~W
. It turns out that

the most stringent bound is p ! Kþ ��ð�0�þÞ for tan� ¼
10ð30Þ, and we must have

M2
~f

x1m ~W


 1:44ð1:06Þ � 105 GeV: (47)

As an example, for m1=2 ¼ 200 GeV and x1 ¼ 0:1, it puts
a lower bound on the first and second generation squark
masses to be M~f 
 1:4ð1:2Þ TeV for tan� ¼ 10ð30Þ. The
model predictions for x1 ¼ 0:1 for various decay modes
are given in Table III. We note that the observation of one
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FIG. 5 (color online). Allowed region for model (A) in the
m0 �m1=2 plane satisfying the proton decay and EWSB con-

straints for tan� ¼ 10 (red, larger area) and tan� ¼ 30 (green,
smaller area).
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of the decay modes in the last two columns of Table III at a
given rate will fix x1, and the rates for the remaining modes
(the ones without stars) are then predicted and should
provide a test of this model. It should also be noted here
that within the mSUGRA framework at low tan�, the
Tevatron has put a lower limit of 375 GeV for the squark
mass based on an integrated luminosity of 1 fb�1. We
expect our predicted lower bound on the squark mass,
which is of order 1 TeV, to be testable at higher luminos-
ities within the reach of the LHC.

VII. COMMENT ON R-PARITY BREAKING

So far we have assumed matter parity so that there is no
R-parity violating terms in the superpotential (i.e.W 0 ¼ 0).
In this section we discuss the implications for relaxing this
assumption on the proton lifetime. This is an interesting
exercise in view of the fact that in the MSSM embedding
into SUð5Þ, relaxing R-parity (or matter-parity) conserva-
tion leads to new contributions to baryon number violation
with arbitrary strength, so that, in principle, such models
are not viable without the matter-parity assumption. We

would like to study in this section the situation in the case
of our SOð10Þ model.
The most general R-parity violating interactions up to

dimension-5 operators in our model are the following:

W 0 ¼ M0
ac a

�c H þ �0
ac ac HHþ �00

abc

MPl

c ac bc cc H

þ�0
abc

MPl

SaSbSc þ�00
abSaSb; (48)

where c a;b;c denote matter spinors and c H and �c H are

Higgs spinor fields. Before proceeding to discuss their
implications, note thatM0

a must be of order TeV; otherwise
the right-handed neutrino field would decouple from the
low-energy sector and break the gauge multiplet required
to implement the inverse seesaw mechanism. The follow-
ing classes of R-parity violating operators follow from this
in conjunction with the Wm þWSB at the TeV scale:

W 0ðTeVÞ ¼ M0
aL

c
a ��

c þ �0L��c þ �00
abc

MPl

�c½Qc
aQ

c
bQ

c
c

þ LaQbQ
c
c þ Lc

aLbLc þ 	 	 	�: (49)

TABLE II. Model (A) predictions for the upper limits on the partial lifetimes of various proton
decay modes in SOð10Þ with low-scale SUSYLR for tan� ¼ 10 and 30 for m1=2 ¼ 200 GeV.

We have chosen the value of the universal scalar mass m0 to be 1.2 (2.1) TeV for tan� ¼ 10ð30Þ
so that the p ! Kþ �� constraint is just satisfied. The present experimental lower limits are also
given for comparison.

Decay mode Experimental lower limit (� 1033 yr) Predicted upper limit (� 1033 yr)
tan� ¼ 10 tan� ¼ 30

p ! Kþ �� 2.3 2.3 2.3

p ! K0�þ 1.3 399.3 738.8

p ! K0eþ 1.0 1:3� 103 49.7

p ! �0eþ 10.1 5:8� 103 230.0

p ! �0�þ 6.6 2:4� 104 1:3� 104

p ! �þ �� 0.025 1.5 0.8

TABLE III. The predictions for the upper limits on the partial lifetimes of various proton
decay modes for the new mass fit in our model for m1=2 ¼ 200 GeV and x1 ¼ 0:1. The most

stringent constraint is from the p ! Kþ ��ð�0�þÞ mode for tan� ¼ 10ð30Þ, and hence, the
squark mass has been chosen to be 1.4 (1.2) TeV so as to just satisfy the most stringent bound.
Note that in this case, the model does not have any predictions for the decay modes p ! K0eþ
and p ! �0eþ. This is because the C coefficients for both these modes involve products of (1,1)
elements of the Yukawa coupling matrices, and by construction, these elements are zero for all
three coupling matrices; hence these modes have vanishing decay rates.

Decay mode Experimental lower limit (� 1033 yr) Predicted upper limit (� 1033 yr)
tan� ¼ 10 tan� ¼ 30

p ! Kþ �� 2.3 2.3 3.5

p ! K0�þ 1.3 2.3 1.6

p ! K0eþ 1.0 * *

p ! �0eþ 10.1 * *

p ! �0�þ 6.6 9.8 6.6

p ! �þ �� 0.025 1.7 2.7
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Note that the first three terms within the square brackets,
after B� L breaking, give rise to the familiar MSSM
R-parity breaking terms with, however, couplings deter-
mined to be of order vBL

MPl
which is of order 10�15. Hence

their contribution to proton decay is negligible. Note that
this would not be the case with SOð10Þmodels, where B�
L symmetry is broken at the GUT scale.

VIII. ADDITIONAL COMMENTS

In this section, we make brief comments on some other
aspects of the model:

(i) Even though the model has low-scale B� L viola-
tion, it does not lead to neutron-antineutron (n� �n)
oscillation. The reason is that n� �n oscillation re-
quires color sextet Higgs bosons [34]. These fields
are part of 126-dimensional multiplets, which are not
used in this paper.

(ii) An interesting question in this model is to explore
the origin of matter via leptogenesis. This requires
degenerate right-handed neutrinos with TeV-scale
mass, which are a feature of this model. Thus the
model has all the necessary ingredients for under-
standing the origin of matter in the Universe. There
are some detailed issues such as the amount of
washout and the magnitude of the lepton asymmetry
which need to be investigated. This interesting fea-
ture of the model is currently under investigation.

IX. CONCLUSION

In summary, we have discussed proton decay as well as
electroweak symmetry breaking in a new class of recently
proposed SOð10Þ models with TeV-scale WR. We showed
in an earlier paper that the model explains small neutrino
masses via the inverse seesaw mechanism and has the
feature of gauge coupling unification. The right-handed
neutrinos in this model are almost Dirac type (pseudo-
Dirac) with masses also in the TeV range, making them
(as well as the WR and Z0 bosons) accessible at the LHC.
This result is exciting since this brings in a new class of
particles within the grand unification framework, which
can be searched at the LHC. The signals are different from
the case with Majorana right-handed neutrinos of the con-
ventional type I seesaw mechanism, which do not lead to a
grand unified theory.

We have explored two classes of fermion mass fits in
these models. In both cases, all the Yukawa couplings
entering the dimension-5 proton decay operators are fixed
within certain assumptions by charged fermion mass fits,
thereby leading to definite expectations for the partial life-
times of various proton decay modes. We find that it is
possible to satisfy the current experimental lower limits on
the lifetimes with a wino mass of 100–200 GeVand squark
and slepton masses of order TeV. More specifically, to
satisfy the most stringent bound coming from the p !

Kþ �� decay mode, we need to have a lower limit of 1.2
(2.1) TeVon the squark masses in the case of model (A) for
tan� ¼ 10ð30Þ and similar lower bounds for model (B) for
a given 10-Higgs mixing, assuming the universality of
squark and slepton masses, as in a typical mSUGRA-type
scenario. Thus, discovery of squarks at the LHC can throw
light on the validity of these models. It is also worth
pointing out that the choice of SOð10Þ multiplets in this
class of models is derivable from fermionic string
compactification.
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APPENDIX A: RGES FOR SOFT SUSY-BREAKING
MASSES IN THE SUSYLR MODEL

Assuming R-parity conservation and the trilinear cou-
plings A and Y in the superpotential and the soft-breaking
Lagrangian given by Eqs. (20) and (21) to be zero, the soft-
breaking mass RGEs at one-loop level are given by [17]

16�2 d

dt
m2

Q¼2m2
Qhah

y
aþhað2hyam2

Qþ4m2
Qchyaþ4m2

�ab
hyb Þ

�1

3
M1M

y
1g

2
1�6M2LM

y
2Lg

2
2L�

32

3
M3M

y
3g

2
3

þ1

8
g21S2; (A1)

16�2 d

dt
m2

Qc ¼ 2m2
Qchyaha þ hya ð2ham2

Qc þ 4m2
Qha

þ 4hbm
2
�ba

Þ � 1

3
M1M

y
1g

2
1 � 6M2RM

y
2Rg

2
2R

� 32

3
M3M

y
3g

2
3 �

1

8
g21S2; (A2)

16�2 d

dt
m2

L ¼ 2m2
Lh

0
ah

0y
a þ h0að2h0ya m2

L þ 4m2
Lch0ya

þ 4m2
�ab

h0yb Þ � 3M1M
y
1g

2
1 � 6M2LM

y
2Lg

2
2L

� 3

8
g21S2; (A3)

16�2 d

dt
m2

Lc ¼ 2m2
Lch0ya h0a þ h0ya ð2h0am2

Lc þ 4m2
Lh

0
a

þ 4h0bm
2
�ba

Þ þ 2���
Lc ½m2

Lc��
Lc þm2

��c��
Lc

þ��
Lcðm2

SÞ��� � 3M1M
y
1g

2
1

� 6M2RM
y
2Rg

2
2R þ 3

8
g21S2; (A4)
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16�2 d

dt
m2

��c ¼ 2���
Lc ½m2

Lc��
Lc þm2

��c��
Lc þ��

Lcðm2
SÞ���

� 3M1M
y
1g

2
1 � 6M2RM

y
2Rg

2
2R � 3

8
g21S2;

(A5)

16�2 d

dt
m2

�c ¼ �3M1M
y
1g

2
1 � 6M2RM

y
2Rg

2
2R þ 3

8
g21S2;

(A6)

16�2 d

dt
ðm2

SÞ�� ¼ 4���
Lc�

�
Lcðm2

��c þm2
LcÞ

þ 2���
Lc��ðm2

SÞ�� ; (A7)

16�2 d

dt
m2

�ab
¼ m2

�ac
Trð3hyc hb þ h0yc h0bÞ þ Trð3hyahc

þ h0ya h0cÞm2
�cb

þ Trð6hyahbm2
Qc

þ 6hyam2
Qhb þ 2h0ya h0bm

2
Lc þ 2h0ya m2

Lh
0
bÞ

þ ð�6M2LM
y
2Lg

2
2L � 6M2RM

y
2Rg

2
2RÞ�ab;

(A8)

where

S2 � 4½Trðm2
Q �m2

Qc �m2
L þm2

LcÞ þ ðm2
�c �m2

��cÞ�:
(A9)

We have ignored the RG running of the coupling ��
Lc , as

this is a higher order effect.

APPENDIX B: ANOMALOUS DIMENSIONS OF
THE DIMENSION-5 OPERATOR

Here we present the derivation of the anomalous dimen-
sions of the dimension-5 operators of the LLLL type given
by Eq. (29). The calculation is straightforward in a super-
symmetric gauge due to the fact that the operator OL is
purely chiral (it is an F-term), and hence, it follows from
nonrenormalization theorems that, in a supersymmetric
gauge, it will only have wave function renormalization.
Then it is easy to show that the anomalous dimensions of
any purely chiral operator are given by

�O ¼ X
r

C2ðrÞ; (B1)

where C2ðrÞ is the eigenvalue of the quadratic Casimir
operator in the representation r, and the sum runs over
all the chiral superfields occurring in the chiral coupling.
As the gauge bosons belong to the adjoint representation,
we have

C2ðrÞ ¼
�
N2�1
2N for SUðNÞ

1
4X

2 for Uð1ÞX: (B2)

Thus we have for SUð3Þc,

�3c ¼ 3� 4
3 ¼ 4; (B3)

as there are three SUð3Þc fields in the LLLL operator [e.g.

ðqqÞð~q ~lÞ]. Similarly, we have

�2L;R ¼ 4� 3
4 ¼ 3; (B4)

�1Y ¼ 1
4½3ð13Þ2 þ 1�35 ¼ 1

5; (B5)

�1B�L
¼ 1

4½3ð13Þ2 þ 1�32 ¼ 1
2: (B6)

Here the factors 3
5 and

3
2 are the GUT normalization factors

for Uð1ÞY and Uð1ÞB�L, respectively.
We note that the same results would have been obtained

in a nonsupersymmetric gauge, though the calculation is
much more involved. For instance, the same results were
obtained for the MSSM case in a Wess-Zumino gauge in
Ref. [20].

APPENDIX C: THE HADRONIC FACTORS fðF;DÞ
As noted in Sec. IV, the hadronic factor fðF;DÞ esti-

mates the chiral symmetry breaking effects on different
final states. The low-energy parameters D and F are usu-
ally chosen to be the same as the analogous parameters in

weak semileptonic decays [35]. Then Dþ F ¼ gðnpÞA ¼
1:27 is the nucleon axial charge, while D� F ¼ gð�

�nÞ
A ¼

0:33–0:34 [30]. This gives D ¼ 0:8 and F ¼ 0:47. Using
these constants and the approximations mu;d � ms � mp

as well as�q2 � m2
p, where q� is the momentum transfer

(the momentum of the antilepton for physical decays), all
the hadronic matrix elements can be obtained [29]. In
Table IV, we list the results for different decay channels.

TABLE IV. The hadronic factors fðF;DÞ for different proton
decay modes. Here we have used mN ¼ 0:94 GeV for the mass
of the nucleon and mB ¼ 1:15 GeV for the average baryon mass
(mB ’ m� ’ m�).

Decay mode fðF;DÞ jfðF;DÞj2
p ! �0lþ 1ffiffi

2
p ð1þDþ FÞ 2.58

p ! �þ ��l 1þDþ F 5.15

p ! K0lþ 1� mN

mB
ðD� FÞ 0.53

p ! Kþ ��l
mN

mB

2D
3 0.19
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[20] L. E. Ibáñez and C. Muñoz, Nucl. Phys. B245, 425 (1984).
[21] T. Goto and T. Nihei, Phys. Rev. D 59, 115009 (1999).
[22] H. S. Goh, R.N. Mohapatra, S. Nasri, and S-P. Ng, Phys.

Lett. B 587, 105 (2004).
[23] V.M. Belyaev and M. I. Vysotsky, Phys. Lett. 127B, 215

(1983).
[24] R. Arnowitt, A. H. Chamseddine, and P. Nath, Phys. Lett.

156B, 215 (1985); P. Nath, A.H. Chamseddine, and R.
Arnowitt, Phys. Rev. D 32, 2348 (1985).

[25] A. J. Buras, J. Ellis, M.K. Gaillard, and D.V. Nanopoulos,
Nucl. Phys. B135, 66 (1978).

[26] J. Ellis, D. V. Nanopoulos, and S. Rudaz, Nucl. Phys.
B202, 43 (1982).

[27] J. Hisano, H. Murayama, and T. Yanagida, Nucl. Phys.
B402, 46 (1993).

[28] S. Brodsky, J. Ellis, J. S. Hagelin, and C. T. Sachrajda,
Nucl. Phys. B238, 561 (1984).

[29] Y. Aoki, C. Dawson, J. Noaki, and A. Soni, Phys. Rev. D
75, 014507 (2007); Y. Aoki et al. (RBC-UKQCD
Collaboration), Phys. Rev. D 78, 054505 (2008).

[30] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[31] I. Hinchliffe, in [30], p. 116, http://www-theory.lbl.gov/
~ianh/alpha/alpha.html.

[32] J.-F. Grivaz, in [30], p. 1228.
[33] M. Shiozawa (Super-Kamiokande Collaboration),

Proceedings of NNN09, Estes Park, Colorado, USA,
http://nnn09.colostate.edu/Talks/Session02.

[34] R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44,
1316 (1980).

[35] R. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak
Interactions in Particle Physics (Wiley-Interscience, New
York, 1969), p. 403.

ELECTROWEAK SYMMETRY BREAKING AND PROTON . . . PHYSICAL REVIEW D 82, 035014 (2010)

035014-15

http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1103/PhysRevD.75.075003
http://dx.doi.org/10.1103/PhysRevD.78.053004
http://dx.doi.org/10.1016/j.physletb.2008.08.048
http://dx.doi.org/10.1016/j.physletb.2008.08.048
http://dx.doi.org/10.1103/PhysRevD.81.025008
http://dx.doi.org/10.1103/PhysRevLett.70.3189
http://dx.doi.org/10.1103/PhysRevLett.70.3189
http://dx.doi.org/10.1103/PhysRevD.81.013001
http://dx.doi.org/10.1103/PhysRevD.81.013001
http://dx.doi.org/10.1103/PhysRevLett.56.561
http://dx.doi.org/10.1103/PhysRevD.34.1642
http://dx.doi.org/10.1103/PhysRevD.34.1642
http://dx.doi.org/10.1016/j.physrep.2007.02.010
http://dx.doi.org/10.1063/1.3327552
http://dx.doi.org/10.1103/PhysRevD.66.075005
http://dx.doi.org/10.1103/PhysRevD.66.075005
http://dx.doi.org/10.1016/j.physletb.2007.03.062
http://dx.doi.org/10.1103/PhysRevD.48.5354
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.101.161802
http://dx.doi.org/10.1103/PhysRevD.76.041302
http://dx.doi.org/10.1103/PhysRevD.76.041302
http://dx.doi.org/10.1103/PhysRevD.79.095004
http://dx.doi.org/10.1103/PhysRevD.79.095004
http://dx.doi.org/10.1016/j.nuclphysbps.2009.02.004
http://arXiv.org/abs/0905.3549
http://dx.doi.org/10.1103/PhysRevD.80.095021
http://dx.doi.org/10.1103/PhysRevD.80.095021
http://dx.doi.org/10.1007/JHEP05(2010)034
http://dx.doi.org/10.1103/PhysRevD.72.075009
http://dx.doi.org/10.1103/PhysRevD.72.075009
http://dx.doi.org/10.1016/0550-3213(83)90591-6
http://dx.doi.org/10.1016/0550-3213(83)90591-6
http://dx.doi.org/10.1103/PhysRevD.71.115010
http://dx.doi.org/10.1016/0550-3213(96)00390-2
http://dx.doi.org/10.1103/PhysRevD.26.287
http://dx.doi.org/10.1016/0550-3213(82)90457-6
http://dx.doi.org/10.1016/0370-2693(82)90313-6
http://dx.doi.org/10.1016/0550-3213(84)90439-5
http://dx.doi.org/10.1103/PhysRevD.59.115009
http://dx.doi.org/10.1016/j.physletb.2004.02.063
http://dx.doi.org/10.1016/j.physletb.2004.02.063
http://dx.doi.org/10.1016/0370-2693(83)90879-1
http://dx.doi.org/10.1016/0370-2693(83)90879-1
http://dx.doi.org/10.1016/0370-2693(85)91512-6
http://dx.doi.org/10.1016/0370-2693(85)91512-6
http://dx.doi.org/10.1103/PhysRevD.32.2348
http://dx.doi.org/10.1016/0550-3213(78)90214-6
http://dx.doi.org/10.1016/0550-3213(82)90220-6
http://dx.doi.org/10.1016/0550-3213(82)90220-6
http://dx.doi.org/10.1016/0550-3213(93)90636-4
http://dx.doi.org/10.1016/0550-3213(93)90636-4
http://dx.doi.org/10.1016/0550-3213(84)90335-3
http://dx.doi.org/10.1103/PhysRevD.75.014507
http://dx.doi.org/10.1103/PhysRevD.75.014507
http://dx.doi.org/10.1103/PhysRevD.78.054505
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.44.1316
http://dx.doi.org/10.1103/PhysRevLett.44.1316

