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We demonstrate that � $ e slepton mixing is significantly more restricted than previously thought

within the already remarkably flavor-safe R-symmetric supersymmetric standard model. We calculate

bounds from � ! e�, � ! 3e, and most importantly, � ! e conversion. The process of � ! e

conversion is significantly more restrictive in R-symmetric models since this process can occur through

operators that do not require a chirality flip. We delineate the allowed parameter space, demonstrating that

maximal mixing is rarely possible with weak scale superpartners, whileOð0:1Þ mixing is permitted within

most of the space. The best approach to find or rule out � $ e mixing in R-symmetric supersymmetric

models is a multipronged attack looking at both � ! e conversion as well as � ! e�. The redundancy

eliminates much of the parameter space where one process, but not both processes, contains amplitudes

that accidentally destructively interfere. We briefly discuss implications for searches of slepton flavor

violation at the LHC.
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I. INTRODUCTION

Lepton flavor violation (LFV) is predicted to occur at an
unobservably small rate in the standard model. In low
energy supersymmetric theories, new sources of lepton
flavor violation are generic in the soft breaking sector.
The experimental nonobservation of � ! e processes is
particularly restrictive, given the impressive bounds on
� ! e� from MEGA [1] and MEG [2], on � ! e con-
version from SINDRUM II [3], and to a lesser extent from
� ! 3e from SINDRUM [4]. Further progress is expected
from the varied experiments that are ongoing as well as
planned future experiments such as Mu2e [5] and other
proposals utilizing Project X at Fermilab [6].

In the minimal supersymmetric standard model
(MSSM), � $ e mixing is severely constrained by these
bounds (e.g., [7–11]). The size of the mixing can be
characterized by the quantity �‘

XY � �m2
XY=m

2, where
�m2

XY is the off-diagonal (12) entry appearing in the sfer-
mion mass matrix connecting the X-handed slepton to the
Y-handed slepton, and m2 is the average slepton mass.
Reference [11] found �‘

LR & 3� 10�5, while �‘
LL & 6�

10�4 over a scan of the minimal supergravity parameter
space. Similarly strong bounds on �‘

RR can also be found,
though cancellations between diagrams in the amplitude
can in some cases allow for much larger mixing [9–11].

Recently, a new approach to weak scale supersymmetry
that incorporates an extended R-symmetry [12] suggests
large flavor violation in the supersymmetry breaking pa-
rameters may be present without exceeding the flavor-
violating bounds. This is possible for several reasons:
R-symmetric supersymmetry has no flavor-violating LR
mixing, solving the worst of the problem trivially.
R-symmetric supersymmetry has Dirac gauginos and no
Majorana masses, removing all dimension-5 flavor-
violating operators. Finally, R-symmetric supersymmetry
also has no flavor-conserving LR mixing, and so there are

no ‘‘large tan� enhanced’’ effects. These benefits were
found to virtually eliminate constraints on the slepton
flavor mixing [12].
In this paper, we reconsider the constraints on slepton

mixing, specifically,� $ emixing. Unlike the MSSM, the
most important constraint is not necessarily � ! e�. This
is easily seen by inspection of the R-symmetric flavor-
violating operators: � ! e� requires a chirality flip via a
muon Yukawa coupling; whereas, � ! e conversion has
no such requirement. We find that � ! e conversion rules
out maximal mixing throughout the right-handed slepton
mixing parameter space for sub-TeV superpartner masses.
This is complementary to � ! e�, where we find cancel-
lations between the bino and Higgsino diagrams, analo-
gous to what was found before in the MSSM [9–11]. For
left-handed slepton mixing, we find possible cancellations
in the amplitudes for � ! e conversion, and instead � !
e� provides generally the strongest constraint. We also
calculated � ! 3e and find it provides the weakest con-
straint on both left-handed and right-handed slepton mix-
ing throughout the parameter space we consider.
This paper is organized in as follows: We review the

relevant characteristics of a model with an extended
R-symmetry, and the super–Glashow-Iliopoulos-Maiani
(GIM) mechanism in Sec. II. In Sec. III, we begin the
discussion of experimental constrains on the parameters
from� ! e� in Sec. III A,� ! e conversion in Sec. III B,
and finally, � ! 3e in Sec. III C. In Sec. IV, we briefly
discuss implications for slepton flavor violation to be
observed at LHC. Finally, in Sec. V, we conclude with a
discussion of our results.

II. A SIMPLIFIED R-SYMMETRIC MODEL

We are interested in analyzing LFV in the minimal
R-symmetric standard model (MRSSM). The gaugino
structure of the MRSSM has been studied in detail in
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Ref. [13], where the mixings and couplings of the four
Dirac neutralinos and four Dirac charginos are given. Weak
scale supersymmetry with Dirac gauginos is a possibility
that was contemplated some time ago in [14–16] and more
recently in [12,13,17–32]. A fully general analysis of LFV
in the MRSSM would be a substantial undertaking.
Fortunately, there are several simplifications we can em-
ploy to gain a fairly general understanding of the allowed
parameter space of LFV in the MRSSM. One important
restriction is that the Dirac wino cannot be light in the
MRSSM, due to the structure of the wino supersoft opera-
tor [17]. Essentially, there is an unavoidable contribution to
the vacuum expectation value of the SUð2ÞL-triplet scalar
that causes a contribution to the � parameter that is too
large unless the wino is above about a TeV. Second, since
there is no coupling between up-type Higgs and leptons,
the contribution from the up-type Higgsino eigenstates is
suppressed by the small mixing between bino or ~Hd and
~Hu, and so it can be ignored.
Itemizing the simplifications, we take the following.
(1) The wino mass, M2, is taken to be sufficiently large

so as to give negligible contribution to flavor-
violating interactions. This simplification means
that the � parameter is automatically safe through-
out the parameter space we consider.

(2) The up-type Higgsino mass �u, is also taken to be
large for convenience. Since the up-type Higgsinos
play no role whatsoever in charged lepton flavor
violation (given also point 1), this is done simply
to keep the gaugino sector to a 2� 2 structure and
thus easily understood. (We will, however, consider
effects of a light up-type Higgsino on flavor-
violating signals at LHC in Sec. IV.)

(3) We consider left-handed and right-handed slepton
mixing separately. This is standard practice when
considering flavor violation in the MSSM (e.g.,
[11]). We will see that there are qualitative differ-
ences between the allowed parameter space of left-
handed and right-handed slepton mixing.

(4) We assume the slepton mixing is purely in the 2� 2
flavor space of e,�. Enlarging this mixing to the full
3� 3 mixing does not qualitatively change any of
our results, and instead simply dilutes the effect of
the mixing, while adding more mixing angles and
thus more parameters to the model. Since the focus
of this paper is to explore � $ e mixing, no further
discussion of the 3� 3 case will be given.

(5) For our numerical results, we take m~l2
¼ 1:5m~l1

.

This seems a far more drastic assumption than it
actually is. Our motivation is to consider slepton
flavor violation when there is essentially no degen-
eracy among the sleptons, and so we took the slep-
ton mass ratio to be ‘‘order one’’ but not near one.
Taking the ratio much larger than 1 does not appre-
ciably increase the flavor violation, while taking it

smaller causes the super-GIM mechanism to sup-
press the flavor-violating signal. Our compromise is
the above number.

In Appendix, we provide more details on the gaugino
structure and flavor-violating interactions as directly rele-
vant to this paper. With the above assumptions, there is
only one light Dirac chargino (which is ~H�

d -like) and two

light Dirac neutralinos (which are mixtures of ~H0
d and ~B).

A few more comments on the slepton mass eigenstate
hierarchy are in order. MSSM analyses of slepton flavor
violation have, by necessity of LFV constraints, concen-
trated on the case where the mass difference between the
different states is small, �2 � m2

~l2
�m2

~l1
� m2

~l1;2
. In this

limit, it is straightforward to show that the contribution to
LFV can be expanded in powers of �2, taking the form

sin2�l

�
�2

M2
SUSY

þ � � �
�
; (2.1)

where MSUSY is typically the largest mass sparticle in the
diagram that dominates the process. There is no
�-independent contribution within the parentheses due to
the super-GIM mechanism (see the next section). Since
sin2�l ¼ 2m2

e�=�
2, one factor of �2 cancels, giving pro-

portionality to the � parameter mentioned in the introduc-
tion and used in many other papers on LFV in the MSSM
(at least up to a possible further suppression of
jm~l1

m~l2
j=m2

N;C if mN;C � m~l1;2
).

In this paper, �2 is not small, and so using the ‘‘�
parameter’’ is simply not appropriate. Instead, it is easy
to see that in the opposite limit, �2 � m2

~l1
, the contribu-

tions to LFVare proportional to simply sin2�l=m
2
~l1
. Hence,

the relevant parameters we show in most of our numerical
results are bounds on sin2�l as a function of the slepton,
gaugino, and Higgsino masses. Reducing the splitting can
be roughly approximated by relaxing the constraint on
sin2�l by ratios of �2

old=�
2
new.

The super-GIM mechanism

The ‘‘super-GIM mechanism’’—the GIM mechanism
applied to flavor in the superpartner sector—is important
in understanding the phenomena of flavor violation. As it is
well known, the super-GIM mechanism arises as a conse-
quence of the unitarity of the slepton mixing matrices that

diagonalize the mass matrix; Uy
ikUkj ¼ �ij, where the sum

over repeated indices is performed. This combination of
mixing matrix elements always appears as a prefactor in
the calculation of amplitudes of flavor-violating processes.
Specifically for our case of slepton flavor violation, we

have Uy
ekUk� ¼ 0, corresponding to an incoming muon,

and an outgoing electron, with internal sleptons labeled by
k. The sum over k corresponds to summing over all mass

eigenstate sleptons ~lk in the loop. There are two immediate
consequences of the super-GIM mechanism.
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First, terms that do not depend on the slepton masses do
not contribute. Let fðmkÞ be some function that depends on
the mass of the sleptons and � be some quantity that does
not depend on mk, thenX

k

Uy
ekUk�½�þ fðmkÞ� ¼

X
k

Uy
ekUk�fðmkÞ: (2.2)

The form of Eq. (2.2) appears when a logarithmic divergent
loop integral is dimensionally regularized, and one finds
the 1=� term appearing as a constant term � in the above
equation. This leads to an important result: the would-be
logarithmic UV divergence in flavor-conserving processes
is, in fact, UV finite in flavor-violating processes. In this
paper, unless otherwise stated, we will omit the terms in
our expressions that are canceled by the super-GIM
mechanism.

The other well-known consequence is that, when all the
sleptons are degenerate, there is no flavor violation. This
can be seen again in Eq. (2.2) with mk ¼ m, the sum over
all slepton flavors in a flavor-violating process vanishes.

III. EXPERIMENTAL CONSTRAINTS

There are three � ! e conversion processes with ex-
perimental bounds: � ! e�, � ! e conversion, and � !
3e. In this section we present our calculations of the rates
of these processes and present results in terms of a series of
contour plots showing the allowed parameter space.

The rate for � ! e� was estimated in Ref. [12] in the
slepton flavor-violating mass-insertion approximation with
a pure bino and wino and a specific gaugino hierarchy. In
this paper we have neglected the wino, due to the �
parameter constraint, and instead included the down-type
Higgsino ~H0

d. Since we have considered large mixing

angles, up to and including maximal mixing, we have
diagonalized the slepton masses explicitly and done our
loop calculations involving the slepton mass eigenstates.

As stated in our simplifications, we have not included
contributions from the wino or up-type Higgsino. We focus
on the case where the sleptons and the lighter neutralinos
are in the sub-TeV range where wino contributions can be

reasonably ignored. The up-type Higgsino does not couple
to leptons, and we take the light quark Yukawa couplings to
vanish. Thus, the up-type Higgsino does not give a signifi-
cant contribution to any of � ! e�, � ! e conversion in
nuclei and � ! 3e.
With these simplifications, the amplitudes of LFV pro-

cesses are sensitive to just two neutralinos, mixtures of ~B
and ~H0

d inside the loops. We can also neglect the contribu-

tions due to charginos, because the only light chargino is
~H0
d-like. Hence, all types of diagrams we consider involv-

ing a chargino are suppressed not only by one power of
muon Yukawa, but also one power of either the electron
Yukawa, or the tiny wino content of the light chargino at
the lepton-chargino-sneutrino vertex. This also means that
sneutrino mixing does not contribute to LFV processes,
and thus the difference in the amplitudes between left-
handed and right-handed slepton mixing is due solely to
the hypercharges and masses of the left-handed and right-
handed charged leptons.

A. � ! e�

The neutrinoless muon decay � ! e� occurs through
the effective magnetic dipole moment operator,
�e	�
F

�
�, and requires a chirality flip of fermions.

There are no tree level operators that lead to this decay,
and the lowest order is at one loop. In the MRSSM, there
are only two types of contributions to the � ! e� ampli-
tude: one where the chirality flip occurs on the external
muon line, and the other where the flip occurs as a result of
a muon-smuon-Higgsino vertex proportional to the muon
Yukawa coupling. The diagrams are shown in Fig. 1.
We calculated the amplitudes in the mass eigenstate

basis of the sleptons and neutralinos, and as a check we
derived the results obtained in Ref. [8] (replacing their ~�-~�
mixing with ~e- ~� mixing). The effective Lagrangian is

L eff ¼
m�

2
�e	�
F

�
ðAL
�dipPL þ AR

�dipPRÞ�: (3.1)

We rewrite the amplitudes AL
�dip and AR

�dip, as

FIG. 1. Feynman diagrams for � ! e� corresponding to the amplitudes (a) ARin1 and (b) ARin2 mediated by right-handed slepton
flavor mixing. The diagrams for left-handed slepton flavor mixing are obtained by swapping L $ R.
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AL
�dip ¼

X2
i¼1

ðALin1 þ ALin2Þ; (3.2)

AR
�dip ¼

X2
i¼1

ðARin1 þ ARin2Þ; (3.3)

where the sum is over the ith neutralinos. The subscripts 1
and 2 denote the locations of the chirality flip on the muon
line and at the muon-slepton-gaugino vertex, respectively.
As we shall see below, for right-handed sleptons there can
be an accidental cancellation between amplitudes involv-
ing these diagrams.

The � ! e� branching ratio is given by

BR ð� ! e�Þ ¼ 48��3m2
�

G2
F

½jAL
�dipj2 þ jAR

�dipj2�; (3.4)

with the amplitudes involving a neutralino Ni and sleptons
~l1 and ~l2 with the sleptons mass-ordered as m~l1

<m~l2
. The

amplitudes involving right-handed sleptons are

ARin1 ¼ ðYl
RÞ2g02

3ð16�2Þ ðOLi ~BÞ2 cos�~l sin�~l
�
fn1ðx1iÞ
m2

~lR1

� fn1ðx2iÞ
m2

~lR2

�
;

(3.5)

ARin2 ¼
Yl
Rg

02mNi

2ð16�2ÞMZ sin�w cos�
ORi ~H0

d
OLi ~B cos�~l sin�~l

�
�
fn2ðx1iÞ
m2

~lR1

� fn2ðx2iÞ
m2

~lR2

�
; (3.6)

where ARin1 is the amplitude that involves an external
chirality flip of the muon and ARin2 involves a flip at the
Higgsino vertex. Here, ORi ~H0

d
and OLi ~B are the Higgsino

and bino content of Ni, respectively, (i.e., the correspond-
ing elements in the orthogonal matrices that diagonalize
the gaugino mass matrix squared), and Yl

R ¼ Ylc ¼ þ1. To
lowest nonvanishing order in MZ, the neutralino mixings
are (dropping the subscripts L and R from now on)

O1 ~Bð�d � M1Þ ¼ O1 ~H0
d
ð�d � M1Þ

¼ cos� sin�wMZ�d

M2
1 ��2

d

; (3.7)

O2 ~Bð�d � M1Þ ¼ O2 ~H0
d
ð�d � M1Þ

¼ � cos� sin�wMZM1

M2
1 ��2

d

; (3.8)

and Oið ~B; ~H0
d
Þ ¼ 1 in the appropriate limits. The functions

fnjðxiÞ, with xik ¼ m2
Nk
=m2

~lRi
, with j ¼ 1, 2, come from

integrating over the loops in the diagrams:

fn1ðxÞ ¼ 1

2ð1� xÞ4 ð1� 6xþ 3x2 þ 2x3 � 6x2 lnxÞ; (3.9)

fn2ðxÞ ¼ 1

ð1� xÞ3 ð1� x2 þ 2x lnxÞ: (3.10)

Finally, the amplitudes for the left-handed sleptons can be
obtained from the right-handed slepton results by doing the
replacements

AR
�dip ! AL

�dip upon ðYl
R; m

2
~lRi
Þ ! ðYl

L; m
2
~lLi
Þ: (3.11)

Inserting the results in Eqs. (3.7) and (3.8) into (3.5) and
(3.6), we see that to lowest vanishing order in MZ,
BRð� ! e�Þ is independent of tan�. We can also see
explicitly that when the two slepton masses are degenerate,
the branching ratio vanishes, as expected from the super-
GIM mechanism.
As an aside, it is also straightforward to see what hap-

pens to the results when the mass hierarchy between the
slepton and the neutralino are inverted. The loop functions
satisfy the identities,

fn1ðxÞ þ fn1

�
1

x

�
¼ 1

2
; (3.12)

xfn2ðxÞ � fn2

�
1

x

�
¼ 0: (3.13)

We are now in a position to discuss the amplitudes in
various limits. In the bino-like limit M1 � �d, one sees
that AR1n1 dominates, as ARin2 is of order M1=�d.
When N1 becomes ~H0

d-like, there is a cancellation be-

tween the amplitudes involving a chirality flip on the
external muon line, and the one with the flip occurring at
the muon Yukawa vertex. The dominant diagram in the
~B-like case, AR1n1, is now suppressed by �2

d=M
2
1, the same

suppression factor appears AR1n2. So the dominant ampli-
tudes come from the diagrams involving a ~B-like neutra-
lino exchange. Note that AR2n2 has an opposite sign
compared to AR2n1 and the total amplitude can vanish for
some choice of parameters.
In Figs. 2(a)–2(d), we show the allowed regions in

MRSSM parameter space with right-handed slepton mix-
ing that satisfy the bound BRð� ! e�Þ< 1:2� 10�11

[1,2].
The situation is drastically different in the case of left-

handed slepton mixing. The hypercharge of the left-handed
leptons (Yl

L ¼ �1=2), has an opposite sign to the right-
handed lepton hypercharge, and so the amplitudes interfere
constructively, instead of destructively as in the case of
right-handed slepton mixing. This leads to a more severe
bound on the allowable regions in parameter space for left-
handed slepton mixing. This is shown in Figs. 3(a)–3(d).

B. � ! e conversion in a nucleus

The conversion of a muon into an electron can give a
qualitatively distinct bound on � $ e slepton mixing be-
cause there are several types of operators beyond those that
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contribute to � ! e�. We discuss the operators for � ! e
conversion, one-by-one, in this section.

The � ! e conversion amplitude is dominated by co-
herent processes, and so we only took the quark vector
currents into account. The operators that contribute to the
incoherent terms, �q�5q, �q���5q, and �q	�
q have been
neglected. This leaves us with the scalar and vector current,
�qq and �q��q, respectively [7].

The only diagram that can contribute to a scalar quark
current is the box diagram. Without left-right mixing of
sleptons in the MRSSM, the dominant term, with bino
couplings at each vertex, contains no chirality flip of the
quarks, and is therefore a vector current. We also take the
quark current to be nonrelativistic to simplify the calcu-
lation involving the magnetic dipole term. Thus, the am-
plitude for� ! e conversion is well approximated, for our

FIG. 2 (color online). Regions in parameter space (shaded) that satisfy the� ! e� bound for right-handed slepton mixing. The mass
of the heavier slepton is set to 1:5m~l1

. From light to dark, the shaded areas denote mixing with sin2�~l ¼ 0:1, 0.5, and 1, respectively.

The funnel regions in the plots with �d ¼ 100, 200 GeV is caused by the cancellation between the amplitudes involving the bino-like
and the ~H0

d-like neutralinos.
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purposes, by only taking quark vector currents into
account.

The diagrams we consider are the photon penguin, the Z
penguin, and the box diagram shown in Figs. 4–7. We only
take the dominant terms of the box and the Z-penguin
amplitude into account: that is, the terms involving the
bino coupling at each vertex which does not contain any
chirality flips of the external fermions. The effective
Lagrangian at the parton level can be written as [7]

Leff ¼
X

q¼u;d

�Qqe
2 �e

�
��ðAL

�PL þ AR
�PRÞ

þm�

k2
i	�
k
ðAL

�dipPL þ AR
�dipPRÞ

�
� �q��q

þ e2
X

q¼u;d

�e��½ðAL
Z þ AqL

boxÞPL

þ ðAR
Z þ AqR

boxÞPR�� �q��q; (3.14)

FIG. 3 (color online). Same as Fig. 2 but for left-handed slepton mixing. We have restrictedM1 < 500 GeV since contributions from
wino-like charginos not been included (see Sec. II for a discussion).
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where Qq is the quark electric charge, k2 	�m2
� is the

momentum transfer, AL;R
�;Z and AL;R

�dip;Z correspond to the �

penguin and Z penguin, respectively, and AqðL;RÞ
box corre-

sponds to the box diagram.
The most severe upper bound to date is on the conver-

sion rate ratio with a gold nucleus. BRð� ! eÞAu �
�ð�� Au ! e� AuÞ=�ð�� AuÞcapture < 7� 10�13 from

SINDRUM II [3]. Because of the large number of protons
in the gold nucleus, the distortion to the muon wave
function from a plane wave must be taken into account
when evaluating the overlap between the muon and nu-
cleus wavefunctions. This has been done in Ref. [33], and
we will use their overlap integrals, with the neutron density
determined from pionic atom experiments (method 2 in
[33]). Other nuclei could also be of interest, particularly as
a way to distinguish different models [34]. The conversion
rate is

��!e ¼ 4m5
�e

4jAL
�dip þAR

� þAR
box

þAR
Zj2 þ ðL $ RÞ; (3.15)

where

A L
�dip ¼ � 1

8e
AL
�dipD; (3.16)

A R
� ¼ AR

�V
ðpÞ; (3.17)

A R
box ¼ �ð2AuR

box þ AdR
boxÞVðpÞ � ðAuR

box þ 2AdR
boxÞVðnÞ;

(3.18)

A R
Z ¼ ½ð2Zu þ ZdÞVðpÞ þ ð2Zd þ ZuÞVðnÞ�AR

Z; (3.19)

where Zq ¼ ðZqR þ ZqLÞ=2, with ZqðL;RÞ ¼ IqL;R �Qsin2�w,

IuL ¼ 1=2, IdL ¼ �1=2 for up and down-type quarks, and
IqR ¼ 0. The first term in Eq. (3.15), proportional to
jAL

�dip þAR
� þAR

box þAR
Zj2, corresponds to slepton

mixing in the right-handed sector, while the second term
proportional to jAR

�dip þAL
� þAL

box þAL
Zj2, corre-

sponds to to slepton mixing in the left-handed sector. The

coefficients D and Vðp;nÞ are to the overlap integrals of the
muon and the nucleus for the leptonic dipole and vector
(proton, neutron) operators. We used, for a gold nucleus,

D ¼ 0:167, VðpÞ ¼ 0:0859, VðnÞ ¼ 0:108 from Ref. [33].
Now we will discuss each diagram below. We will

present the results for both left- and right-handed slepton
mixing. But, for simplicity, we will only discuss the case of
right-handed slepton mixing explicitly. The amplitudes
corresponding to left-handed slepton mixing can be ob-
tained from the right-handed ones by replacing the appro-
priate hypercharges and slepton masses. Note that for the Z
penguin, there is also an additional minus sign after the
replacement of hypercharges and slepton masses.

1. Charge radius

The charge radius amplitude AL;R
� comes from the �

penguin, without a chirality flip of the leptons. The domi-
nant term is the one involving the ~B-like neutralino in the
loop, with ~B coupling at each vertex connecting a lepton.
The other terms are suppressed either by the muon Yukawa
or by two powers of the small bino content in the ~H0

d-like

neutralino. The contributions to the effective vertex of the
charge radius is shown in Fig. 5. Summing over these
contributions gives1

AR
� ¼ g02ðYl

RÞ2
576�2

sin2�~l
m2

~l1

f�

�
M2

1

m2
~l1

�
� ðm~l1

! m~l2
Þ; (3.20)

with

f�ðxÞ¼ 1

1�x4
ð2�9xþ18x2�11x3þ6x3 lnxÞ: (3.21)

2. Magnetic dipole

The magnetic dipole amplitude AL;R
�dip is the one that

appears in � ! e�, which was discussed in detail in the
last section. For right-handed slepton mixing, the ampli-
tude of the dipole term is smaller than the charge radius

term, AL;R
� , due to the destructive interference between

amplitudes involving chirality flips at different locations
in the diagram. The situation reverses in the case of left-
handed slepton mixing, where both terms contributes and
the magnitude becomes larger than the charge radius term.

3. Z penguin

The Z-penguin contribution contains diagrams in Fig. 5,
with the photon replaced by the Z boson. The contribution

FIG. 4. Schematic diagram illustrating the set of penguin con-
tributions to � ! e conversion (for f ¼ q) as well as � ! 3e
(for f ¼ e). The blob in the figure arises from both charge radius
subdiagrams shown in Fig. 5, as well as Z-penguin subdiagrams,
the dominant ones shown in Fig. 6.

1We have checked that, even when �d ¼ M1, the value given
by this expression differs to the exact one by & 1%. So this
expression is valid over all ranges of M1 and �d. The discrep-
ancy comes from the small mass splitting of the neutralinos
when the gaugino and Higgsino masses are degenerate. We have
used the exact expression in our numerical analysis.
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coming from this set of diagrams is suppressed by
Oðm2

�=M
2
ZÞ compared to the charge radius so is negligible.

Then, the dominant term is the one involving a Higgsino-
Higgsino-Z vertex, shown in Fig. 6.

We find that the Z penguin is subdominant in a large
region of the parameter space. The Z penguin is the only
amplitude that is sensitive to tan�, and in the limit MZ �
MN , it scales as cos

2�. The Z-penguin amplitude is

AR
Z ¼ ðYl

RÞ2g02
64�2

sin2�~l
M2

Zsin
2�wcos

2�w

X2
i;j¼1

!ij; (3.22)

where

!ij ¼ OLi1OLj1

�
OLi2OLj2fZ

�M2
Ni

m2
~l1

;
M2

Nj

m2
~l1

�

� 2ORi2ORj2gZ

�M2
Ni

m2
~l1

;
M2

Nj

m2
~l1

��
� ðm~l1

! m~l2
Þ:

(3.23)

The functions fZðxi; xjÞ and gZðxi; xjÞ are2

fZðxi; xjÞ ¼ lnxi þ 1

xi � xj

�
x2i lnxi
1� xi

� x2j lnxj

1� xj

�
; (3.24)

gZðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffi
xixj

p
xi � xj

�
xi lnxi
1� xi

� xj lnxj
1� xj

�
: (3.25)

Note that the Z-penguin effective vertex does not ex-
plicitly depend on 1=M2

SUSY as in the case of all other

amplitudes. This corresponds to an operator of dimension
4. This is perfectly fine, because the weak symmetry is
broken, so the weak current is not conserved. However, it is
required that in the limit of unbroken electroweak symme-
try, this effective vertex vanishes. This is easy to check in
the limitMZ ! 0. In this limit, the neutralinos we consider
do not mix [c.f., Eq. (A2)]. But the amplitude for the Z
penguin contains at least two powers of the neutralino
mixing matrix elements, regardless of whether it is bino-
like or Higgsino-like. Therefore, this operator vanishes in
the limit MZ ! 0, when the electroweak symmetry is
unbroken.
For left-handed sleptons, the Z amplitude can be ob-

tained by replacing the appropriate hypercharges and slep-
ton masses, as well as an additional factor of (� 1). This
sign change arises from the NNZ coupling, in contrast to
NcNcZ in the case of right-handed sleptons.

FIG. 6. Contributions to the effective vertex from the Z penguin. Diagram (a) gives the term proportional to fZ in which the Z boson
couples to the R partner of the down-type Higgsino, c ~H0

d
, and (b) gives the term proportional to gZ, with Z coupling to ~H0

d. Only right-

handed slepton flavor mixing diagrams are shown, while left-handed slepton flavor mixing diagrams are obtained by swapping L $ R.

FIG. 5. Contributions to the effective vertex from the charge radius operator. Graph (c) is suppressed by a factor ofm2
e=m

2
� compared

to (b), and can be ignored in the limit of vanishing electron mass. Also in this limit, graph (b) exactly cancels graph (a) for vanishing
photon momentum, satisfying the Ward identity. Only right-handed slepton flavor mixing diagrams are shown, while left-handed
slepton flavor mixing diagrams are obtained by swapping L $ R.

2Note that the function fZ appears to contain a log term that is
asymmetric in the two neutralino lines in the loop, not as one
would expect. But remember that this log term is subtracted by
one containing the heavier slepton mass, and the final result is
symmetric in the neutralinos and antisymmetric in the sleptons,
as expected.
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4. Box diagram

For the box diagram, the dominant term is the one
containing bino couplings at all four vertices,

AqR
box ¼

ðYl
RÞ2g04 sin2�~l
64�2e2m2

~l1

�
ðYq

RÞ2j4
�
M2

1

m2
~l1

;
M2

1

m2
~l1

;
m2

~qR

m2
~l1

��

� ðm~l1
! m~l2

Þ; (3.26)

where

j4ðxi; xj; yÞ ¼ x2i lnxi
ð1� xiÞðxi � xjÞðxi � yÞ

� x2j lnxj

ð1� xjÞðxi � xjÞðxj � yÞ

þ y2 lny

ð1� yÞðxi � yÞðxj � yÞ : (3.27)

We can compare the box amplitude with AL;R
� by approx-

imating VðpÞ ’ VðnÞ, giving

��������A
R
box

AR
�

��������¼ 9ðg0Þ2
e2

j4ðx; x; yÞ
f�ðxÞ ½3ðYd

RÞ2 þ 3ðYu
RÞ2�

’ 19
j4ðx; x; yÞ
f�ðxÞ ; (3.28)

where x ¼ M2
1=m

2
~l1
and y ¼ m2

~q=m
2
~l1
. The right-hand side

is plotted in Fig. 8. We can see that the box can give a large
contribution the total amplitude when the squarks are not
far heavier than the sleptons.

5. Numerical Results

We took tan� ¼ 3 for our analysis. The amplitudes
contributing to � ! e conversion in gold are shown in
Fig. 9 for right-handed slepton mixing, and in Fig. 10 for

left-handed slepton mixing. The slepton mixing angles are
taken to be maximal. For comparison, we also drew the line
where the experimental bound on the amplitude would be,
as if only one amplitude were contributing to the conver-
sion rate.
For right-handed sleptons, either the charge radius or the

box diagram dominate over other contributions. Each of
these amplitudes exceeds the bound alone and they inter-
fere constructively with each other. Therefore, maximal
right-handed slepton mixing is excluded throughout the
parameter space we explore. The magnetic dipole destruc-
tively interferes with the box and the charge radius dia-
grams, at small slepton masses before the magnetic dipole
vanishes. However, this cancellation is insufficient to bring
the amplitudes below the bound.
For both right-handed and left-handed slepton mixing,

the Z penguin is subdominant. Moreover, for larger values
of tan�, the Z penguin will be even more suppressed, since
it is directly proportional to cos2� ¼ 1=ð1þ tan2�Þ to
lowest order, in the limit MZ � MN . We show the exclu-
sion plots for � ! e conversion in Figs. 11 and 12.
In the left-handed slepton mixing case, the box diagram

is suppressed by the left-handed quark hypercharge, and is
much smaller. Also, the two largest amplitudes, the charge
radius and the magnetic dipole, destructively interfere with
each other, resulting in the funnel region shown in Fig. 12.

C. � ! 3e

Finally, we investigate the decay �� ! e�eþe�. The
diagrams that contribute to this decay are similar to the
process � ! e in a nucleus. While the amplitudes for this
decay are not enhanced by nuclear factors as in the case of
� ! e conversion, there is a log enhancement proportional
to logm�=me, arising from an infrared divergence cutoff by

the electron mass.

FIG. 8 (color online). A plot of the right-hand side of Eq.
(3.28), 19j4ðx; x; yÞ=f�ðxÞ, where x ¼ M2

1=m
2
~l1
and y ¼ m2

~q=m
2
~l1
.

The contours are y ¼ 1, 10, 25 from top to bottom. The box
amplitude is larger than the electromagnetic term when the
contour is above the x axis.

FIG. 7. The box Feynman diagram for � ! e conversion.
Because of the conservation of R charges, the chirality of the
squarks must be the ones shown in the diagrams. Only right-
handed slepton flavor mixing diagrams are shown, while left-
handed slepton flavor mixing diagrams are obtained by swapping
L $ R everywhere.
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All of the diagrams in � ! 3e can be obtained from the
� ! e conversion diagrams by replacing the quark line by
an electron line with outgoing eþ and e�. All diagrams
except the box are the same and will not be discussed here.
For the box, conservation of R charges enforces both
sleptons in the loop be of the same ‘‘chirality.’’ The box
amplitude for � ! 3e for right-handed sleptons is

BR
box ¼

ðg0YR
l Þ4

16�2e2
sin2�~l

X2
i;k¼1

ð�1Þiþ1

m2
~li

Ukj4

�
M2

1

m2
~li

;
M2

1

m2
~li

;
m2

~lk

m2
~li

�
;

(3.29)

where U1 ¼ cos2�~l and U2 ¼ sin2�~l. The factor ð�1Þiþ1

comes from the super-GIM mechanism.

The rate for the decay � ! 3e is

��!3e ¼
�2m5

�

32�

�
ðAR

�Þ2 � 4AR
�A

L
�dip þ ðAL

�dipÞ2
�
16

3
log

m�

me

� 22

3

�
þ 1

6
ðBR

boxÞ2 þ
2

3
AR
�B

R
box �

4

3
AL
�dipB

R
box

þ 2

3
F2
RR þ 1

3
F2
RL þ 2

3
BR
boxFRR þ 4

3
AR
�FRR

þ 2

3
AR
�FRL � 8

3
AL
�dipFRR � 4

3
AL
�dipFRL

�
; (3.30)

where FR� ¼ AR
ZZ

l
�, with � ¼ L, R. The quantity Z� is

part of the electron-Z coupling; ZL ¼ �1=2þ sin2�w, and
ZR ¼ sin2�w. The branching ratio of this process is ob-
tained by dividing the rate by the muon decay rate. Note
that the term proportional to ðAL

�dipÞ2 is enhanced by the log

FIG. 9 (color online). The magnitudes of various amplitudes at maximal mixing of right-handed sleptons with degenerate squark
masses of 1 TeV (i.e., the terms in Eq. (3.15) before taking the square). The contours are AR

� (blue),AR
box (green), jAR

�dipj (red), and
�AR

Z (brown). The dashed line corresponds to the bound on � ! e conversion as if only one amplitude were contributing. One can
see that there are regimes where only the box and the charge radius amplitudes contribute significantly [subfigures (a) and (b),
especially in the high M1 regions in these figures], and where all four amplitudes contribute significantly [subfigure (c)]. In subfigure
(d), the magnetic dipole amplitude reaches zero near m~l1

	 330 GeV. This coincides with the ‘‘funnel’’ region in the parameter space

plot for � ! e�, Fig. 2(b). All of the amplitudes, except for the Z penguin, constructively interfere, driving the conversion rate above
the experimental bound.
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term, which is divergent in the limit of massless electrons.
Our result for this divergent term agrees with [35].

In Figs. 13 and 14, we show the bounds on the MRSSM
parameter space arising from satisfying the existing ex-
perimental bound BRð� ! 3eÞ< 1:0� 10�12 from
SINDRUM [4]. The bounds on the MRSSM parameter
space from � ! 3e are weaker than the combined bounds
from � ! e� and � ! e conversion.

IV. IMPLICATIONS FOR FLAVOR VIOLATION
SIGNALS AT LHC

One of the most interesting implications of the MRSSM
is that flavor mixing could be at or near maximal through-
out virtually the entire slepton and squark sector [12] (save

only perhaps for ~d-~s mixing [36]). For sleptons, this opens
up the possibility of observing large �-e mixing at col-
liders. Slepton mixing at colliders has been extensively
studied [32,37–55], though analyses have generally been
relegated to MSSM scenarios where the splitting between
the e, � eigenstates is very small, so as to satisfy the
stringent LFV constraints. One of the most sensitive tech-
niques to search for �-e mixing is through the decay of a

heavier neutralino to a lighter one through an on-shell
slepton. This decay can arise at a large rate at the LHC
starting with squark and/or gluino production, where the
squark decays to the heavier neutralino and so on, such as

~q ! qNi; Ni ! e�=��~l
; ~l
 ! �
=e
Nj:

(4.1)

The distinctive kinematic features in this cascade of 2-body
decays can be utilized to extract the mass of the slepton
through a kinematic edge (e.g., [56–61]).
In light of the bounds on the MRSSM parameter space

that we have found from LFV processes, it is interesting to
consider whether large mixing could still be seen at the
LHC. A detailed collider study is beyond the scope of this
paper; nevertheless, we can use our results to uncover
characteristic regions of parameter space where sin2�l 	
1 simultaneous with several-hundred GeV sparticles, and
thus, where large � $ e mixing remains within reach of
the LHC.
Closely examining Figs. 3(d), 12(d), and 14(d), we dis-

cover one (small) region in the MRSSM parameter space
where the left-handed slepton mixing angle can be maxi-
mal, sin2�l ¼ 1. For this region, and given first and second

FIG. 10 (color online). Same as Fig. 9 but with left-handed slepton mixing instead. The contours are AL
� (blue), �AL

box (green),
�AL

�dip (red), and AL
Z (brown). The magnetic dipole and the charge radius amplitudes interfere destructively with each other,

opening up a large region in the parameter space that satisfies � ! e conversion. This forms the funnel regions in Fig. 12.
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generation squark masses to be 1 TeV (consistent with
what was assumed for the � ! e conversion numerical
results), we compute the leading order production cross
sections and decay rates. We take the wino mass and the
right-handed slepton masses to be 2 TeV for simplicity.
The other gaugino masses in this region are M1 ¼
500 GeV, �d ¼ 400 GeV, �u ¼ 100 GeV. The mass
spectrum is shown in Table I.

Using MADGRAPH [62], we calculated the leading order
squark and gluino production cross sections at LHC withffiffiffi
s

p ¼ 14 TeV center of mass energy for several values of
the Dirac gluino mass for those production modes allowed
by R symmetry in Table II. One important observation
made in Ref. [32] is that, for gluinos less than about
2 TeV, associated gluino-squark production gives the larg-
est production rate of squarks.

FIG. 11 (color online). Allowable regions for � ! e conversion in a gold nucleus with right-handed slepton mixing. From light to
dark, the shaded areas denote mixing with sin2�~l ¼ 0:1, 0.5, respectively. The squark masses are set to be degenerate at 1 TeV. Note

that this completely rules out maximal mixing for right-handed sleptons in the sub-TeV range.
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The decay rates of the squarks, neutralinos, and chargi-
nos, computed using BRIDGE [63], can also be computed as
a function of the mixing angle �l, shown in Table III. For
the particular point we considered, the first two generations
of squarks decay overwhelmingly into the bino-like neu-
tralino, N3. The subsequent cascade decays into opposite
flavor leptons have the rates BRðN3!e�N1Þ¼0:14sin22�l,
BRðN3!ðee=��ÞN1Þ¼0:27ðsin4�lþsin4�lÞ. If the gluino
mass is 1 TeV, for example, then the ~g ~q production leads to

a total cross section of about 1 pb. With maximal slepton
mixing, the cross section for opposite sign e� events is
expected to be of order 100 fb. Extracting this signal from
background, particularly given the potentially problematic
technique of flavor-subtraction, remains challenging. (See
Ref. [32] for a discussion of signal plus background analy-
sis of a nonminimal R-symmetric model.)
Just as in the MSSM, one can search for the kinematic

endpoint in the invariant mass distribution of the leptons.

FIG. 12 (color online). Same for Fig. 11 but with left-handed slepton mixing instead.
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In the MRSSM, however, the two slepton mass eigenstates
are not near one another, and so two distinct and well-
separated kinematic edges could in principle be extracted.
This would be a striking signal of slepton flavor violation
in the MRSSM. Note also that the electric charges of the
leptons in this decay are fixed by the conversation of R
charges. For example, the antineutralino Nc

3 can decay into

lþ~l�L , the decay into the same final state for N3 is
forbidden.

V. DISCUSSION

We have calculated the constraints on � $ e mixing in
the MRSSM from the flavor-violating processes � ! e�,
� ! e conversion, and � ! 3e. Given the simplifications
stated in Sec. II, we explored LFV in the MRSSM as a
function of the parameters M1, �d, m~l, and sin2�~l within
the sub-TeV range. Given the heavier slepton mass set to be
m~l2

¼ 1:5m~l2
, we found that the bound from � ! 3e is

FIG. 13 (color online). Regions of the parameter space that satisfy the � ! 3e bound at different mixing angles of right-handed
sleptons. The values of sin2�~l are, from light to dark, 0.1, 0.5, 1.
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always less severe than the bounds derived from either
� ! e� or � ! e conversion. We show the overlapping
regions allowed by all constraints in Figs. 15 and 16.

For right-handed slepton mixing, � ! e conversion in
gold nuclei provides the most severe constraint—it com-
pletely rules out maximal mixing (compare Fig. 15 with
Fig. 2). The situation is qualitatively different for left-
handed mixing—the most severe bound in this case comes
from � ! e�, as dominant amplitudes (charge radius and

magnetic dipole) of � ! e conversion interfere destruc-
tively and opens up a large region in parameter space that
satisfies the experimental bounds. From Fig. 3 for� ! e�,
one sees that maximal mixing is allowed in regions where
the bino mass is 	500 GeV at �d ¼ 200 GeV, with a
moderate splitting between sleptons. The results suggest
that the most likely observation of large slepton flavor
violation signals at the LHC will occur in the left-handed
sector.

FIG. 14 (color online). Same as Fig. 13 but with left-handed slepton mixing.
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Finally, is interesting to consider how the bounds on
slepton flavor mixing angles will change as the constraints
on LFVare strengthened. This is most easily understood by
recognizing that all of our bounds are proportional to
sin22�~l. In other words, the boundary of the allowed re-
gions are contours of constant BRbound=sin

22�~l, where
BRbound is the bound on the branching ratio of a process.

In plotting the allowed regions of parameter space in the
previous sections of the paper, we used of course the
current experimental bound. Suppose that in some future
experiment the bounds are improved, say by a factor of
100. Then, the boundary of the region that satisfy this new
bound for sin22�~l ¼ 0:1 is the same as the boundary for the
current bound with sin22�~l ¼ 1.

FIG. 15 (color online). Regions allowed in the parameter space by combining the three constraints for right-handed sleptons. The
constraint from � ! 3e is always less severe than the other two processes in the parameter space shown.
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APPENDIX: GAUGINO AND SLEPTON
STRUCTURE

To discuss the neutralino masses and interactions more
quantitatively, we define the c B and c ~Hd

to the be fermion

R partners of ~B and ~H0
d, respectively. Then, we form the

Dirac bino and Higgsino spinors and their charge conju-
gates,

FIG. 16 (color online). Same as Fig. 15 but for left-handed sleptons. Similar to the right-handed case, the constraint from � ! 3e is
also less severe than the other two processes in the parameter space shown.
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N ~B ¼ c B
~By

� �
; N ~Hd

¼
~H0
d

c y
~Hd

 !
;

Nc
~B
¼ ~B

c y
B

 !
; Nc

~Hd
¼ c ~Hd

~H0y
d

 !
:

(A1)

We can also see that the Dirac spinor N has an R charge of
�1; whereas, Nc has an R charge ofþ1. The gaugino mass
matrix, MN , is shown in the mass term below

ð �NB; �N ~Hd
Þ M1 � cos� sin�WMZ

0 �d

� �
PLNB

PLN ~Hd

 !
þ H:c:

(A2)

The mass matrix is diagonalized by a bi-orthogonal
transformation; the diagonalized neutralino mass matrix,
MD

N ¼ OT
LMNOR, obeys ðMD

N Þ2 ¼ OLMNðMNÞT �
ðOLÞT ¼ ORðMNÞTMNðORÞT , where OðL;RÞ are the or-

thogonal matrices that diagonalize the mass matrix. In
this definition, the ~B and ~H0

d content of the ith neutralino

Ni are, OLi1 and ORi2, respectively.
We consider mixing between selectrons and smuons

only, parametrized as follows:

~l1
~l2

 !
L;R ¼ cos�~l sin�~l� sin�~l cos�~l

� �
L;R

~e
~�

� �
L;R

; (A3)

where ~li represents the sleptons in the mass eigenstate
basis.

Then, slepton flavor violation comes from the interac-

tion terms between a sfermion, ~fi, a neutralino, Ni, and a
fermion fi:

� ~f�L� �NiðUy
L��½OLi1GLfL� þORi2yffR��Þ

� ~f�R� �Nc
i ðUy

R��½OLi1GRfR� þORi2yffL��Þ þ H:c:;

(A4)

where UL;R are the slepton mixing matrices in Eq. (A3).

The coupling constants are

GL;R ¼ ffiffiffi
2

p
g0YfðL;RÞ ; and (A5)

yf ¼
g0mfffiffiffi

2
p

MZ sin�w cos�
: (A6)

The subscript i on the (s)fermion denotes its generation,
subscripts L and R denote the chirality, with � and � being
the flavor indices. The hypercharge of a fermion f is
denoted by Yf. From the above interaction terms we see

that ~fR and ~fL have different R charges: �1 and þ1,
respectively.
The Z boson only couples to Higgsinos. The ZNN

interaction term is

g

2cos�w
Z�½ �Ni�

�ðORi2ORj2PLþOLi2OLj2PRÞNj�: (A7)

One can also write the ZNN coupling in terms of Nc,

� g

2 cos�w
Z�½ �Nc

i�
�ðOLi2OLj2PL þORi2ORj2PRÞNc

j �:
(A8)

Examining the neutralino mixing matrix in Eq. (A2), the
lightest gaugino receives a negative shift, ��< 0, and so
the lightest neutralino has mass MN1

¼ �d � �<mC1
,

and thus the lightest gaugino is a neutralino.

TABLE I. Mass spectrum.

Particle ~qL;R ~g N3 ’ ~B C2 ’ ~Hd N2 ’ ~Hd
~lL2 ~lL1 C1 ’ ~Hu N1 ’ ~Hu

Mass (GeV) 1000 1000 502 400 400 270 180 100 100

TABLE II. Leading order production cross sections for
squarks and gluinos at the LHC with

ffiffiffi
s

p ¼ 14 TeV in the
MRSSM.

M~g (TeV) ~g-~qL;R ~qR-~qL ~q-~q� ~g-~g 	 (fb)

1 810 120 50 330 1300

2 36 31 27 1.0 95

3 2.6 11 22 0.007 35

TABLE III. Decay branching ratios of the particles involved in
the cascade decay N3 ! l�~lþL ! l�l0þN1 given the MRSSM
parameters given in Table I.

Decaying particle Decay modes Branching ratios

~q qN3 0.99

N3 ZN2 8� 10�4

ZN1 0.12

C�
2 W

þ 0.02

Cþ
1 W

� 0.22


~
1 0.19


~
2 0.13

e�~lþL1 0:19cos2�l
��~lþL1 0:19sin2�l
e�~lþL2 0:13sin2�l
��~lþL2 0:13cos2�l

~lþL1 Cþ
1 �
 0.11

N1e
þ 0:88cos2�l

N1�
þ 0:88sin2�l

~lþL2 Cþ
1 �
 0.16

N1e
þ 0:84sin2�l

N1�
þ 0:84cos2�l
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