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We consider a model where right-handed neutrinos and sneutrinos are introduced to the minimal

supersymmetric standard model. In the scalar potential of this model, there exist trilinear and quartic terms

in scalar potential that are proportional to Yukawa couplings of neutrinos. Because of these trilinear and

quartic terms, color and/or charge breaking (CCB) and unbounded-from-below (UFB) directions appear

along which sneutrinos have a vacuum expectation value, making the vacuum of the electroweak

symmetry breaking unstable. We analyze the scalar potential of this model and derive necessary

conditions for color and/or charge breaking and unbounded-from-below directions to vanish.
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I. INTRODUCTION

Neutrino oscillation experiments [1–5] have confirmed
that neutrinos have very tiny but nonzero masses. This is a
clear evidence of physics beyond the standard model (SM)
because neutrinos are massless in the SM. The simplest
way to generate their tiny masses is to introduce right-
handed neutrinos. There are two scenarios in this regard.
One is that right-handed neutrinos are Majorana particles
and neutrinos acquire masses via the famous seesaw
mechanism [6–10]. The other scenario is that right-handed
neutrinos are Dirac particles and neutrinos obtain masses
via electroweak symmetry breaking (EWSB).

Combined these right-handed neutrino scenarios with a
supersymmetric standard model, which we call �SSM,
many works have been done so far. In the seesaw mecha-
nism, it has been investigated recently that Majorana
masses are as low as between 100 GeV and 10 TeV. In
fact, such low scale Majorana masses can be realized as a
consequence of supersymmetry (SUSY) breaking [11–13].
This class of models predicts relatively small Yukawa
couplings of neutrinos compared to those of other fermi-
ons. In scenarios of Dirac neutrinos, tiny neutrino masses
are solely explained by tiny Yukawa couplings. One might
think it is unnatural because the Yukawa couplings of
neutrinos are too small compared with those of other
fermions. However, as was emphasized in [14], it is natural
in ’t Hooft’s sense [15] that a symmetry (i.e. chiral sym-
metry in the neutrino sector) is recovered in the limit of
vanishing neutrino Yukawa coupling constants. In these
scenarios, right-handed neutrinos and sneutrinos are light,
and therefore the scenarios are testable in astrophysical
observations and terrestrial experiments. Studies of these
scenarios are, e.g. the dark matter physics [14,16–18],

lepton flavor violation searches [19], and collider physics
[20,21].
The presence of the scalar partners generally leads color

and/or charge breaking (CCB) directions and unbounded-
from-below (UFB) directions [22–30]. Along CCB direc-
tions, the scalar potential has minima on which color and/
or charge symmetries are spontaneously broken. The CCB
minimum can be deeper than that of EWSB when the
Yukawa coupling of the particle along the CCB direction
is small. Along UFB directions, the scalar potential has no
global minimum and falls down to negative infinity. These
directions make the vacuum of EWSB unstable, and hence
must be avoided. In the minimal supersymmetric extension
of the SM (MSSM), conditions to avoid the UFB and CCB
directions were systematically investigated in [31].1 Those
conditions constrain soft SUSY breaking parameters,
mainly trilinear couplings, and exclude a certain region
of the parameter space of the MSSM. In the �SSM, due to
right-handed sneutrinos, not only new UFB and CCB
directions but also false EWSB directions appear. Along
false EWSB directions, neither color nor charge symmetry
is broken but Higgses and sneutrinos acquire large vacuum
expectation values (VEV). Such minima result in too heavy
masses of gauge bosons and are excluded by precise elec-
troweak measurements. Since the EWSB vacuum can be-
come unstable along these directions due to small neutrino
Yukawa couplings, conditions to avoid those directions
should be investigated. In this article, we refer false
EWSB directions as CCB directions in view of incorrect
vacuum.
In this article, we consider the �SSMwhere either right-

handed Dirac or Majorana (s)neutrinos are introduced to a
supersymmetric standard model. We assume that the
Majorana masses are below or around the TeV scale so
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that the neutrino Yukawa coupling is small as it is in the
Dirac neutrinos case. Then, we analyze the potential along
UFB and CCB directions at tree level and derive necessary
conditions to avoid dangerous minima and directions.
Necessary conditions are generally modified due to radia-
tive corrections [33,34]. The conditions from the tree-level
analysis coincide with those from the one-loop analysis
when the analysis is performed at a scale in which vacuum
expectation values of Higgses with and without radiative
corrections coincide [33,34]. We assume that our analysis
is performed at this scale.

The outline of this article is as follows. In Sec. II, we
briefly review general properties of UFB and CCB direc-
tions in the MSSM. Then we analyze the scalar potential
and derive necessary conditions in Dirac and Majorana
neutrino cases in Secs. III and IV. We show numerical
results of constraints on the soft SUSY breaking parame-
ters in Sec. V. Finally we summarize and discuss our
analysis in Sec. VI. The scalar potential of the MSSM
and notations of fields and couplings are given in
Appendix A, and EWSB of the MSSM is summarized in
Appendix B. In Appendix C, F terms and soft SUSY
breaking terms in the �SSM are shown.

II. GENERAL PROPERTIES FOR UFB
DIRECTIONS AND CCB MINIMA IN THE MSSM

We start our discussion with briefly reviewing general
properties of UFB and CCB directions in the MSSM [31].
Following the general properties, it is possible to classify
all dangerous directions in a field space. As was studied in
[31], there are three types of UFB and CCB directions,
respectively. Throughout the main part of this paper, we
refer H1 and H2 to a neutral component of down-type and
up-type Higgs scalars, and use the symbol ‘‘tilde’’ to
denote scalar partners of the SM fermions. Notations of
couplings and fields and the scalar potential of the MSSM
are summarized in Appendix A.

A. General properties of UFB directions

In general, UFB directions appear along field configu-
rations such that terms of scalars in a potential are vanish-
ing or kept under control. Along these directions, the
potential is unstable and its minimum is driven to negative
infinity if quadratic terms of the fields are negative. Two
general properties for UFB directions are as follows.

Property 1.—Trilinear scalar terms cannot play a sig-
nificant role along a UFB direction. This can be understood
as follows. If a trilinear term does not vanish, F terms give
rise to (positive) quartic terms which lift the potential up
for large values of scalar fields. Let us show an example.
Suppose that the trilinear term corresponding to the
Yukawa couplings of charged sleptons is nonvanishing,
and at least one F term of the scalar fields involved in
the trilinear term is nonzero, e.g.

F~eR ¼ YeðH1~eL �H�
1 ~�LÞ; (1)

whereH�
1 is a charged component of the down-type Higgs.

It is obvious that a positive quartic F term which is
proportional to jYej2 arises from the square of this term
in the potential.
Property 2.—Any UFB direction must involve H2 and

perhaps H1. This is because the terms jH2j2 and H1H2 can
have negative soft masses for EWSB to successfully occur,
while the other masses must be positive. Furthermore,
since these terms are quadratic, all quartic terms coming
from F and D terms must be vanishing or kept under
control. Thus some additional fields are required except
for H2.
According to these properties, UFB directions are clas-

sified into three. A direction along which H1 and H2 have
an equal VEV and other fields have no VEV’s is the so-
called UFB-1 direction. Another direction, the so-called
UFB-2 direction, is the direction with nonzero VEV’s of
H1, H2, and ~L. Along the last direction called the UFB-3,

H2, ~L and ~dL, ~dR are nonvanishing. In the following, we
show details of the UFB-2 and -3 directions. We will see
that the absence of the neutrino Yukawa coupling plays an
essential role on these directions.
Along the UFB-2 direction, left-handed sleptons have

nonvanishing VEV’s to cancel quartic terms fromD terms.
According to property 1, the trilinear term involving left-
handed sleptons must be vanishing in order not to give a
quartic term proportional to the Yukawa coupling squared.
The only possibility for this direction is that the left-handed
slepton has a VEV along the sneutrino direction since
neutrinos are massless and hence do not have Yukawa
couplings. Then, the potential is given

VUFB-2 ¼ m2
1jH1j2 þm2

2jH2j2 � 2jm2
3jjH1jjH2j þm2

~L
j ~Lj2

þ g21 þ g22
8

ðjH2j2 � jH1j2 � j ~Lj2Þ2: (2)

The potential along the UFB-2 direction is obtained by
minimizing Eq. (2) with respect to j ~Lj and jH1j,

VUFB-2 ¼
�
m2

2 þm2
~L
� jm2

3j2
jm2

1 �m2
~L
j
�
jH2j2 �

2m4
~L

g21 þ g22
;

(3)

where

ðm2
1 �m2

~L
Þ2 > jm2

3j2; (4)

jH2j2 >
4m2

~L

ðg21 þ g22Þð1� jm2
3j2=ðm2

1 �m2
~L
Þ2Þ ; (5)

are assumed. Notice that the condition for the minimum
with respect to jH2j, @V=@jH2j ¼ 0, cannot be satisfied
simultaneously; therefore jH2j is a free parameter in
Eq. (3). The potential becomes unbounded from below if
the quadratic term of jH2j is negative. Therefore the con-
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dition to avoid the UFB-2 direction is

m2
2 þm2

~L
� jm2

3j2
jm2

1 �m2
~L
j � 0: (6)

Along the UFB-3 direction, H1 is vanishing and VEV’s
of down squarks are chosen to cancel the F term of H1,

FH1
¼ �H2 þ Yd

~dL ~d
�
R ¼ 0: (7)

Then, as we will explain in the next section, VEV’s of
down squarks are much smaller than those of the Higgs and
the sleptons, and can be neglected in the scalar potential.

Taking the VEV’s along ~dL ¼ ~d�R ¼ ~d so that the SUð3Þ
D term also vanishes, the potential becomes

VUFB-3 ¼ ðm2
2 � j�j2ÞjH2j2 þ ðm2

~Q
þm2

~dR
Þj~dj2 þm2

~L
j ~Lj2

þ g21 þ g22
8

ðjH2j2 þ j~dj2 � j ~Lj2Þ2; (8)

where

j~dj2 ¼ j�j
jYdj jH2j: (9)

Repeating the procedure of the UFB-2 direction, we can
obtain the constraint preventing the UFB-3 direction

m2
2 � j�j2 þm2

~L
� 0; (10)

assuming

jH2j>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�j2
4jYdj2

þ 4m2
~L

g21 þ g22

vuut � j�j
2jYdj : (11)

It is important to emphasize here that the quartic terms
from F andD terms can vanish simultaneously because the
neutrino Yukawa coupling is absent.

B. General properties of CCB minima

CCB minima appear along directions in which a nega-
tive trilinear term dominates a potential against quadratic
and quartic terms at a certain region of field space. CCB
minima become deeper as Yukawa couplings of scalars are
smaller. In the following, we show five general properties
of CCB minima in the MSSM.

Property 1.—The deepest CCB direction involves only
one particular trilinear soft term of one generation. When
more than two trilinear terms are nonvanishing, quartic
terms arising from F terms are also nonvanishing.
Different quartic terms hardly deepen the potential coop-
eratively, but rather lift up the potential.

Property 2.—It cannot be determined a priori which
trilinear coupling gives the strongest constraints.
Nonvanishing trilinear terms lead quartic terms which are
proportional to the square of a Yukawa coupling. Since the
quartic terms are more important than the trilinear term for

large values of fields, larger Yukawa couplings do not
always deepen the potential.
Property 3.—If the trilinear term under consideration

has a very small Yukawa coupling, D terms must be
vanishing or negligible along the corresponding CCB di-
rection. IfD terms are nonvanishing, it lifts up the potential
faster than F terms. Then, that direction cannot be the
deepest direction.
Property 4.—There are two directions to be explored for

CCB. For example, for AuYu
~Q �H2~u

�
R, one is the direction

along which H2, ~Q, and ~uR are nonvanishing, and j~dLj2 ¼
j~dRj2 ¼ j~dj2 so that DSUð3Þ and FH1

vanish. This direction

is similar to UFB-3 and called direction (a) according to
Casas et al. [31]. The other direction is along H1, H2 and
~Q, ~uR are nonzero. Possibly ~L is also nonzero along this
direction. The direction is similar to UFB-2 and called
direction (b).
Property 5.—There are two choices of the phases of soft

SUSY breaking terms in direction (b). For the same ex-
ample as the above, the relevant soft terms are

2jAuYu
~QH2~uRj cos’1 þ 2j�Yu

~QH1~uRj cos’2

þ 2jB�H1H2j cos’3; (12)

where ’1, ’2, and ’3 represent phases combined with
signs of the couplings and phases of the fields. If
signðAuÞ ¼ �signðBÞ, the three phases can be taken as �,
so the three terms are negative. On the other hand, if
signðAuÞ ¼ signðBÞ, two of them can be taken as � and
the other one should be 0. Therefore one of the three terms
is positive. For direction (a), only one term with an un-

determined phase is AuYu
~QH2~uR. The sign of the term can

always be taken negative by rotating the fields involved.

III. CONSTRAINTS FROM CCB MINIMAWITH
DIRAC NEUTRINOS

In this section, we analyze the scalar potential of the
�SSM with Dirac neutrinos. We consider not only the
directions explained in the previous section (MSSM direc-
tions) but also new directions along which right-handed
sneutrinos have VEV’s. In our analysis, we assume that
only one sneutrino has a nonvanishing VEV.

A. Constraints from MSSM UFB directions

Let us consider the MSSMUFB-2 direction along which
Higgses and left-handed sneutrinos have nonvanishing
VEV’s. As we emphasized in Sec. II A, absence of the
neutrino Yukawa coupling played an important role in the
UFB-2 direction. The situation changes when the neutrino
Yukawa coupling is introduced. F terms given in
Appendix C cannot vanish simultaneously. According to
property 2 of the UFB direction, a positive quartic term
remains in the scalar potential, VDirac

UFB-2,

VDirac
UFB-2 ¼ VUFB-2 þ jY�j2jH2j2j~�Lj2; (13)
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where VUFB-2 is given in Eq. (3). The last term lifts up the
potential for large values of the fields. Thus, the MSSM
UFB-2 direction disappears and turns to a CCB direction.
We analyze this CCB direction below.

We parametrize the VEV’s for convenience,

j~�Lj ¼ �jH2j; jH1j ¼ �jH2j; (14)

where � and � are real numbers. The potential is written
using this parametrization,

VDirac
UFB-2 ¼ jY�j2Fð�;�Þ�2�2jH2j4 þ m̂2ð�;�ÞjH2j2; (15)

where

Fð�;�Þ ¼ 1

�2
þ 1

�2�2
fð�; �Þ; (16a)

fð�;�Þ ¼ 1

8

g21 þ g22
jY�j2

ð�2 þ �2 � 1Þ2; (16b)

m̂2ð�;�Þ ¼ m2
1�

2 � 2jm2
3j�þm2

2 þm2
~L
�2: (16c)

The minimum of the potential is obtained by differentiat-
ing Eq. (15) with respect to jH2j,

jH2j2ext ¼ � 1

2

m̂2ð�;�Þ
jY�j2Fð�;�Þ�2�2

; (17)

where jH2jext is the VEV of H2 at extremal. Here we
assumed that m̂2ð�; �Þ is negative. According to property 3
of the CCB direction, we set �2 ¼ 1� �2 to cancel the
D term or fð�;�Þ. Inserting Eq. (17) into the potential, the
minimum is expressed

VDirac
UFB-2min ¼ � 1

4

ðm̂2ð�ÞÞ2
jY�j2ð1� �2Þ ; (18)

where

m̂ 2ð�Þ ¼ ðm2
1 �m2

~L
Þ�2 � 2jm2

3j�þm2
2 þm2

~L
: (19)

The minimum would be much deeper than that of the
EWSB, (B9), because the neutrino Yukawa coupling is
very small. A necessary condition to avoid the dangerous
minimum is that m̂2 is positive for any �. It imposes a
constraint on the soft masses as

0 � jm2
3j2 �m2

1m
2
2 � m2

~L
ðm2

1 �m2
2 þm2

~L
Þ; (20)

where the left inequality is imposed by Eq. (B6). The
constraint forbids a small soft mass for the left-handed
sleptons unless jm2

3j2 is close to m2
1m

2
2.

For the MSSM UFB-3 direction, the same quartic term
remains in the potential,

VDirac
UFB-3 ¼ VUFB-3 þ jY�j2jH2j2j~�Lj2; (21)

and alters the MSSM UFB-3 direction to a CCB direction.
VUFB-3 is given in (8). As shown below, the VEV’s of the
Higgses and sneutrinos are of ordermsoft=Y�, wheremsoft is
a typical scale of the soft SUSY breaking masses. These
VEV’s are much larger than those of the down squarks.

Therefore, we can neglect down squarks in the following
discussion. Similar to the UFB-2 direction, the potential is
expressed using a parametrization, j~�Lj ¼ �jH2j,

VDirac
UFB-3 ¼ jY�j2Fð�Þ�2jH2j4 þ m̂2ð�ÞjH2j2; (22)

where

Fð�Þ ¼ 1þ 1

�2
fð�Þ; (23a)

fð�Þ ¼ 1

8

ðg21 þ g22Þ
jY�j2

ð�2 � 1Þ2; (23b)

m̂2ð�Þ ¼ m2
2 � j�j2 þm2

~L
�2: (23c)

Minimizing the potential with respect to jH2j, the value of
the jH2j at extremal, jH2jext, is obtained,

jH2j2ext ¼ � 1

2

m̂2ð�Þ
jY�j2Fð�Þ�2

; (24)

and the minimum of the potential is given by

VDirac
UFB-3min ¼ � 1

4

ðm̂2Þ2
jY�j2

; (25)

where �2 ¼ 1 is used and m̂2 ¼ m̂2ð�2 ¼ 1Þ. Again, the
minimum is much deeper than that of the EWSB, (B9). A
necessary condition to avoid the CCB minimum is

m2
2 � j�j2 þm2

~L
� 0: (26)

B. Constraint from CCB-1 minimum

In the following, we analyze the scalar potential along
CCB directions. Along the CCB directions of the MSSM,
there are no important modifications on the constraints
given in [31] since the trilinear term involving right-
handed sneutrinos is vanishing and the quartic term pro-
portional to the neutrino Yukawa coupling is very small.
Once we consider directions that right-handed sneutrinos
are nonvanishing, there appear new directions along which
the minimum can become much deeper than that of EWSB.
We focus our analysis on new CCB directions and derive
constraints to evade such CCB minima.
First, we consider a direction similar to the MSSM CCB

direction (a). From properties 1 and 3 of the CCB direction,
we assume

H2; ~�L; ~�R � 0; (27)

j~dLj2 ¼ j~dRj2 ¼ jdj2; (28)

and signðA�Þ ¼ �signðBÞ for simplicity. Other fields are

vanishing. The assumption j~dLj2 ¼ j~dRj2 is made to cancel

the SUð3Þ D term. Furthermore ~dL ~d
�
R is chosen to cancel

FH1
. Analogous to the MSSM UFB-3 direction, the VEV’s

of the Higgses and the sneutrinos are inversely propor-
tional to the Yukawa coupling of neutrinos and are much
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larger than those of the down squarks. Hence we neglect
down squarks in the potential.

The scalar potential from F, D terms and the soft SUSY
breaking terms is given in Appendix C and also
Appendix A. Following the procedure of the MSSM
UFB-3 direction, we parametrize VEV’s as

j~�Lj ¼ �jH2j; j~��
Rj ¼ �jH2j; (29)

where � and � are real numbers. Then, the scalar potential
is written

VDirac
CCB-1 ¼ jY�j2Fð�;�Þ�2�2jH2j4 � 2jY�jÂ��jH2j3

þ m̂2ð�;�ÞjH2j2; (30)

where

Fð�;�Þ ¼ 1þ 1

�2
þ 1

�2
þ 1

�2�2
fð�Þ; (31a)

fð�Þ ¼ 1

8

g21 þ g22
jY�j2

ð�2 � 1Þ2; (31b)

Â ¼ jA�j; (31c)

m̂2ð�;�Þ ¼ m2
H2

þm2
~L
�2 þm2

~�R
�2: (31d)

Here, jH2jext is obtained by minimizing the right-hand side
of Eq. (30) with respect to jH2j for fixed values of � and �,

jH2jext ¼ 3Â

4jY�jFð�;�Þ��
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8m̂2ð�;�ÞFð�;�Þ

9Â2

s �
:

(32)

The minimum is given by inserting Eq. (32) into Eq. (30),

VDirac
CCB-1min ¼ � 1

2
��jH2j2ext

�
Y�ÂjH2jext � m̂2ð�;�Þ

��

�
:

(33)

The CCB-1 minimum would be much deeper than the
EWSBminimum, (B9), because it is inversely proportional
to jY�j2. A necessary condition to avoid the minimum is
that VCCB-1min becomes positive, which reads

jA�j2 � 1þ 2�2

�2
ðm2

H2
þm2

~L
þm2

~�R
�2Þ; (34)

where �2 ¼ 1 is set to cancel the D term, according to
property 3 of the CCB direction. We can further simplify
the condition by minimizing the right-hand side of
Eq. (34). Differentiating the right-hand side with respect
to �2, �2 for extremal is obtained,

�4
ext ¼

m2
H2

þm2
~L

2m2
~�R

; (35)

and inserting Eq. (35), the condition becomes

jA�j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

H2
þm2

~L
Þ

q
þm~�R

; (36)

and the trilinear term is bounded from above. It is impor-
tant to notice that condition (26) appears in the right-hand
side. Therefore one can avoid both dangerous CCBminima
once the constraint (36) is satisfied.

C. Constraint from CCB-2 minimum

Next, we analyze a direction similar to the MSSM CCB
direction (b). We assume

H1; H2; ~�L; ~�R � 0; (37)

and other fields are zero. It is also assumed that signðA�Þ ¼
�signðBÞ. Note that neither color nor charge symmetry is
broken along this direction. Instead VEV’s of Higgses and
sneutrinos are so large that weak gauge bosons are too
heavy, and therefore EWSB does not occur correctly. As
we mentioned in the Introduction, we call this direction the
CCB direction. Then, we parametrize VEV’s as

j~�Lj ¼ �jH2j; j~�Rj ¼ �jH2j; jH1j ¼ �jH2j;
(38)

where �, �, and � are real numbers. Then, the scalar
potential is written

VDirac
CCB-2 ¼ Y2

�Fð�;�; �Þ�2�2jH2j4 � 2Y�Âð�Þ��jH2j3
þ m̂2ð�;�; �ÞjH2j2; (39)

where

Fð�;�; �Þ ¼ 1þ 1

�2
þ 1

�2
þ 1

�2�2
fð�;�Þ; (40a)

fð�;�Þ ¼ 1

8

g21 þ g22
jY�j2

ð�2 þ �2 � 1Þ2; (40b)

Âð�Þ ¼ jA�j þ �j�j; (40c)

m̂2ð�;�; �Þ ¼ m2
1�

2 þm2
2 þm2

~L
�2 þm2

~�R
�2 � 2jm2

3j�;
(40d)

and signðA�Þ ¼ �signB is assumed. The constraint from
the CCB-2 direction is obtained by iterating the same
procedure of the CCB-1 or the MSSM UFB-2 direction,

jA�j � �j�j�þ
�
1þ 2� �2

1� �2
�2

extð�Þ
�
m~�R

; (41)

where �extð�Þ is

�4
extð�Þ ¼ 1� �2

2� �2

ðm2
1 �m2

~L
Þ�2 � 2jm2

3j�þm2
2 þm2

~L

m2
~�R

;

(42)

and �2 ¼ 1� �2 is used. It is seen that the constraint (20)
is satisfied; hence the MSSM UFB-2 can be evaded if
�4

extð�Þ is positive for any �.
The stringent constraint on jA�j is given by minimizing

the right-hand side of Eq. (41) with respect to �, but it is
not easy to obtain �ext analytically because of complica-
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tions. Therefore we just give an equation that �ext must be
satisfied,

� j�j�2
extð�extÞ þm~�R

�
�ext

ð1� �2
extÞ2

�4
extð�extÞ

þ ðm2
1 �m2

~L
Þ�ext � jm2

3j
m2

~�R

�
¼ 0: (43)

Equation (43) should be solved numerically. If �ext is
negative, �ext ¼ 0 is chosen and the condition from the
CCB-1 direction is obtained by replacing m2

H2
with m2

2. If

�ext is larger than unity, �ext ¼ 1 and � ¼ 0 are chosen.
Then, the potential becomes

VDirac
CCB-2 ¼ Y2

��
2jH2j4 þ m̂2ð0; �; 1ÞjH2j2; (44)

where

m̂ 2ð0; �; 1Þ ¼ m2
1 þm2

2 � 2jm2
3j þm2

~�R
� � m2

~�R
> 0;

(45)

and we used Eq. (B6). Thus, the potential has a global
minimum at H1 ¼ H2 ¼ ~�L ¼ ~�R ¼ 0.

D. Constraint from CCB-3 minimum

The CCB-3 direction is defined as the CCB-2 with
signðA�Þ ¼ signðBÞ. Along this direction, one of the signs
among jA�j, j�j, and jm2

3j is flipped according to

property 5.
When the sign of jA�j or j�j is flipped, the condition to

avoid the CCB minimum is given as

jA�j � j�j�þ
�
1þ 2� �2

1� �2
�2

extð�Þ
�
m~�R

; (46)

where �4
ext is the same as Eq. (42).

When the sign of jm2
3j is flipped, the constraint becomes

jA�j � j�j�þ
�
1þ 2� �2

1� �2
~�2
extð�Þ

�
m~�R

; (47)

where

~� 4
extð�Þ ¼ 1� �2

2� �2

ðm2
1 �m2

~L
Þ�2 þ 2jm2

3j�þm2
2 þm2

~L

m2
~�R

:

(48)

The corresponding sign of j�j or jm2
3j in Eq. (43) for �ext

should also be flipped appropriately.

IV. CONSTRAINTS FROM UFB AND CCB MINIMA
WITH MAJORANA NEUTRINOS

We consider the �SSM with Majorana neutrinos and
analyze its potential given in Appendix C. Differences
from the Dirac case are the Majorana mass term in the
superpotential and the corresponding soft SUSY breaking
mass. These additional terms result in linear and quadratic
terms of the right-handed sneutrinos in the scalar potential.

It is immediately understood that the constraints from
the MSSM UFB directions are the same as those of the
Dirac case, (20) and (26), because the right-handed sneu-
trinos do not have VEV’s. There appears a new UFB
direction along

~� R � 0; other fields ¼ 0; (49)

and signðB�MRÞ ¼ �1. The potential along this direction
is given as

VMajorana
UFB ¼ ðm2

~�R
� jB�MRj þ jMRj2Þj~�Rj2; (50)

and it is unbounded from below unless

m2
~�R
� jB�MRj þ jMRj2 � 0: (51)

Along the CCB directions, we simply show results
because the procedure to find the conditions is the same
as in the Dirac case. The conditions are obtained by making
replacements,

jA�j ! jA�j þ jMRj; (52)

m~�R
! m~�R

þ jB�MRj þ jMRj2; (53)

where signðB�MRÞ ¼ 1 is assumed. From the CCB-1 mini-
mum, it is given from Eq. (36),

jA�j � �jMRj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM2

H2
þM2

~L
Þ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~�R
þ jB�MRj þ jMRj2

q
: (54)

From the CCB-2 minimum, the condition is obtained from
Eq. (41),

jA�j � �ðj�j�ext þ jMRjÞ þ
�
1þ 2� �2

1� �2
�2

extð�extÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~�R
þ jB�MRj þ jMRj2

q
; (55)

where

�4
extð�Þ ¼ 1� �2

2� �2

ðm2
1 �M2

~L
Þ�2 � 2jm2

3j�þm2
2 þM2

~L

m2
~�R
þ jB�MRj þ jMRj2

:

(56)

Here �ext is determined from

� j�j�2
extð�extÞ þm~�R

�
�ext

ð1� �2
extÞ2

�4
extð�extÞ

þ ðm2
1 �m2

~L
Þ�ext � jm2

3j
m2

~�R
þ jB�MRj þ jMRj2

�
¼ 0: (57)

Along the CCB-3 direction, the same replacement should
be done. For the case of signðB�MRÞ ¼ �1, the sign of
jB�MRj is flipped.
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V. NUMERICAL ANALYSIS

We show numerical results for the Dirac neutrino case to
demonstrate a strategy to constrain the soft SUSY parame-
ters with the conditions from UFB and CCB-1, -2, i.e. (20),
(36), and (41). The conditions are important for relatively
light sneutrinos, and therefore we vary masses of sneutri-
nos fixing the Higgs masses.

We calculate the Higgs soft masses using the SPS1a
point [35] as an example. The parameters we use are

� ¼ 3:57� 102; B ¼ 47:2; (58)

m2
H1

¼ 3:24� 104; m2
H2

¼ �1:28� 105; (59)

in the unit of GeV, and m ~L is taken as 360 and 560 GeV so
that �4

ext along the CCB-1 direction is positive. It is as-
sumed that signðA�Þ ¼ �signðBÞ. The EWSB occurs cor-
rectly and the lighter Higgs mass is above 114 GeV with
these parameters.

We start by checking that Eq. (19) is positive between
0 � � � 1 for a given set of the parameters. Figure 1
shows Eq. (19) with respect to �. Figure 1(a) is for m ~L ¼
360 GeV and 1(b) is for m ~L ¼ 560 GeV. It is seen that m̂2

is positive in both cases, and hence Eq. (20) is satisfied.
Second, we calculate �ext using Eq. (43). Figure 2 shows

the left-hand side of Eq. (43) normalized bym~�R in terms of

�.m~�R
is varied from 100 to 500 GeV. The mass of the left-

handed slepton for each curve is shown in the figures.m ~L is
360 GeV in Fig. 2(a) and 560 GeV in Fig. 2(b). The
crossing point of each curve to zero corresponds to �ext.
It is seen that �ext is independent of m~�R

. This is because

m~�R
can be factored out by inserting the concrete form of

�ext. From the figures, we can obtain �ext ¼ 0:62 and 0.73,
respectively. It is also seen that �ext for m ~L ¼ 560 GeV is
larger than that for 360 GeV. Generally �ext becomes larger
as m ~L increases for fixed values of the other parameters,
although the dependence of �ext on the other parameters is
so complicated that it cannot be understood easily.
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FIG. 1 (color online). m̂2ð�Þ in terms of �. m ~L is taken as
360 GeV in (a), and 560 GeV in (b), respectively.
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FIG. 2 (color online). The left-hand side of Eq. (43) normal-
ized by m~�R

in terms of � for various m~�R
. The values of m~�R

are

shown in the figures. The left-handed slepton soft mass is
360 GeV in (a), and 560 GeV in (b), respectively.
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Third, the constraints from CCB-1 and CCB-2 are cal-
culated. In Fig. 3, we plot the constraints normalized with
m~�R by varying the right-handed slepton mass from 100 to

1000 GeV. The mass of the left-handed slepton is taken as
360 GeV in Fig. 3(a), and 560 GeV in Fig. 3(b), respec-
tively. The solid (red) curve represents Eq. (36) and the
dashed (green) curve represents Eq. (41). It is seen from
Fig. 3 that the constraint of CCB-1 is stronger than that of
CCB-2 for m ~L ¼ 360 GeV, while the constraint of CCB-2
is stronger for 560 GeV. The dependence of Eq. (36) on
m~�R is trivial, and that of Eq. (41) can be understood as

follows. As we explained in Fig. 2, �ext becomes large as
m ~L increases. Then, the right-hand side of Eq. (41) in-
creases due to a factor of 1� �2 in the denominator. This
result is nontrivial, and therefore we always have to check
both constraints. The CCB-1 and CCB-2 constraint curves
approach jA�j=m~�R

¼ 1 as m~�R
becomes large. In the large

m~�R limit, the right-hand side of Eq. (36) is dominated by

m~�R , and �ext goes to zero since m~�R
appears in the

denominator in Eq. (35).

Figure 4 shows the upper bound on jA�j in terms ofm~�R .

The value of the left-handed slepton mass is indicated in
the figures. The upper bound is more strict as m~�R

is

smaller and m ~L is smaller. In our example, jA�j must be
smaller than 153 GeV for m~�R ¼ 100 GeV and 1550 GeV

form~�R
¼ 1000 GeV in Fig. 4(a) and 640 and 2020 GeV in

Fig. 4(b), respectively. From the numerical analysis, if the
mass of the right-handed slepton is between several
100 GeV, the A� term must be smaller than 1 TeV.

VI. SUMMARYAND DISCUSSION

We have considered the �SSM where either Dirac or
Majorana (s)neutrinos are introduced to the MSSM, and
analyzed its scalar potential along the MSSM UFB/CCB
directions as well as new CCB directions which appear due
to nonvanishing VEV’s of right-handed sneutrinos.
We have found that the MSSMUFB directions disappear

and turn to CCB directions because the quartic term pro-
portional to the square of the neutrino Yukawa coupling
lifts up the potential for large values of fields. We have
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FIG. 3 (color online). The constraints from CCB minimum
normalized with m~�R

in terms of m~�R . The left-handed slepton

soft mass is 360 GeV in (a), and 560 GeV in (b), respectively.
The solid (red) curve represents Eq. (36) and the dashed (green)
curve represents Eq. (41).
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shown that the depth of the minima along these directions
is inversely proportional to the square of the neutrino
Yukawa coupling; therefore it would be much deeper
than that of EWSB. We derived necessary conditions to
avoid the CCB minima along the MSSM UFB directions.
The conditions impose constraints among the soft SUSY
breaking masses of the Higgses and the left-handed
sneutrinos.

Then we have analyzed the potential along which the
right-handed sneutrinos have nonvanishing VEV’s. We
showed that CCB and incorrect EWSB minima exist along
these directions. The minima are inversely proportional to
the square of the neutrino Yukawa coupling and hence very
deep in the cases of the Dirac neutrinos and Majorana
neutrinos in the TeV scale seesaw. Necessary conditions
to evade these minima are derived for both Dirac and
Majorana neutrinos. The conditions constrain the trilinear
coupling of the sneutrino with respect to the soft masses. In
the Majorana neutrino case, we found that one UFB direc-
tion appears due to the presence of the soft SUSY breaking
mass terms of sneutrinos. A necessary condition to avoid
the potential unbounded from below was also found.

In Sec. V, we have performed a numerical analysis of the
conditions to demonstrate a strategy to avoid the UFB and
CCB minima. The strategy is that for a given set of the
parameters consistent with the EWSB, first we check the
condition from the MSSM UFB directions, (20) and (26).
Next, we calculate �ext using Eq. (43) for the CCB-2
direction. Finally we check the conditions from CCB
minima, (36) and (41). In Fig. 3, we have shown that the
condition (36) is more severe for m ~L ¼ 360 GeV and (41)
is for m ~L ¼ 560 GeV. We have also shown in Fig. 4 that
the trilinear coupling is strictly constrained for smaller
sneutrino masses. In the case that the right-handed sneu-
trinos are the lightest SUSY particles, this constraint is
important to calculate their lifetime.

The conditions we found in this article are necessary
conditions but not sufficient conditions. With these con-
ditions satisfied, one can avoid dangerous UFB and CCB
directions when radiative corrections are small compared
with tree-level potential. As we mentioned in the
Introduction, it would be needed to include radiative cor-
rections to obtain viable conditions at the electroweak
scale. Since finite temperature effects would lift up the
potential, it would also be important to consider finite
temperature effects. We leave these for our future work.
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APPENDIX A: SCALAR POTENTIAL OF THE
MSSM

In this Appendix, we give notations of the scalars and the
full scalar potential of the MSSM. The down-type and the
up-type Higgs scalars are denoted as

H1 ¼ H1
1

H2
1

� �
; H2 ¼ H1

2

H2
2

� �
; (A1)

where H1
1 and H2

2 are electrically neutral. The left-handed
squarks and the right-handed squarks are denoted as

~Q ¼ ~uL
~dL

� �
; ~uR; ~dR; (A2)

and the left-handed sleptons and the right-handed sleptons
are denoted as

~L ¼ ~�L

~eL

� �
; ~eR: (A3)

The scalar potential is divided into three parts which
consist of F terms, D terms, and soft SUSY breaking
terms,

V ¼ VF þ VD þ Vsoft: (A4)

The F term potential, VF, is given by a sum of absolute
square of all matter auxiliary fields,

VF ¼ X
i¼matter

jFij2; (A5)

where

F�
H1

1

¼ �H2
2 þ Ye~eL~e

�
R þ Yd

~dL ~d
�
R; (A6a)

F�
H2

1

¼ ��H1
2 � Ye~�L~e

�
R � Yd~uL ~d

�
R; (A6b)

F�
H1

2

¼ ��H2
1 þ Yu

~dL~u
�
R; (A6c)

F�
H2

2

¼ �H1
1 � Yu~uL~u

�
R; (A6d)

F~eR ¼ YeðH1
1~eL �H2

1 ~�LÞ; (A6e)

F�
~eL

¼ YeH
1
1~e

�
R; (A6f)

F�
~�L

¼ �YeH
2
1~e

�
R; (A6g)

F~dR
¼ YdðH1

1
~dL �H2

1 ~uLÞ; (A6h)

F�
~dL
¼ YdH

1
1
~d�R þ YuH

1
2 ~u

�
R; (A6i)

F~uR ¼ YuðH1
2
~dL �H2

2 ~uLÞ; (A6j)

F�
~uL

¼ �YdH
2
1
~d�R � YuH

2
2 ~u

�
R: (A6k)

Here � is a supersymmetric Higgs mass and Yi (i ¼ u, d,
and e) are Yukawa couplings.
The D term potential, VD, is given by a sum of square of

all gauge auxiliary fields,
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VD ¼ 1
2ððDa

SUð3ÞÞ2 þ ðDa
SUð2ÞÞ2 þ ðDUð1ÞÞ2Þ; (A7)

where a runs from 1 to 8 (3) for SUð3Þ [SUð2Þ] and the
summation should be understood. The auxiliary fields,
Da

SUð3Þ, D
a
SUð2Þ, and DUð1Þ, are given by

Da
SUð3Þ ¼ g3

�
~Qy �

a

2
~Q� ~u�R

�a

2
~uR � ~d�R

�a

2
~dR

�
; (A8a)

Da
SUð2Þ ¼ g2ð ~QyTa ~Qþ ~LyTa ~LþHy

1T
aH1 þHy

2 T
aH2Þ;
(A8b)

DUð1Þ ¼ g1ð16 ~Qy ~Q� 2
3
~u�R~uR þ 1

3
~d�R ~dR � 1

2
~Ly ~L

þ ~e�R~eR � 1
2H

y
1H1 þ 1

2H
y
2H2Þ; (A8c)

where gi (i ¼ 1, 2, 3) is a gauge coupling constant, and �a

and Ta are Gell-Mann and Pauli matrices, respectively.
The soft SUSY breaking terms, Vsoft, are

Vsoft ¼ m2
H1
Hy

1H1 þm2
H2
Hy

2H2 þ ðB�H1 �H2 þ H:c:Þ
þm2

~Q
~Qy ~Qþm2

~uR
~u�R~uR þm2

~dR
~d�R ~dR þm2

~L
~Ly ~L

þm2
~eR
~e�R~eR þ ðAdYdH1 � ~Q~d�R þ AuYuH2 � ~Q~u�R

þ AeYeH1 � ~L~e�R þ H:c:Þ; (A9)

where mi (i ¼ H1, H2, Q, u, d, L, and E) are soft masses
and B� is a soft term for Higgses. A ‘‘dot’’ symbol
represents an inner product for SUð2Þ doublets, A � B ¼
A1B2 � A2B1. The trilinear terms, Ai (i ¼ u, d, and e), are
defined to be proportional to the corresponding Yukawa
coupling.

APPENDIX B: ELECTROWEAK SYMMETRY
BREAKING OF THE MSSM

We review the Higgs potential and the constraint from
EWSB of the MSSM.

The Higgs potential of the MSSM is given by

V ¼ m2
1H

2
1 þm2

2H
2
2 � ðm2

3H1H2 þ H:c:Þ
þ 1

8ðg21 þ g22ÞðjH1j2 � jH2j2Þ2; (B1)

where

m2
1 ¼ m2

H1
þ j�j2; (B2a)

m2
2 ¼ m2

H2
þ j�j2; (B2b)

m2
3 ¼ �B�: (B2c)

A UFB direction is found along the D flat direction,
namely,

jH1j2 ¼ jH2j2; (B3)

and the potential becomes

V ¼ ðm2
1 þm2

2 � 2jm2
3jÞjH1j2: (B4)

The potential is unbounded from below if the quadratic
term is negative. Thus the constraint from the UFB direc-

tion is given as

m2
1 þm2

2 � 2jm2
3j � 0: (B5)

This is the so-called UFB-1 condition in [31]. For the
EWSB to occur correctly, the potential must be a saddle
point at the origin. The condition for such a saddle point is�

@2V

@jH1j@jH2j
�
2 � @2V

@jH1j2
@2V

@jH2j2
¼ jm2

3j2 �m2
1m

2
2 > 0:

(B6)

The EWSB vacuum is found by minimizing the potential,
(B1), with respect to the Higgses under the conditions,
Eqs. (B5) and (B6).

The EW symmetry is successfully broken at jH1j ¼
v cos�=

ffiffiffi
2

p
and jH2j ¼ v sin�=

ffiffiffi
2

p
if the following rela-

tions are satisfied:

m2
1 þm2

2 ¼ � 2m2
3

sin2�
; (B7)

m2
1 �m2

2 ¼ � cos2�ðm2
Z þm2

1 þm2
2Þ; (B8)

where m2
Z ¼ 1

4 ðg21 þ g22Þv2. The minimum of the potential

is obtained using Eqs. (B7) and (B8),

Vreal min ¼ � 1

2

m4
Z

g21 þ g22
cos22�: (B9)

APPENDIX C: SCALAR POTENTIAL OF THE
�SSM

We list up here modifications of the MSSM scalar
potential to the �SSM for Dirac neutrino and Majorana
neutrino cases. The gauge auxiliary fields are the same as
that of the MSSM because the right-handed (s)neutrinos
are gauge singlets.
First, we list modifications in the Dirac neutrino case.

Three of the matter auxiliary fields are replaced with

F�
H1

2

¼ ��H2
1 þ Y�~eL~�

�
R þ Yu

~dL~u
�
R; (C1a)

F�
H2

2

¼ �H1
1 � Y�~�L~�

�
R � Yu~uL~u

�
R; (C1b)

F�
~�L

¼ �YeH
2
1~e

�
R � Y�H

2
2 ~�

�
R; (C1c)

F�
~eL

¼ YeH
1
1~e

�
R þ Y�H

1
2 ~�

�
R; (C1d)

where ~�R is the right-handed sneutrinos and Y� is the
Yukawa couplings of neutrinos. The auxiliary fields of
the right-handed neutrinos are added,

F~�R
¼ Y�ðH1

2~eL �H2
2 ~�LÞ: (C2)

For the soft SUSY breaking term, a trilinear term A� and a
soft mass m~�R

for sneutrinos are added,

m2
~�R
~��
R~�R þ ðA�Y�

~L �H2~�
�
R þ H:c:Þ: (C3)
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Herem~�R
is a soft SUSY breaking mass of the right-handed

sneutrinos.
Next, we show two modifications in the Majorana neu-

trino case. One is on F~�R
such as

F~�R
¼ Y�ðH1

2~eL �H2
2 ~�LÞ þMR~�

�
R; (C4)

whereMR is the masses of the right-handed neutrinos. The

other one is on the soft SUSY breaking term, that is, the
following soft SUSY breaking mass is added,

1
2B�MR~�

�
R~�

�
R þ H:c:; (C5)

where B�MR is a soft mass for the right-handed sneutrinos.
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