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Neutrino mass patterns and mixing have been studied in the context of the next-to-minimal super-

symmetric standard model (NMSSM) with three gauge singlet neutrino superfields. We consider the case

with the assumption of R-parity conservation. The vacuum expectation value of the singlet scalar field S of

NMSSM induces the Majorana masses for the right-handed neutrinos as well as the usual � term. The

contributions to the light neutrino mass matrix at the tree level as well as one-loop level are considered,

consistent with the tribimaximal pattern of neutrino mixing. Light neutrino masses arise at the tree level

through a TeV-scale seesaw mechanism involving the right-handed neutrinos. Although all the three light

neutrinos acquire nonzero masses at the tree level, we show that the one-loop contributions can be

comparable in size under certain conditions. Possible signatures to probe this model at the LHC and its

distinguishing features compared to other models of neutrino mass generation are briefly discussed.
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I. INTRODUCTION

Several mechanisms of the generation of neutrino
masses and mixing in the context of a supersymmetric
model have been explored in various works. One of the
most popular attempts in this direction is to relax the
assumption of R-parity conservation in the minimal super-
symmetric standard model (MSSM) by including explicit
bilinear and/or trilinear R-parity violating interactions in
the superpotential and the scalar potential [1,2]. One can
also consider models with spontaneous R-parity violation
[3–5] via a singlet sneutrino vacuum expectation value.
The low energy limit of such models, where the singlet
sneutrino field is decoupled, can be thought of as the
bilinear R-parity violating scenario. Thus there are several
possibilities within the context of R-parity violation in
MSSM. In fact, each of them has been studied in detail
in connection with the observed neutrino mass patterns and
mixing as provided by the neutrino oscillation experi-
ments. The possible collider signatures of R-parity violat-
ing models have also been studied in great detail and
correlation between neutrino mixing angles and the decay
branching ratios of the lightest supersymmetric particle
(LSP) have been obtained [6–15].

Another interesting and well-studied procedure of small
neutrino mass generation in a supersymmetric model, with

the observed mixing pattern, is the seesaw mechanism
[16,17] with the introduction of right-handed neutrino
superfields [18–20]. In order to generate small neutrino
masses, one introduces �L ¼ 2 heavy Majorana mass
terms in the superpotential in addition to the trilinear
lepton-number conserving Yukawa interactions involving
the right-handed neutrino superfields. As long as the neu-
trino Yukawa couplings are of order one, light neutrino
masses �10�2 eV require the Majorana masses to be
�1015 GeV or so. However, such a high seesaw scale is
difficult to probe at the LHC or future linear collider
experiments. A viable alternative is to look at TeV-scale
seesaw mechanism where small active neutrino masses are
generated with the help of neutrino Yukawa couplings as
small as 10�6 (same as the electron Yukawa coupling) and
this makes the Majorana mass scale of the right-handed
neutrino of the order of�TeV plausible. This gives one an
opportunity to test the seesaw models at the LHC. The
signatures of TeV-scale supersymmetric seesaw models
will be briefly outlined later along with a discussion of
the signatures of R-parity violating models.
On the other hand, MSSM is plagued by the so-called

‘‘� problem’’ which asks the question why the scale of the
supersymmetry preserving � term should be of the same
order as the soft supersymmetry breaking terms, which are
of the order of TeV. One of the possible solutions to this
problem is the next-to-minimal supersymmetric standard
model (NMSSM), where a standard model singlet super-

field (Ŝ) is introduced to the MSSM superfields with a
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coupling �ŜĤuĤd in the superpotential (for review and

phenomenology, see [21,22]). The scalar component of Ŝ
gets, in general, a nonzero vacuum expectation value
(VEV) of the order of �TeV, as long as the soft mass
parameters corresponding to the singlet scalar field are in
the same range. This solves the ‘‘� problem’’ because the
� parameter generated in this way has the right order of
magnitude if one considers a coupling ��Oð1Þ. In order
to generate active neutrino masses and appropriate mixing
in the neutrino sector one either includes R-parity violation
in the superpotential [23,24] and the scalar potential or

introduces gauge-singlet neutrino superfields N̂i with ap-
propriate couplings with the MSSM superfields and the

singlet superfield Ŝ [25]. In the latter case, the gauge-

singlet neutrino superfields N̂i can have Majorana masses

around the TeV scale if there is a coupling of the type �N̂2
i Ŝ

in the superpotential. When the scalar component of Ŝ gets
a VEVof the order of TeV scale, the right-handed neutrinos
also acquire an effective Majorana mass around the TeV
values as long as the dimensionless coupling � is order one
[25]. Here it is assumed that the superpotential has a
discrete Z3 symmetry which forbids the appearance of
bilinear terms in the superpotential [26].

In this study, within the framework of this TeV-scale
seesaw model mentioned above, we calculate the one-loop
contributions to the neutrino mass matrix with R-parity
conservation and study the effect of these contributions to
the neutrino mass patterns and mixing angles. In other
words, we consider the case where only the scalar field

corresponding to the singlet superfield Ŝ gets a nonzero
VEV along with the neutral Higgs fields. We will show
later that these one-loop contributions can be significant
and can change the region of parameter space allowed by
the three-flavor global neutrino data in comparison to the
tree-level results.

The plan of the paper is as follows. In Sec. II we will
provide a discussion on the three-flavor neutrino mixing
and illustrate the general pattern of the analysis that we are
going to follow. Section III describes the model along with

the minimization conditions of the neutral scalar potential.
One-loop contributions to the neutrino mass matrix in the
R-parity conserving scenario and the resulting neutrino
mass patterns, which satisfy the three-flavor global neu-
trino data, are discussed in Sec. IV with numerical results.
In Sec. V we outline the possible ways to probe this model
at the LHC and present a short critical discussion of the
signatures of neutrino mass models involving spontaneous
and/or bilinear R-parity violation. We summarize in
Sec. VI with possible future directions.

II. NEUTRINO MIXING

The solar, atmospheric, accelerator, and reactor neutrino
experiments have shown strong evidence in favor of non-
zero neutrino masses and mixing angles [27]. In addition,
there is an upper bound on the sum of neutrino mass
eigenvalues �1 eV from cosmological observations [28].
The bound on the 11-element of the neutrino mass matrix
resulting from the nonobservation of neutrinoless double
beta decay is� 0:3 eV [29]. The global three-flavor fits of
various neutrino oscillation experiments point toward the
following 3� ranges of the neutrino oscillation parameters,
namely, the two mass-squared differences and three mixing
angles [30]:

sin2�12 ¼ 0:25� 0:37; sin2�23 ¼ 0:36� 0:67;

sin2�13 � 0:056 �m2
21 ¼ ð7:05� 8:34Þ � 10�5 eV2;

j�m2
31j ¼ ð2:07� 2:75Þ � 10�3 eV2; (1)

where �m2
ij � m2

i �m2
j . One can see from these numbers

that there are two large mixing angles and one small
mixing angle among the three light neutrinos with a mild
hierarchy between the mass eigenvalues.
The three-flavor neutrino mixing matrix U can be pa-

rametrized as follows, provided that the charged lepton
mass matrix is already in the diagonal form and the
Dirac as well as Majorana phases are neglected:

U ¼
c12c13 s12c13 s13

�s12c23 � c12s23s13 c12c23 � s12s23s13 s23c13
s12s23 � c12c23s13 �c12s23 � s12c23s13 c23c13

0
@

1
A; (2)

where cij ¼ cos�ij, sij ¼ sin�ij, and i, j run from
1 to 3.

The mixing angle data coming from solar, atmospheric
and reactor sector indicate that �12 � 34�, �23 � 45�, and
�13 � 13�. This is popularly known as the bilarge pattern
of neutrino mixing. In order to understand the consequen-
ces of such mixing in the zeroth order, one considers the
tribimaximal structure of the neutrino mixing [31] where
�23 ¼ �

4 , �13 ¼ 0, and sin�12 ¼ 1ffiffi
3

p .

With this tribimaximal pattern, the unitary neutrino
mixing matrix turns out to be

U� ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p
1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p

0
BBB@

1
CCCA: (3)

Considering m1, m2, and m3 as the three light neutrino
mass eigenvalues, we use the matrix U� to obtain the
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neutrino Majorana mass matrix in the flavor basis as

m� ¼ U�

m1

m2

m3

0
@

1
AUT

� ¼
1
3 ð2m1 þm2Þ 1

3 ð�m1 þm2Þ 1
3 ðm1 �m2Þ

1
3 ð�m1 þm2Þ 1

6 ðm1 þ 2m2 þ 3m3Þ 1
6 ð�m1 � 2m2 þ 3m3Þ

1
3 ðm1 �m2Þ 1

6 ð�m1 � 2m2 þ 3m3Þ 1
6 ðm1 þ 2m2 þ 3m3Þ

0
B@

1
CA: (4)

We can see that a particular structure of neutrino mass
matrix emerges from the requirement of tribimaximal mix-
ing, in terms of the neutrino mass eigenvalues. Given a
specific model for generating the neutrino mass matrix, one
can easily connect the model parameters with the neutrino
mass eigenvalues with the help of Eq. (4). This way one
can study the normal, inverted, or quasidegenerate mass
pattern of the light neutrino mass eigenvalues and try to see
the requirement on the model parameters to produce the
tribimaximal pattern of neutrino mixing. In this work, we
will try to explore the next-to-minimal supersymmetric
standard model (NMSSM) where neutrino mass is gener-
ated because of the introduction of three right-handed
neutrino superfields with the possible interaction terms.
Though the assumption of tribimaximal mixing in the
neutrino sector is not generic, in the present context it is
quite illustrative in studying the role of the soft supersym-
metry (SUSY) breaking parameters on the neutrino mass
eigenvalues. At the same time, the acceptable domain of
the soft parameters consistent with neutrino mass eigen-
values and tribimaximal mixing angles would hardly
change with any small shift in �13.

As mentioned in the introduction, this model was pro-
posed in Ref. [25] where the case with spontaneous viola-
tion of R-parity was studied with possible implications on
neutrino mass eigenvalues and mixing angles at the tree
level. In the present study we shall consider the case when
R-parity is conserved and the neutrino mass generation at
the tree level is entirely due to the seesaw mechanism
involving the TeV-scale right-handed neutrinos. Our aim
would be to see if this model can produce the acceptable
neutrino mass eigenvalues and mixing angles when the
neutrino mass matrix receives contributions at the tree as
well as one-loop level. An attractive feature of this model is
that the right-handed sneutrino in the form of LSP may
become a valid cold dark matter candidate of the universe
[32].

This model can also accommodate spontaneous CP and
R-parity violation simultaneously. In that case, the neutrino
sector is CP violating and the resulting effects on the
neutrino masses and mixing angles were studied in
Ref. [33]. Similarly, spontaneous R-parity violation moti-
vated by a flavor symmetry may produce tribimaximal
mixing pattern in the neutrino sector [34]. However, in
the present context we consider the case where the neutrino
sector conserves CP symmetry along with R-parity.

There have been some other studies which address the
neutrino experimental data in some other extensions of
NMSSM. One of these proposals is discussed in

Ref. [23], where the effective bilinear R-parity breaking
terms are generated through the vacuum expectation value

of the scalar component of the singlet superfield Ŝ. In this
case, only one neutrino mass is generated at the tree level
whereas the other two masses are generated at the one-loop
level. In another model [24], nonzero masses for two
neutrinos are generated at the tree level by including ex-
plicit bilinear R-parity violating terms along with the

R-parity breaking term involving Ŝ. It is interesting to
note that the R-parity violating NMSSM model may offer
a valid dark matter candidate in the form of a gravitino as
the R-parity violating decay channels of the gravitino are
extremely suppressed because of weak gravitational
strength [35].
In another class of models, gauge-singlet neutrino super-

fields were introduced to solve the � problem, which can
simultaneously address the desired pattern of neutrino
masses and mixing [36]. The detailed study of neutrino
masses and mixing in this model was presented in Ref. [37]
and the correlations of the lightest neutralino decays with
neutrino mixing angles were discussed. Subsequently the
dominant one-loop contributions toward the tree-level neu-
trino masses have also been presented [38]. Similar analy-
ses for one and two generations of gauge-singlet neutrinos
were presented in Ref. [39] and some other phenomeno-
logical implications, in particular the possible signatures at
LHC, were addressed. Neutrino masses consistent with
different hierarchical scenarios and tribimaximal neutrino
mixing can also be generated in an R-parity violating
supersymmetric theory with TeV-scale gauge singlet neu-
trino superfields, where the � term was not generated by
the vacuum expectation values of the singlet sneutrino
fields [40]. Another interesting avenue in this direction is
to study the role of possible higher dimensional supersym-
metry breaking operators in the hidden sector which may
render the TeV-scale soft SUSY breaking trilinear and
bilinear couplings involving the sneutrinos to produce the
observable mass and mixing angles for the neutrinos [41].

III. THE MODEL AND MINIMIZATION
CONDITIONS

In this section we review the model along the lines of
Ref. [25] and discuss its important characteristics. We

introduce the singlet superfield Ŝ along with three right-

handed neutrino superfields N̂i. The superfields N̂i are odd

and the superfield Ŝ is even under R-parity. The most
general superpotential consistent with R-parity conserva-
tion is
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W ¼ WNMSSM þWSinglet; (5)

where

WNMSSM ¼ fdi ðĤdQ̂iÞD̂i þ fuijðQ̂iĤuÞÛj þ fei ðĤdL̂iÞÊi

þ �HðĤdĤuÞŜþ �s

3!
Ŝ3; (6)

WSinglet ¼ f�ijðL̂iĤuÞN̂j þ �Ni

2
N̂2

i Ŝ: (7)

Here Ĥd and Ĥu are down-type and up-type Higgs super-

fields, respectively. The Q̂i are doublet quark superfields,

Ûj½D̂j� are singlet up-type [down-type] quark superfields.

The L̂i are the doublet lepton superfields, and the Êj are the

singlet charged lepton superfields. The indices i, j ¼ 1; 2; 3
are generation indices. Note that we have imposed a Z3

symmetry under which all the superfields have the same
charge. This symmetry forbids the appearance of the usual
bilinear � term in the superpotential. The � term is gen-
erated spontaneously through the vacuum expectation

value of the singlet scalar Ŝ. In a similar way soft super-
symmetry breaking potential can be written as

Vsoft ¼ VNMSSM
soft þ VSinglet; (8)

where VNMSSM
soft includes the MSSM soft supersymmetry

breaking terms along with a few additional terms as shown
below:

VNMSSM
soft ¼ VMSSM

soft þm2
SjSj2

þ
�
AH�HHdHuSþ Am

�s

3!
S3 þ H:c

�
: (9)

The term VSinglet is composed of the soft masses and the

trilinear interactions corresponding to the fields ~Ni:

VSinglet ¼ m2
~N ~N	 j ~Nij2

þ
�
A�f�ij ~LiHu

~Nj þ Am
�Ni

2
S ~N2

i þ H:c

�
: (10)

We have taken a common trilinear coupling A for the
singlet fields Ni and S and m is a mass scale. In a super-
gravity motivated scenario, it is a common practice to
choose m ¼ mS ¼ m ~N ~N	 and also a universal trilinear
parameter for the fields S, ~Ni. Since these fields are gauge
singlets, we assume such universality to hold also at the

electroweak scale. Similarly, the mass parameters mS and
m ~N ~N	 are very much insensitive to renormalization group
equation (RGE) running and their values at the weak scale
can be taken to be the same as the values at the high scale.
In addition, we have chosen all the parameters fdi , f

e
i , �Ni,

�H, �s, f
u
ij, and f�ij to be real.

The scalar potential of this model can be written as

V ¼ VF þ VD þ Vsoft; (11)

where the neutral part of VF and VD can be written as

Vneutral
F ¼ X

i

jf�ijH0
u
~Njj2 þ j�HH

0
uSj2

þ jf�ij~�i
~Nj þ �HH

0
dSj2

þX
j

jf�ijð~�iH
0
uÞ þ �Nj

~NjSj2

þ
���������HðH0

dH
0
uÞ þ �Ni

2
~N2
i þ

�s

2
S2
��������

2

; (12)

Vneutral
D ¼ g21 þ g22

8

�
jH0

uj2 � jH0
dj2 �

X
i

j~�ij2
�
2
: (13)

In the above, the repeated indices always mean to sum over
the generations. However, the summation sign is used in
special cases if required. The VEVs are determined by the
minimization of the potential [see Eqs. (11)–(13)]. Here we
explore the possibility when only the scalar component of

the gauge singlet superfield Ŝ acquires a VEV along with
the doublet Higgs fields. The right chiral sneutrino ~N can
only have a vanishing VEVand thus R-parity is unbroken.
On the other hand, when the right-chiral sneutrino ~N
acquires a VEV then R-parity is spontaneously broken
and an effective bilinear R-parity violating term of the
form �iLiHu is generated, where �i � f�h ~Nii. However,
the case of spontaneous R-parity violation will be studied
in a separate work [42]. Note that a global continuous
symmetry such as lepton number cannot be assigned to

the superpotential involving the singlets Ŝ and N̂i. Thus
this model is completely free from the unwanted Nambu-
Goldstone boson even if the singlet scalar S and/or ~Ni

acquire VEV. For more details the reader is referred to
Refs. [25,43].
Minimization of the scalar potential [see Eq. (11)] leads

to the following conditions:
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@V

@vd

¼ 2vd

�
m2

Hd
þ �2

Hðv2
u þ v2

sÞ þ g21 þ g22
4

�
v2
d � v2

u þ
X
i

v2
~�i

�
þ tan	

�
1

2
�H�sv

2
s þ 1

2
�H�Ni

v2
~Ni
þ AH�Hvs

��

þ 2�Hf
ij
� vsv~�i

v ~Nj
;

@V

@vu

¼ 2vu

�
m2

Hu
þ �2

Hðv2
d þ v2

sÞ � g21 þ g22
4

�
v2
d � v2

u þ
X
i

v2
~�i

�
þ fij� fik� v ~Nj

v ~Nk
þ fji� fki� v~�jv~�k

þ cot	

�
1

2
�H�sv

2
s þ 1

2
�H�Ni

v2
~Ni
þ AH�Hvs

��
þ 2A�f

ij
� v~�i

v ~Nj
þ 2fji� �Ni

vsv~�j
v ~Ni

;

@V

@vs

¼ 2vs

�
m2

S þ �2
Hðv2

d þ v2
uÞ þ �s�Hvdvu þ �2

Ni
v2

~Ni
þ 1

2
Am�svs þ 1

2
�2
sv

2
s þ 1

2
�s�Ni

v2
~Ni

�
þ 2AH�Hvdvu

þ Am�Ni
v2

~Ni
þ 2fij� v~�iv ~Nj

ð�Hvd þ �Nj
vuÞ;

@V

@v~�i

¼ 2v~�i

�
~m2
i þ

g21 þ g22
4

�
v2
d � v2

u þ
X
j

v2
~�j

��
þ 2A�f

ij
� vuv ~Nj

þ 2�Hf
ij
� vdvsv ~Nj

þ 2fik� f
jk
� v2

uv~�j
þ 2fij� �Nj

vuvsv ~Nj

þ 2fij� fkl� v ~Nj
v~�k

v ~Nl
;

@V

@v ~Ni

¼ 2v ~Ni

�
m2

~N ~N	 þ Am�Ni
vs þ �Ni

�Hvdvu þ 1

2
�Ni

�sv
2
s þ �2

Ni
v2
s þ 1

2
�Ni

�Nj
v2

~Nj

�
þ 2fji� f

jk
� v2

uv ~Nk
þ 2A�f

ji
� vuv~�j

þ 2�Hf
ji
� vdvsv~�j

þ 2�Ni
fji� vuvsv~�j

þ 2fji� fkl� v~�j
v ~Nl

v~�k
: (14)

Here g1 and g2 are the Uð1Þ and SUð2Þ gauge couplings,
respectively, and tan	 ¼ vu=vd. ~mi is the soft SUSY
breaking mass parameter of the left-chiral sneutrinos. We
have assumed that the neutral scalar fields can develop, in
general, the following vacuum expectation values:

vd ¼ hH0
di; vu ¼ hH0

ui; vs ¼ hSi;
v~�i ¼ h~�ii; v ~Ni

¼ h ~Nii:
(15)

As has already been mentioned, in the present context we
will consider the solutions v ~Ni

¼ v~�i
¼ 0 and vs � 0 to

analyze the neutrino spectra. In our subsequent discussion,
we will also ignore the terms in the minimization equations
which are bilinear in the neutrino Yukawa couplings. Note
that in order to generate very small masses for the active
neutrinos ( & 0:1 eV) using this TeV-scale seesaw mecha-
nism, the neutrino Yukawa couplings (f�) should be below
Oð10�6Þ, which is around the magnitude of the electron
Yukawa coupling.

The VEV vs comes out as the solution of the following
cubic equation (neglecting the Yukawa term):

�2
sv

3
s þ Am�sv

2
s þ 2vsðm2

s þ �2
Hv

2
u þ �2

Hv
2
d þ �H�svdvu

þ �2
Ni
v2

~Ni
þ �s�Ni

v2
~Ni
Þ þ 2AH�Hvdvu

þ Am�Ni
v2

~Ni
¼ 0: (16)

The solutions of the foregoing equation involve soft pa-
rameters Am, AH and m2

s . In fact these parameters cannot
be much away from TeV values to have vs � TeV. In
particular, the soft parameters AH and Am are crucial to
produce nonzero VEV for the field S. Any consistent
solution that yields vs � 0 but v ~Ni

¼ 0 requires jAj 
 3

and also �H � 1, m 
 100 GeV, mS 
 100 GeV [25].
Similarly we also choose the couplings �s, �Ni

in such a

manner so that the condition for global minima is always
satisfied.

IV. NEUTRINO MASSES AND MIXING: R-PARITY
CONSERVING NMSSM

Let us now discuss in detail the generation of neutrino
masses and mixing in this model. Note that this model is
different from the models where MSSM is extended with
three right-handed singlet neutrino superfields. This is
because in those models the right-handed neutrino mass
scale is not tied up with the electroweak symmetry break-
ing scale and is assumed to be very high (� 1015 GeV or
so).

A. Seesaw masses

At the tree level, the (3� 3) light neutrino mass matrix,
that arises via the seesaw mechanism, has a very well-
known structure given by

mtree
� ¼ �mDM

�1
R mT

D; (17)

wheremD represents the lepton number conserving (3� 3)
‘‘Dirac’’ mass matrix andMR represents the lepton number
violating (3� 3) ‘‘Majorana’’ mass matrix. Note that, after
the electroweak symmetry breaking (EWSB), when the

scalar component of Ŝ gets a VEV, in the effective
Lagrangian we can assign a lepton number �1 for the

fields Nc
i and ~Ni (contained in the superfield N̂i). The

relevant part of the effective Lagrangian which encom-
passes both neutrino and sneutrino fields is given by
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�Leff ¼ 1

2
ð�NivsÞNc

i N
c
i þ f�ij�ivuN

c
j þ H:c:þm2

~�i
~�i~�

?
i

þ ðm2
~Ni

~N	
i

þ �2
Ni
v2
sÞ ~Ni

~N?
i þ ðB�

ij~�i
~Nj þ B0�

ij ~�i
~N?
j

þ BRi
~Ni

~Ni þ H:c:Þ; (18)

where the coefficients have the following meaning:

m2
~�i
¼ ~m2

i þ
1

2
m2

Z cos2	;

B�
ij ¼ A�f�ijvu þ �Hf

�
ijvdvs;

B0�
ij ¼ f�ij�Njvuvs;

BRi ¼ 1

2

�
�H�Ni

vdvu þ
�s�Ni

v2
s

2
þ Am�Nivs

�
:

(19)

It is easy to see from Eq. (18) thatmDij � f�ijvu andMRi ¼
�Nivs, which in turn provide neutrino masses at the tree
level through Eq. (17). Note that in Eq. (19) we have
neglected a term �m2

D in the expression for m2
~�i
since it

is much smaller compared to the other terms.
The tree-level neutrino masses may receive dominant

radiative corrections at the one-loop level. It has been
shown in models of MSSM with right-handed neutrino
superfields that the loop contributions can be as large as
the tree-level value, though the result depends on the soft
SUSY breaking parameters [18,20]. In R-parity conserving
scenarios the leading contributions to neutrino masses at
the one-loop level arise from �L ¼ 2 terms in the sneu-
trino sector. These bilinear interaction terms involving the
heavy right-handed sneutrinos fields ~Ni are B0�

ij ~�i
~N?
j , and

BRi
~Ni

~Ni as can be seen from Eq. (18). In association with
the �L ¼ 0 term, i.e., B�

ij~�i
~Nj these �L ¼ 2 terms gen-

erate lepton number violating Majorana-like mass terms
(m2

~� ~�~� ~�þH:c:) for the left-handed sneutrinos. In fact, this
can be seen as a scalar seesaw analogue of the usual
fermionic seesaw mechanism to generate small masses
for the light active neutrinos [20]. This effective
Majorana sneutrino mass term in turn induces one-loop
radiative corrections to neutrino Majorana masses via the
self-energy diagram as shown in Fig. 1. However, rather
than computing the one-loop contribution to neutrino

masses using the above method, we would choose a differ-
ent but more general procedure as explained below.
We begin by decomposing the sneutrino fields in terms

of real and imaginary components. Thus one has

~� i ¼ ~�iR þ i~�iIffiffiffi
2

p ; ~Ni ¼
~NiR þ i ~NiIffiffiffi

2
p ; (20)

where the components ~�iR, ~NiR are the CP-even and ~�iI,
~NiI are the CP-odd scalar fields. The mass terms of these
scalars may be evaluated using the definition

M2
R;ij ¼

@2V

@�iR@�jR

; M2
p;ij ¼

@2V

@�iI@�jI

; (21)

where� represents a generic scalar field. Accordingly one
obtains the following diagonal mass terms (assuming the
right-chiral sneutrino states to be flavor diagonal) for the
CP-even and CP-odd right-chiral sneutrinos:

M2
R; ~Ni

~Ni
¼ m2

~Ni
~N?
i

þ �2
Niv

2
s

þ
�
�H�Nivdvu þ 1

2
�Ni�sv

2
s þ Am�Nivs

�

M2
P; ~Ni

~Ni
¼ m2

~Ni
~N?
i

þ �2
Niv

2
s

�
�
�H�Nivdvu þ 1

2
�Ni�sv

2
s þ Am�Nivs

�
:

(22)

Similarly, the interactions between ~NiR;ðiIÞ and ~�iR;ðiIÞ read
as

CR;~�i
~Nj
¼ f�ij�Hvdvs þ f�ij�Njvuvs þ A�f�ijvu;

CP;~�i
~Nj
¼ �f�ij�Hvdvs þ f�ij�Njvuvs � A�f�ijvu:

(23)

The diagonal left-chiral sneutrino mass terms are shown in
Eq. (19). As we can see, the off-diagonal terms involving
the left-chiral and right-chiral sneutrinos are much smaller
compared to the diagonal terms since they are proportional
to the small neutrino Yukawa couplings (f� � 10�6).
Hence, we can compute the one-loop correction to the
neutrino mass due to the small mixing of the right-chiral
sneutrinos with the left-chiral sneutrinos. This is shown in
Fig. 2. Note that the right-chiral sneutrino mass matrix

FIG. 1. One-loop contribution to m� when v ~Ni
¼ v~�i

¼ 0.
Here m2

~�i ~�j
represents the sneutrino Majorana mass term which

generates the neutrino mass involving the sneutrino-neutralino
loop.

FIG. 2. The same one-loop contribution to m� as in Fig. 1 but
represented in a different way. Here ~NJR and ~NJI are right-
handed sneutrino mass eigenstates which couple to ~�i;j to

produce the one-loop effective neutrino mass term.
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contains bilinear terms like �H�Ni
vdvu,

�s�Ni
v2
s

2 which are

originated from the F term contribution in the scalar
potential. These are the new contributions to the right
sneutrino masses in the present model and thus they are
absent in seesaw models of MSSM with only right-handed
neutrino superfields. These terms will have important roles
to play while calculating the one-loop correction to the
neutrino mass matrix, even when the relevant soft breaking
trilinear parameters are smaller. The loop contribution can
be written as

ðm�Þloopij ¼ g22
4

X



m~�

ðN
5 � tan�wN
4Þ2

�
� X
J¼1;2;3

CRiJ
CRjJ

I4ðm~�iR
; m~�jR

m~�

;M ~NJR

Þ

� X
J¼1;2;3

CPiJ
CPjJ

I4ðm~�iI
; m~�jI

; m~�

;M ~NJI

Þ
�
;

(24)

where the integral I4 is given by

I4ðm~�iR
; m~�jR

; m~�

; mXJ

Þ ¼
Z d4q

ið2�Þ4
1

ðq2 �m2
~�iR
Þðq2 �m2

~�jR
Þðq2 �m2

~�

Þðq2 �m2

XJ
Þ : (25)

Here XJ denotes right-chiral sneutrino states ~NJR or ~NJI. One can always evaluate I4 with the following analytical
expressions:

I4ðm1; m2; m3; m4Þ ¼ 1

m2
3 �m2

4

½I3ðm1; m2; m4Þ � I3ðm1; m2; m3Þ�;

I3ðm1; m2; m3Þ ¼ 1

m2
2 �m2

3

½I2ðm1; m2Þ � I2ðm1; m3Þ�;

I2ðm1; m2Þ ¼ 1

ð4�Þ2
m2

2

m2
1 �m2

2

log
m2

1

m2
2

:

(26)

Here, m~�

represents the eigenvalues of the NMSSM neutralino mass matrix. In the weak interaction basis

ð~S; ~H0
d;

~H0
u; ~B

0; ~W0Þ, the mass matrix can be written as

M ¼

�Svs �Hvu �Hvd 0 0
�Hvu 0 �Hvs �g1vd=

ffiffiffi
2

p
g2vd=

ffiffiffi
2

p
�Hvd �Hvs 0 g1vu=

ffiffiffi
2

p �g2vu=
ffiffiffi
2

p
0 �g1vd=

ffiffiffi
2

p
g1vu=

ffiffiffi
2

p
M1 0

0 g2vd=
ffiffiffi
2

p �g2vu=
ffiffiffi
2

p
0 M2

0
BBBBB@

1
CCCCCA: (27)

The mixing matrix elements N
5 and N
4 are the wino and
bino component of the neutralino ~�
. The expression [see
Eq. (24)] is the most general to compute the one-loop
diagram (see Fig. 2). Nevertheless, we would consider a
simplified scenario for illustration. In particular, we as-
sume (i) identical values of �Ni (�Ni � �N) for all three
generations and (ii) soft-masses of the sneutrinos (both ~�i

and ~Ni) are flavor blind. This results in identical mass
values for all three CP-even right-chiral sneutrinos
(M ~NRJ

� M ~NR
) and also for the three CP-odd states

(M ~NIJ
� M ~NI

). With these assumptions, it is possible to
factor out the flavor structure from Eq. (24) and denote the
remaining as the loop factor (LF) which is merely a con-
stant. Then the loop contribution can be cast into a conve-
nient form given by

ðmloop
� Þij ¼ ðLFÞX3

k¼1

f�iJf
�
jJ; (28)

where

LF ¼ g22
4

X



m~�

ðN
5 � tan�wN
4Þ2

�ðI4ðm~�; m~�; m~�

;M ~NR

ÞC2
R

� I4ðm~�; m~�; m~�

;M ~NI

ÞC2
PÞ: (29)

Here CR and CP represent the coefficients of f�ij in Eq. (23)
and are given as

CR ¼ �Hvdvs þ �Nvuvs þ A�vu; (30)

CP ¼ ��Hvdvs þ �Nvuvs � A�vu: (31)

Let us note that the coefficient BRi can be written as

BRi ¼ BNMR; (32)

where

BN ¼ 1

2

�
�Hvdvu=vs þ �svs

2
þ Am

�
; MR ¼ �Nvs:

(33)
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Consequently the one-loop contribution can be cast into
the well-known form [18,20]

mðloopÞ
�ij ¼ � g22�m~�ij

32�2cos2�W

X



fðy
ÞjN
kj2;

fðy
Þ ¼
ffiffiffiffiffiffi
y


p ½y
 � 1� lnðy
Þ�
ð1� y
Þ2

;

(34)

where y
 � m2
~�=m

2
~�0


and N
k � N
5 cos�W � N
4 sin�W

is the neutralino mixing matrix element and to order in
1=M3

R the left sneutrino mass difference relative to the light
neutrino mass is given by

�m~�ij

m�ij
’
2ðA� þ� cot	� BN � BNðA�þ� cot	Þ2

M2
R

Þ
m~�

: (35)

Here we have used the relation�m2
~� ¼ 2m~��m~� andm~� is

an average left-sneutrino mass. In the present case all left-
handed sneutrino soft masses are assumed to be identical.
The sneutrino Majorana mass m2

~� ~� shown in Fig. 1 is
related to �m2

~� as m2
~� ~� ¼ 1

4 �m
2
~� [20]. The quantity � is

defined as � ¼ �Hvs.
In order to reproduce the result in Eq. (34), we assumed

that BN;m ~N ~N 	 <MR and A� > BN. Now, in addition, if we
assume MR > A�, the last term becomes negligible com-
pared to the other terms in the expression Eq. (35) and this

keeps only the terms to leading order in 1=MR. However,
this is not always true as all soft SUSY breaking mass
parameters as well as the right-handed neutrino masses
may have similar magnitudes as in the present scenario.
Hence, rather than using Eq. (34), we evaluate the neutrino
mass terms corrected up to one-loop order, from

ðmtotal
� Þij ¼

��v2
u

MR

þ LF

�X3
k¼1

f�iJf
�
jJ: (36)

Clearly, the coefficient of the loop contribution shifts the
tree-level neutrino masses by a constant amount. This
coefficient involves the soft SUSY breaking parameters
and in this work we explore the effect of these parameters
on the neutrino mass matrix.
This simple structure of the neutrino mass matrix [see

Eq. (36)] can indeed be very helpful to examine the neu-
trino mixing pattern. In particular, we are interested in
exploring the conditions which could yield the mixing
matrix into a tribimaximal structure. Thus we compare
Eq. (36) with Eq. (4), where the latter provides with the
neutrino mass matrix consistent with the tribimaximal
mixing pattern. Then, with a symmetric neutrino Yukawa
matrix, neutrino masses can be evaluated using the follow-
ing expressions:

2

3
m1 þ 1

3
m2 ¼ C½ðf�11Þ2 þ ðf�12Þ2 þ ðf�13Þ2�;

1

6
ðm1 þ 2m2 þ 3m3Þ ¼ C½ðf�12Þ2 þ ðf�22Þ2 þ ðf�23Þ2�;¼ C½ðf�13Þ2 þ ðf�23Þ2 þ ðf�33Þ2�;

1

3
ð�m1 þm2Þ ¼ C½f�11f�12 þ f�12f

�
22 þ f�13f

�
23�;

1

3
ðm1 �m2Þ ¼ C½f�11f�13 þ f�12f

�
23 þ f�13f

�
33�;

1

6
ð�m1 � 2m2 þ 3m3Þ ¼ C½f�12f�13 þ f�22f

�
23 þ f�23f

�
33�:

(37)

Here the constant C is defined as ð�v2
u

MR
þ LFÞ. As a simple

choice we consider f�22 ¼ f�33 and also f�12 ¼ f�13 ¼ 0 to
obtain the solutions. This choice, coupled with the consis-
tency condition f�11 ¼ f�22 � f�23, leads to the following
solutions of the neutrino spectra:

m1 ¼ m2 ¼
��v2

u

MR

þ LF

�
ðf�11Þ2;

m3 ¼
��v2

u

MR

þ LF

�
ð2f�22 � f�11Þ2:

(38)

It is obvious that the mass pattern as depicted above
satisfies the desired tribimaximal structure of the neutrino
mixing. The mass terms, as expected, contain tree-level
contributions which are always negative. On the other
hand, the loop contribution can go both ways depending

on the sign of the soft SUSY breaking parameters. For a
large BR, which primarily depends on Am, the radiative
correction to the neutrino masses could be enhanced to
supersede the tree-level results [18].
Before presenting the numerical results a few comments

regarding the lepton flavor violating (LFV) processes are in
order. Recall that we assume flavor diagonal mass terms for
the left and right-chiral sneutrinos. The loop induced pro-
cesses like � ! e�, 
 ! e�, or 
 ! �� can get contri-
butions primarily via the couplings B�

ij or B
0�
ij [see Eqs. (18)

and (19)]. Clearly, any such contribution at the leading
order would involve a product of two small neutrino
Yukawa couplings f�ij and are expected to be very sup-

pressed. Moreover, our assumption f�12 ¼ f�13 ¼ 0 would

lead to vanishing contributions for the processes � ! e�
and 
 ! e� in this model.
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We now explore whether the obtained mass pattern
could fit with the different hierarchical structure that we
know so far. In particular, we show our numerical results to
identify the regions in the parameter space consistent with
the normal, inverted, and quasidegenerate neutrino mass
pattern. In the numerical computation we choose different
soft parameters and couplings in such a way, that the
proper minima condition of the scalar potential is always
satisfied [25].

The choices of various parameters are listed below. The
value of tan	 is taken to be equal to 10. In addition to that,
other parameter choices are (i) superpotential parameters
�h ¼ �0:3, �s ¼ 0:6, �N1 ¼ �N2 ¼ �N3 ¼ �N ¼ 0:2;
and (ii) soft SUSY breaking parameters mS ¼ 100 GeV,
m ~Ni

~N	
i
¼ 300 GeV, m~�i

¼ 100 GeV, AH ¼ 100 GeV,

A� ¼ 1000 GeV.
Apart from the above parameters which are fixed to the

quoted values, we have also varied the parameter Am in the
calculation. This would cause changes in vs [see Eq. (16)],
which in turn produces variation in the neutrino spectrum.
We list the values of Am and vs in Table I.

B. Different neutrino spectra

The two mass-squared differences shown in Eq. (1)
indicate three possible neutrino mass hierarchies [44],
namely

(1) Normal hierarchy: this neutrino mass pattern can be
established if m1, m2, and m3 are related with the

observables
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

32j
q

as

m1 � m2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
; m3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

32j
q

: (39)

However, in principle m1 can also be much smaller
than m2 or even be zero. Since in this case m3 is
much greater than both m1 and m2, we can approxi-
mately use the relation shown in Eq. (39) for
illustration.

(2) Inverted hierarchy: this hierarchical scenario can be
achieved if one chooses

m1 � m2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

32j
q

; m3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

32j
q

: (40)

We assume the maximum possible value for m3 to
be �0:01 eV while the minimum value could be
vanishing. Obviously, the solar mass-squared differ-
ence �m2

21 will come from the small mass splitting
betweenm2 andm1, where�m

2
21 � m2,m1. Hence,

for a simple analysis we can assume that m2 ¼ m1.
(3) Degenerate masses: finally, this scenario is defined

by

m1 � m2 � m3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

32j
q

: (41)

Here we assume that the upper bound of the neutrino
masses could be 0.33 eV, which comes from the

cosmological observations. The lower bound is
chosen to be 0.1 eV.

In Fig. 3, three neutrino mass eigenvalues m1, m2, m3,
consistent with the normal hierarchical pattern, are plotted
as functions of neutrino Yukawa couplings. The difference
in the contours manifests how the neutrino masses depend
on the soft bilinear coupling parameter (Am). The variation
occurs, as vs depends on (Am), thereby acquiring a differ-
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FIG. 3 (color online). Normal hierarchy: variation of m� with
the Yukawa parameters. The red (solid) segments denote the
range of the Yukawa parameters that satisfy neutrino data. Each
contour represents a separate set of vs and Am, as given in
Table I. All mass parameters are in GeV.
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ent value at the global minima which has already been
mentioned in Table I. In particular jvsj always increases as
we increase the jAmj parameter, which in turn increases the
right-handed neutrino masses. This results in a smaller

value for mtree
� . On the other hand, loop correction does

not increase appreciably by this small variation of Am if A�

is around TeV scale, as we will discuss later. We should
note here that neutrino loop correction is always an order
of magnitude smaller compared to the tree-level value for
the parameters we have chosen. Thus with increase in Am
parameter, one requires large values of Yukawa couplings
to satisfy the neutrino data. The red zone in each contour
(see Fig. 3) represents the range of the Yukawa couplings
that can satisfy the neutrino data.
In case of inverted hierarchy, we have shown the

variation of m3 with the respective Yukawa couplings in
Fig. 4(a). The other mass parametersm1,m2 depend on the
Yukawa coupling f�11, but that can be estimated from the

Fig. 3(b) if in that plot we replace m3 in the y axis by
m1=m2 and 2f

�
22 � f�11 in the x axis by f

�
11 [see Eq. (38)]. In

fact knowing the value of the Yukawa coupling f�11 would
allow us to determine the coupling f�22.
The Fig. 4(b) depicts the variation of m3 with the

Yukawa coupling f�22 for the quasidegenerate mass sce-

nario. In this scenario, the neutrino spectrum is approxi-
mately degenerate, i.e., m1, m2, and m3 turn out to be
almost identical if one chooses f�23 much smaller compared

to the diagonal Yukawa coupling f�22, which essentially

means that f�22 � f�11.
Finally a few comments on the dependence of the one-

loop contribution to the neutrino mass on the soft SUSY
breaking parameters Am and A�. The loop contribution is
always suppressed unless the parameter A� is sufficiently
large, as can be seen from Fig. 5. As for illustration,
the Yukawa couplings are chosen as f�11 ¼ 1:75� 10�7

and f�22 ¼ f�33 ¼ 3:95� 10�7. Similarly, we choose

TABLE I. Different values of vs corresponding to the different
values of the coupling parameter Am.

Am (GeV) �600:0 �800:0 �1000:0 �1200:0

vs (GeV) 927.56 1280.76 1625.18 1965.67
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FIG. 4 (color online). Variation of m3 with the corresponding
Yukawa parameter is shown for (a) inverted hierarchical mass
pattern and also for (b) the degenerate spectrum. All mass
parameters are in GeV.
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M1 ¼ 60 GeV and M2 ¼ 120 GeV, where M1 andM2 are
theUð1Þ and SUð2Þ gaugino mass parameters, respectively.
For larger values of electroweak gaugino masses, the one-
loop contribution would be reduced further. For Am ¼
�1 TeV, higher A� values �13 TeV can satisfy the cur-
rent neutrino data. However, even if A� is �13 TeV, the
quantity A�f

� is very small, i.e.,�10�2 GeV. Note that for
such a choice of the parameter space, the tree-level values
of the neutrino masses are not sufficient to accommodate
the three-flavor global neutrino data. Increasing the value
of Am requires a relatively smaller value of A� (� 7 TeV)
to reproduce the neutrino data. It is very important to point
out that, for a fixed �s and �Ni, one cannot increase the
trilinear coupling parameter Am to an arbitrary high value
as the right-chiral sneutrinos may turn out to be tachyonic.
Thus, a relatively larger soft trilinear parameter A� is
required to enhance the one-loop contribution to neutrino
masses.

The requirement of a large A� can be understood from
the following discussion.

(i) The one-loop contribution to the neutrino mass orig-
inating from the mass splitting in the left-handed
sneutrinos depends on the parameters �, A�, and
BN as can be seen from Eqs. (34) and (35). It has
been argued in Ref. [18] that, in order to have the
one-loop contribution to the neutrino mass compa-
rable to its tree-level value, the ratio �m~�ij

=m�

should be �103.
(ii) Substituting � ¼ �Hvs and the expression for BN

from Eq. (33), we may write

�m~�ij=m� ’ 2ðA� þ �Hvs cot	

�
�
1

4
�svs þ Am=2þ �Hvdvu=2vs

�

� ð1þ ðA� þ �Hvs cot	Þ2Þ=M2
RÞ=m~�:

We can see from the above expression that one may
increase either the Am or A� parameter to enhance
the one-loop contribution to make it countable. But
in the present context, raising the soft parameter Am
alone would not serve the purpose. This is because
the VEV vs increases significantly with jAmj (see
Table I). Thus there is always a partial cancellation
between different terms in the above expression for
the left sneutrino mass splitting. In particular, the
effective bilinear coupling BN is reduced because of
this partial cancellation. In addition, we choose the
sign of the coupling �H as negative in order to
determine the correct global minima. This also
causes a partial cancellation between various terms,
but to a lesser extent. With this cancellation effect in
mind, it is easy to check that the ratio �m~�ij=m�

always resides near the value �10 with the soft
parameters A� and BN around the TeV scale.

(iii) Now, as mentioned above, the trilinear coupling
parameter Am is restricted if one does not want
the right-chiral sneutrinos to become tachyonic. Of
course this depends on the choice of the soft Dirac
mass term m ~N ~N	 of the ~Ns, which we have chosen
to have a quite moderate value (300 GeV) in this
case. However, the parameter A� can be pushed to a
reasonably high value without affecting any other
results. This explains why a large A� parameter is
required to make the one-loop contribution to the
neutrino mass comparable to its tree-level value.

V. SIGNATURES AT LHC

It is extremely important to investigate the possible
signatures of this TeV-scale seesaw mechanism at the
LHC. One of the search strategies could be to produce
the right-handed neutrino N (or the corresponding right-
handed sneutrino ~N) with a large enough cross section and
then look at the decay branching ratios in different avail-
able modes. However, in this type of model the production
of TeV-scale right-handed neutrinos (or sneutrinos) at the
LHC is suppressed1 by the light neutrino mass [46].
Nevertheless, it is possible to construct models where the
production mechanism of the right-handed neutrino (sneu-
trino) can be decoupled from the neutrino mass generation.
For example, extended gauge symmetries such as Uð1ÞB�L

or SUð2ÞR may offer extra gauge bosons near the TeV scale
whose couplings to quarks and the right-handed neutrino
(sneutrino) are unsuppressed [47]. In such models a single
or a pair of right-handed neutrinos can be produced with
large cross sections leading to dilepton signals (same sign)
with no missing energy [17(a),48–51], trilepton signals
[52], or four-lepton signals [53–55].
In the context of the present model, the left-sneutrino

Majorana mass term can lead to oscillation between the
left-chiral sneutrino and the corresponding antisneutrino
[18,56,57]. This can be interpreted as the observation of a
sneutrino decaying into a final state with a ‘‘wrong-sign’’
charged lepton. In order to have a large oscillation proba-
bility the total decay width � of the sneutrino/antisneutrino
and the mass splitting�mmust be of the same order. Since
�m is constrained by the neutrino data, one needs a very
small total decay width of the sneutrino/antisneutrino. It
has been shown in [18] that this can be achieved in a
scenario where the lighter stau is long-lived and the left-
chiral sneutrino can only have three-body decay modes
involving the lighter stau in the final states. This can lead to
signals such as like-sign dileptons, single charged lepton
plus like-sign distaus (leading to heavily ionizing charged
tracks), or like-sign distau charged tracks at future linear
colliders [18,58,59] or at the LHC [60]. The resulting
charge asymmetry of the final states can be measured to

1A very recent analysis along with the discovery potential at
the LHC is presented in Ref. [45].
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get an estimate of the sneutrino-antisneutrino oscillation
probability [60]. In addition, for a very small sneutrino
decay width one can also observe a displaced vertex in the
detector. However, a detailed study of such signals in the
context of the present model is beyond the scope of the
present paper.

In comparison, now we discuss briefly the signatures of
R-parity violating models in general. In models with spon-
taneous violation of R-parity, the singlet sneutrino vacuum
expectation value leads to the existence of a Majoron
which is an additional source of missing energy. This can
change the decay pattern of the lightest Higgs and the
lightest neutralino with the corresponding signatures at
the LHC. For more details and the relevant references the
reader is referred to Ref. [46]. In the case of bilinear
R-parity violation, the ratios of certain decay branching
ratios of the LSP show very nice correlation with the
neutrino mixing angles. This can lead to very interesting
signatures at the LHC where comparable numbers of
events with muons and taus, respectively, can be observed
in the final state [9–15].

From the above discussion we see that the canonical
type-I supersymmetric seesaw case that we have consid-
ered in this paper has characteristic signatures which can
be tested at the LHC. At the same time one can also
distinguish the predictions of this model with those of the
models with spontaneous or bilinear R-parity violating
scenarios.

VI. CONCLUSIONS

We have studied the neutrino masses and mixing in an
R-parity conserving supersymmetric standard model with

three right-handed neutrino superfields N̂i and another

gauge singlet superfield Ŝ. This model is similar to the
next-to-minimal supersymmetric standard model

(NMSSM), where the scalar component of Ŝ gets a VEV
to generate a � term of correct order of magnitude. In
addition, the same VEValso generates TeV-scale Majorana
masses for the right-handed neutrinos. The small neutrino
masses are generated at the tree level by the usual seesaw
mechanism at the TeV scale. We also calculate the one-
loop contribution to the neutrino mass matrix and inves-
tigate the constraints on the model parameters to produce
the tribimaximal pattern of neutrino mixing for three dif-

ferent neutrino mass hierarchies. The neutrino mass matrix
gets a contribution at the one-loop level controlled by the
sneutrino Majorana mass terms. We show that the one-loop
contribution can be important for certain choices of the soft
SUSY breaking parameters. This we have demonstrated by
evaluating the one-loop contribution in two different ways.
In particular, we observe that the one-loop contributions
can be significant when the soft SUSY breaking trilinear
parameter A�f

� is �Oð10�3 GeVÞ with A� � 10 TeV.
This observation is quite robust and does not change
much if one introduces a small �13 in the neutrino sector.
Our choice of neutrino Yukawa couplings also predicts
vanishing contributions to the lepton flavor violating pro-
cesses � ! e� and 
 ! e� as well as an extremely sup-
pressed contribution to 
 ! ��.
As has been stated earlier, it is also possible to have

nonzero vacuum expectation values for the left- and right-
chiral sneutrinos. In that case, R-parity is violated sponta-
neously. The neutrino mass matrix can have contributions
from two different sources, namely, the effective bilinear
R-parity violating interactions and the TeV-scale seesaw
mechanism. One-loop contributions to the neutrino mass
matrix can be very important in this case too. However, the
tree-level and one-loop calculations are rather involved and
require a separate discussion altogether. We plan to present
these results in a subsequent paper [42].
The characteristic signatures of this model at the LHC

include like-sign dilepton (without missing energy), trilep-
ton, or four-lepton final states as well as single lepton plus
two heavily ionizing charged tracks or only two heavily
ionizing charged tracks stemming from long-lived staus.
By looking at these signals one can possibly distinguish
this model from the models of spontaneous or bilinear
R-parity violation.
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