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We extend our earlier lattice-QCD analysis of heavy-quark correlators to smaller lattice spacings and

larger masses to obtain new values for the c mass and QCD coupling, and, for the first time, values for the

b mass: mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV, �MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ, and mbð10 GeV; nf ¼
5Þ ¼ 3:617ð25Þ GeV. These are among the most accurate determinations by any method. We check our

results using a nonperturbative determination of the mass ratio mbð�; nfÞ=mcð�; nfÞ; the two methods

agree to within our 1% errors and taken together imply mb=mc ¼ 4:51ð4Þ. We also update our previous

analysis of �MS from Wilson loops to account for revised values for r1 and r1=a, finding a new value

�MSðMZ; nf ¼ 5Þ ¼ 0:1184ð6Þ; and we update our recent values for light-quark masses from the ratio

mc=ms. Finally, in the Appendix, we derive a procedure for simplifying and accelerating complicated

least-squares fits.
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I. INTRODUCTION

Precise values for the QCD coupling �MS and the quark

masses are important for high-precision tests of the stan-
dard model of particle physics. In a recent paper we
showed how to use realistic lattice-QCD simulations to
extract both the coupling and the charm quark’s mass mc

from zero-momentum moments of correlators built from
the c quark’s (UV cutoff-independent) pseudoscalar-
density operator mc

�c c�5c c [1]. In this paper we refine
our previous analysis and extend it to include other quark
masses, up to and including the b-quark mass. As a result
our coupling constant and mass determinations from these
correlators are among the most accurate by any method.

Low moments of heavy-quark correlators are perturba-
tive and several are now known through Oð�3

sÞ in pertur-
bation theory (that is, four-loop order) [2–6]. Moments of
correlators built from the electromagnetic currents can be
estimated nonperturbatively, using dispersion relations,
from experimental data for the electron-positron annihila-
tion cross section, �ðeþe� ! �� ! XÞ. Accurate values
for both the c and b masses can be obtained by comparing
these perturbative and nonperturbative determinations of
the moments (for a recent discussion see [7]).

In our earlier paper we showed that heavy-quark corre-
lator moments are easily and accurately computed non-

perturbatively using lattice-QCD simulations, in place of
experimental data, provided (1) the electromagnetic cur-
rent is replaced by the pseudoscalar density multiplied by
the bare quark mass; (2) the discretization of the quark
action has a partially conserved axial vector current
(PCAC); and (3) the discretization remains accurate
when applied to heavy quarks. In our simulations we use
the highly improved staggered quark (HISQ) discretization
of the quark action, which is a highly corrected version of
the standard staggered-quark action [8]. It has a chiral
symmetry (PCAC) and has been used in a wide variety of
accurate simulations involving c quarks [8–12].
Here we show that the HISQ action can be pushed to still

higher masses—indeed, very close to the b mass—on new
lattices, from the MILC Collaboration [13], with the small-
est lattice spacings available today (0.044 fm). Currently
most high-precision lattice work on b physics relies upon
nonrelativistic effective field theories, like NRQCD
[10,12,14,15]. In this paper we show how to obtain accu-
rate b physics using the fully relativistic HISQ action on
these new lattices.
In what follows, we first review how the QCD coupling

and quark masses are extracted from heavy-quark correla-
tors, in Sec. II. Then in Sec. III we describe our lattice-
QCD simulations and discuss in detail the chief systematic
errors in our simulation results. In Sec. IV we describe our
fitting procedure and the results of our analysis of the
heavy-quark correlators. We check our calculation using
a different, nonperturbative method to determinemb=mc in
Sec. V.We then, in Sec. VI, update our previous calculation
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of the QCD coupling from Wilson loops to compare with
our new result from the correlators. We summarize our
findings in Sec. VII and compare our results with work by
others. There we also update our recent calculations of the
light-quark masses from the c mass. In the Appendix we
present a powerful simplification for complicated least-
squares fits that can greatly reduce the computing required
for fits. We use this technique in dealing with finite-a
errors in our analysis.

II. HEAVY-QUARK CORRELATOR MOMENTS

Following our earlier paper [1], we focus on correlators
formed from the pseudoscalar density of a heavy quark,
j5 ¼ �c h�5c h:

GðtÞ ¼ a6
X
x

ðam0hÞ2h0jj5ðx; tÞj5ð0; 0Þj0i; (1)

wherem0h is the heavy quark’s bare mass (from the lattice-
QCD Lagrangian), t is Euclidean and periodic with period
T, heavy-quark annihilation into gluons is omitted (be-
cause it is negligible [16]), and the sum over spatial posi-
tions x sets the total three momentum to zero. In our earlier
paper we examined only c quarks; here we will consider a
range of masses between the c and b masses. While we
have written this formula for use with the lattice regulator,
it is important to note that the correlator is UV finite
because we include the factors of am0h. Consequently
lattice and continuum GðtÞ’s are equal when t � 0 up to
OððamhÞmÞ corrections, which vanish in the continuum
limit [17].

The moments of GðtÞ are particularly simple to analyze:

Gn � X
t

ðt=aÞnGðtÞ; (2)

where, on our periodic lattice [1],

t=a 2 f0; 1; 2; . . . ; T=2a� 1; 0;�T=2aþ 1; . . . ;�2;�1g:
(3)

Low moments emphasize small t’s and so are perturbative;
and moments with n � 4 are UV cutoff independent [17].
Therefore

Gn ¼
gnð�MSð�Þ; �=mhÞ

ðamhð�ÞÞn�4
þOððamhÞmÞ (4)

for small n � 4, where mhð�Þ is the heavy quark’s MS
mass at scale �, and the dimensionless factor gn can be
computed using continuum perturbation theory.

Again following our previous paper, we introduce re-
duced moments to suppress both lattice artifacts and tuning
errors in the heavy quark’s mass [18]:

Rn �
�
G4=G

ð0Þ
4 for n ¼ 4;

am�h

2am0h
ðGn=G

ð0Þ
n Þ1=ðn�4Þ for n � 6;

(5)

where Gð0Þ
n is the moment in lowest-order, weak-coupling

perturbation theory, using the lattice regulator, and m�h
is

the (nonperturbative) mass of the pseudo-Goldstone h �h
boson. The reduced moments can again be written in terms
of continuum quantities:

Rn �
�
r4ð�MS; �=mhÞ for n ¼ 4;
zð�=mh;m�h

Þrnð�MS; �=mhÞ for n � 6;
(6)

up to OððamhÞm�sÞ corrections, where

zð�=mh;m�h
Þ � m�h

2mhð�Þ ; (7)

and rn is obtained from gn [Eq. (4)] and its value, gð0Þn , in
lowest-order continuum perturbation theory:

rn ¼
�
g4=g

ð0Þ
4 for n ¼ 4;

ðgn=gð0Þn Þ1=ðn�4Þ for n � 6:
(8)

Our strategy for extracting quark masses and the QCD
coupling relies upon lattice simulations to determine non-
perturbative values for the Rn, using simulation results for
am�h

=am0h. We then compare this simulation ‘‘data’’ to

the continuum perturbation theory formulas [Eq. (6)]. That
is, we find values for �MSð�Þ and zð�=mh;m�h

Þ that make

lattice and continuum results agree for small n � 4. The
function zð�=mh;m�h

Þ can then be combined with experi-

mental results for m�c
and m�b

to obtain masses for the c

and b quarks:

mcð�Þ ¼ m
exp
�c

2zð�=mc;m
exp
�c

Þ ;

mbð�Þ ¼ mexp
�b

2zð�=mb;m
exp
�b

Þ :
(9)

Parameter � sets the scale for �MS in the perturbative

expansions of the rn. An obvious choice for this parameter
is � ¼ mh since the quark mass, together with n, sets the
momentum scale in our correlators. As noted in our pre-
vious paper, however, perturbation theory is somewhat
more convergent if we use larger �s in the c-quark case.
Consequently here we take �=mh ¼ 3, which is approxi-
mately what we did in our previous paper.
The mass and coupling determinations were done sepa-

rately in our previous paper. Here we extract them simul-
taneously, to guarantee consistency between results. Also
in our previous paper we considered only heavy-quark
masses near the c mass. Here we explore a variety of
masses ranging from just below the c mass to just below
the b mass. This allows us to obtain a value for b-quark’s
mass.
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III. LATTICE-QCD SIMULATIONS

A. Simulation results

The gluon-configuration sets we use were created by the
MILC Collaboration. The relevant simulation parameters
are listed in Table I.

Given a lattice spacing, the QCD action is specified
completely by the values of the bare coupling constant
and the bare quark masses. In our analyses we set the u
and d quark masses equal; this approximation results in
negligible errors ( � 1%) for the quantities studied in this
paper. It is too costly to simulate QCD at the correct value
for the u=d mass; we typically use masses that are 2–
5 times too large and extrapolate to values that give the
correct mass for the �0 meson. We tune the strange quark
mass to give the correct mass for the (fictitious) �s meson
[10]. The c and b masses are tuned to give correct masses
for the �c and �b mesons, respectively.

It is convenient in QCD simulations to specify a value
for the bare coupling constant and then extract the value of
the lattice spacing from the simulation. We set the lattice
spacing using MILC results for r1=a, computed from the
heavy-quark potential, and

r1 ¼ 0:3133ð23Þ fm (10)

whose value has been determined from multiple physical
quantities [10].

The MILC configurations include vacuum polarization
contributions from only the lightest three quark flavors,
using the ASQTAD discretization. Vacuum polarization
effects from the heavier c and b quarks are easily incorpo-
rated into our final results for quark masses and the QCD
coupling using perturbation theory.

We computed heavy-quark correlators [Eq. (1)] using
the HISQ discretization [8] for a variety of bare heavy-
quark masses am0h on the MILC gluon configurations. Our
results for the reduced moments Rn with n ¼ 4–18 are
given in Table II.
In Table II, we also give masses am�h

from the simula-

tions for the pseudo-Goldstone meson made from two
heavy quarks. These were computed using single-
exponential fits to GðtÞ for the middle 30% of t’s on the
lattice for all configurations except the two smallest lattice
spacings where we used only 8% of the t’s. We have less
statistics for the two finest lattice spacings and conse-
quently the fits did not work as well for these. We increased
the statistical errors on our results for am�h

by factors of

1.4 and 2 for the next-to-finest and finest lattice spacings
(sets 8 and 9), respectively, to ensure that the �2 per degree
of freedom was 1 or less. The statistical errors here are very
small and have only a small impact on our final results. We
also verified our results with multiexponential fits in every
case.

B. Systematic errors

As discussed above, our goal is to find values for
�MSð�Þ and zð�=mh;m�h

Þ [Eq. (7)] that make the theo-

retical results from perturbative QCD agree, to within
statistical and systematic errors, with Monte Carlo simu-
lation data for the reduced moments. We simultaneously
analyze results for all of our lattice spacings and most of
our masses, and for moments with 4 � n � 10. We focus
on these particular moments for our final results since their
perturbation theory is known to third order.
Systematic errors are larger here than statistical errors,

which contribute less than 0.3%. We discuss the most
important sources of systematic error in this section.

1. mh extrapolations

We need the m�h
dependence of the mass-ratio function

zð�=mh ¼ 3; m�h
Þ in order to extract c and b masses from

our simulation [using Eq. (9)]. We parametrize this depen-
dence as follows:

zð�=mh;m�h
Þ ¼ XNz

j¼0

zjð�=mhÞ
�
2�

m�h

�
j
; (11)

where the zj’s are determined in our fit. This is an expan-

sion in the QCD scale, which we take to be

� ¼ 0:5 GeV; (12)

divided by m�h
=2, which we use as a proxy for the quark

mass. The expansion is adequate for the range of quark
masses used in our analysis, where ð2�=m�h

Þ2 ranges

approximately between 1=m2
�b

¼ 0:01 and ð1=m�c
Þ2 ¼

0:1; the singular point mh ¼ 0 is infinitely far away in
this parametrization. In our fits we keep terms only through

TABLE I. Parameter sets used to generate the gluon configu-
rations analyzed in this paper. The lattice spacing is specified
in terms of the static-quark potential parameter r1 ¼
0:3133ð23Þ fm; values for r1=a are from [13]. The bare quark
masses are for the ASQTAD formalism and u0 is the fourth root
of the plaquette. The spatial (L) and temporal (T) lengths of the
lattices are also listed, as are the number of gluon configurations
(Ncf) and the number of time sources (Nts) per configuration used
in each case. Sets with similar lattice spacings are grouped.

Set r1=a au0m0u=d au0m0s u0 L=a T=a Ncf � Nts

1 2.152(5) 0.0097 0.0484 0.860 16 48 631� 2
2 2.138(4) 0.0194 0.0484 0.861 16 48 631� 2

3 2.647(3) 0.005 0.05 0.868 24 64 678� 2
4 2.618(3) 0.01 0.05 0.868 20 64 595� 2
5 2.618(3) 0.01 0.05 0.868 28 64 269� 2

6 3.699(3) 0.0062 0.031 0.878 28 96 566� 4
7 3.712(4) 0.0124 0.031 0.879 28 96 265� 4

8 5.296(7) 0.0036 0.018 0.888 48 144 201� 2

9 7.115(20) 0.0028 0.014 0.895 64 192 208� 2
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order Nz ¼ 4, but, as we discuss later, our results are
unchanged by additional terms. On dimensional grounds,
we assume a priori that the coefficients are

zjð3Þ ¼ 0� 1: (13)

2. Finite-lattice spacing errors

Discretization errors are of order ðamhÞ2i�s for i � 1.
We model these by

Rlatt
n ¼ Rnð�;m�h

; a; NamÞ; (14)

where fit function Rnð�;m�h
; a; NamÞ has the double ex-

pansion

Rnð�;m�h
; a; NamÞ � Rcont

n =

�
1þ XNam

i¼1

XNz

j¼0

cðnÞij

�
am�h

2

�
2i

�
�
2�

m�h

�
j
�
; (15)

the cðnÞij ’s are determined in our fit, Rcont
n is given by Eq. (6),

iþ j � maxðNam;NzÞ; (16)

and again we use m�h
=2 in place of the quark mass. This

expansion allows for finite-a corrections involving
ðam�h

=2Þ2, ða�Þ2, and cross terms, with m�h
-dependent

coefficients. We assume a priori that

cðnÞij ¼ 0� 2=n; (17)

which implies smaller a dependence for larger n’s. This is
expected (and obvious in our simulation data) since the
reduced moments become more infrared as n increases.
The exact functional form of the n dependence has little
effect on our results, as we show later.
In our fits we take Nz ¼ 4. While low orders suffice for

the 2�=m�h
expansion, expansion parameter am�h

=2

ranges between 0.3 and 1.1, and higher orders are neces-
sary, especially given our tiny statistical errors. We find
that our fit results do not converge well unless Nam is larger

TABLE II. Results for the reduced moments Rn and pseudoscalar-meson mass am�h
obtained from (nf ¼ 3) simulations using

different bare heavy-quark (HISQ) masses am0h and gluon-configuration sets (see Table I). The errors listed here are statistical errors
from the Monte Carlo simulation. Results where am�h

> 1:95 are omitted from our final analysis, as are Rn’s with n > 10.

Set am0h am�h
R4 R6 R8 R10 R12 R14 R16 R18

1 0.660 1.9202(1) 1.2132(3) 1.5364(3) 1.4151(2) 1.3476(1) 1.3001(1) 1.2649(1) 1.2378(1) 1.2164(1)

0.810 2.1938(1) 1.1643(2) 1.4427(2) 1.3619(1) 1.3148(1) 1.2780(1) 1.2481(1) 1.2238(1) 1.2039(1)

0.825 2.2202(1) 1.1604(2) 1.4339(2) 1.3563(1) 1.3111(1) 1.2754(1) 1.2462(1) 1.2222(1) 1.2025(1)

2 0.825 2.2196(1) 1.1591(2) 1.4327(2) 1.3556(1) 1.3106(1) 1.2751(1) 1.2459(1) 1.2221(1) 1.2024(1)

3 0.650 1.8458(1) 1.1809(2) 1.4805(2) 1.3755(1) 1.3160(1) 1.2740(1) 1.2429(1) 1.2190(1) 1.2000(1)

4 0.440 1.4241(1) 1.2752(4) 1.6144(4) 1.4397(2) 1.3561(2) 1.3041(1) 1.2678(1) 1.2408(1) 1.2200(1)

0.630 1.8085(1) 1.1881(3) 1.4935(2) 1.3826(1) 1.3205(1) 1.2773(1) 1.2456(1) 1.2214(1) 1.2021(1)

0.660 1.8667(1) 1.1782(2) 1.4764(2) 1.3738(1) 1.3152(1) 1.2736(1) 1.2426(1) 1.2187(1) 1.1997(1)

0.720 1.9811(1) 1.1605(2) 1.4435(2) 1.3559(1) 1.3044(1) 1.2662(1) 1.2367(1) 1.2136(1) 1.1950(1)

0.850 2.2194(1) 1.1301(2) 1.3763(1) 1.3145(1) 1.2774(1) 1.2473(1) 1.2221(1) 1.2012(1) 1.1839(1)

5 0.630 1.8086(1) 1.1882(1) 1.4936(1) 1.3826(1) 1.3205(1) 1.2774(1) 1.2457(1) 1.2214(0) 1.2022(0)

6 0.300 1.0314(1) 1.2930(3) 1.6061(3) 1.4249(2) 1.3444(1) 1.2953(1) 1.2610(1) 1.2353(1) 1.2153(1)

0.413 1.2806(1) 1.2224(2) 1.5216(2) 1.3796(1) 1.3115(1) 1.2689(1) 1.2390(1) 1.2164(1) 1.1985(1)

0.430 1.3169(1) 1.2145(2) 1.5113(2) 1.3743(1) 1.3076(1) 1.2658(1) 1.2363(1) 1.2141(1) 1.1964(1)

0.440 1.3382(1) 1.2100(2) 1.5054(2) 1.3712(1) 1.3054(1) 1.2640(1) 1.2348(1) 1.2127(1) 1.1952(1)

0.450 1.3593(1) 1.2057(2) 1.4996(2) 1.3683(1) 1.3033(1) 1.2623(1) 1.2333(1) 1.2114(1) 1.1941(1)

0.700 1.8654(1) 1.1301(1) 1.3782(1) 1.3053(1) 1.2616(1) 1.2294(1) 1.2048(0) 1.1857(0) 1.1705(0)

0.850 2.1498(1) 1.1026(1) 1.3163(1) 1.2671(1) 1.2366(0) 1.2114(0) 1.1903(0) 1.1729(0) 1.1584(0)

7 0.427 1.3074(1) 1.2131(3) 1.5091(3) 1.3729(2) 1.3066(1) 1.2651(1) 1.2358(1) 1.2137(1) 1.1961(1)

8 0.273 0.8993(3) 1.2454(8) 1.5234(9) 1.3739(7) 1.3069(6) 1.2657(6) 1.2366(6) 1.2145(6) 1.1969(5)

0.280 0.9154(2) 1.2403(5) 1.5175(5) 1.3706(3) 1.3045(3) 1.2638(2) 1.2350(2) 1.2132(2) 1.1958(2)

0.564 1.5254(1) 1.1324(2) 1.3674(2) 1.2857(2) 1.2405(1) 1.2102(1) 1.1885(1) 1.1719(1) 1.1587(1)

0.705 1.8084(1) 1.1043(2) 1.3156(2) 1.2574(1) 1.2217(1) 1.1952(1) 1.1750(1) 1.1593(1) 1.1467(1)

0.760 1.9157(1) 1.0955(2) 1.2965(2) 1.2460(1) 1.2142(1) 1.1895(1) 1.1701(1) 1.1547(1) 1.1423(1)

0.850 2.0875(1) 1.0831(2) 1.2666(1) 1.2266(1) 1.2010(1) 1.1799(1) 1.1621(1) 1.1474(1) 1.1353(1)

9 0.195 0.6710(2) 1.2583(5) 1.5243(5) 1.3733(4) 1.3066(3) 1.2655(3) 1.2364(2) 1.2144(2) 1.1968(2)

0.400 1.1325(2) 1.1532(3) 1.3800(3) 1.2838(2) 1.2370(2) 1.2077(2) 1.1869(2) 1.1710(2) 1.1583(2)

0.500 1.3446(2) 1.1267(2) 1.3410(2) 1.2616(1) 1.2198(1) 1.1927(1) 1.1734(1) 1.1588(1) 1.1471(1)

0.700 1.7518(1) 1.0900(1) 1.2765(1) 1.2261(1) 1.1949(1) 1.1718(1) 1.1542(1) 1.1407(1) 1.1299(1)

0.850 2.0428(1) 1.0712(1) 1.2327(1) 1.1983(1) 1.1760(1) 1.1574(1) 1.1418(1) 1.1290(1) 1.1185(1)
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than 10–20. Also we have difficulty getting good fits if we
include data with am�h

> 1:95 from Table II. The am�h
=2

expansion may not converge for these last cases and there-
fore we exclude such data from our final analysis.

The fit function has many more fit parameters cðnÞij than

we have simulation data points when Nam is so large. This
does not cause problems in (Bayesian) constrained fits
since the parameters’ priors [Eq. (17)] are included in the
fit as extra data [19]. Each parameter has a prior and
therefore we always have more data than parameters.

It is, however, very time consuming to fit a function with
so many fit parameters. Although it is not essential for our
analysis, there is a trick that greatly accelerates this kind of
fit. The idea is to fit a modified moment �Rlatt

n in place of
Rlatt
n , where

�R latt
n � Rlatt

n þ Rlatt
n

XNam

i¼ �Namþ1

XNz

j¼0

cðnÞij

�
am�h

2

�
2i
�
2�

m�h

�
j
(18)

and �Nam � Nam. The modified moment is fit with the
much simpler formula (simpler since �Nam � Nam)

�R latt
n ¼ Rnð�;m�h

; a; �NamÞ; (19)

where Rnð	 	 	Þ is again given by Eq. (15). To evaluate �Rlatt
n

from Eq. (18), we treat the coefficients cðnÞij with i > �Nam as

new data with means and standard deviations specified by

the prior, Eq. (17). Uncertainties coming from the cðnÞij ’s are

combined in quadrature with the statistical error in Rlatt
n to

obtain a new error estimate for �Rlatt
n (but leaving the central

value unchanged). In effect we are increasing the error in
the reduced moment to account for high-order ðam�h

=2Þ2i
terms omitted from the fit formula Eq. (19). By choosing
�Nam � Nam, most of the am�h

=2 terms are incorporated

into �Rlatt
n [Eq. (18)], where they are inexpensive, and rela-

tively few end up in the fit function �Rnð	 	 	Þ [Eq. (15)],
where they add parameters to the fit and increase its cost.
Note that the new errors introduce correlations between
�Rlatt
n ’s computed with different lattice spacings or quark

masses, since the same cðnÞij ’s are used for all a’s andm�h
’s.

These correlations are important and need to be preserved
in the fit.

Our procedure, whereby terms are moved out of the
fitting function and incorporated into new (correlated)
errors in the Monte Carlo fit data, is generally useful.
Somewhat remarkably, final fit results are completely (or
almost completely) independent of the number of terms
that are transferred when fits are linear (or almost linear) in
the associated parameters. (The general theorem from
which this result follows is proven in the Appendix.)
Consequently, in our analysis here, we can take Nam very
large—say, Nam ¼ 80—and still have very fast fits by
keeping �Nam very small. With Nam ¼ 80 we find, for
example, that setting �Nam ¼ 0 in �Rnð	 	 	Þ (no terms) gives
essentially identical results for our quark masses and cou-

pling as setting �Nam ¼ 30 (140 terms), even though the
latter fit requires 22 times more computing. We used this
procedure, with �Nam ¼ 0, for most of our testing and
development in this project.

3. Truncated perturbation theory

The perturbative part,

rnð�MS; �=mhÞ ¼ 1þ XNpth

j¼1

rnjð�=mhÞ�j

MS
ð�Þ; (20)

of the reduced moments is known at best through third
order. We present coefficients rnj through j ¼ 3 in

Table III [2–6]; the values for n ¼ 4–10 are exact, while
rn3 is estimated for the others. In our fits we include higher-
order terms by treating the coefficients of these terms as fit
parameters with prior

rnjð1Þ ¼ 0� 0:5 (21)

for any coefficient that has not been computed in pertur-
bation theory. We set Npth ¼ 6 since then contributions

from still higher orders should be less than 0.1% (and
setting Npth ¼ 8 does not change our results).

The perturbative coefficients for �=mh ¼ 1 (Table III)
are small and relatively uncorrelated from order to order.
This is less true for �=mh ¼ 3, which is where we wish to
work (see Sec. II), because of logð�=mhÞm terms. In order
to capture these effects, we use renormalization-group
equations to express the rnjð3Þ coefficients (for all j �
Npth) in terms of the rnjð1Þ coefficients and logð�=mhÞ,
and substitute the results from Table III for j � 3 and from
the prior [Eq. (21)] for j > 3. This procedure generates
(correlated) priors for the unknown coefficients at�=mh ¼
3 that properly account for renormalization-group
logarithms.

TABLE III. Perturbation theory coefficients (nf ¼ 3) for rn
[2–6]. Coefficients are defined by rn ¼ 1þP

j¼1rnj�
j

MS
ð�Þ for

� ¼ mhð�Þ. The third-order coefficients are exact for 4 � n �
10. The other coefficients are based upon estimates; we assign
conservative errors to these.

n rn1 rn2 rn3

4 0.7427 �0:0577 0.0591

6 0.6160 0.4767 �0:0527
8 0.3164 0.3446 0.0634

10 0.1861 0.2696 0.1238

12 0.1081 0.2130 0.1(3)

14 0.0544 0.1674 0.1(3)

16 0.0146 0.1293 0.1(3)

18 �0:0165 0.0965 0.1(3)
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4. �MS evolution

As discussed above, we fix the ratio of �=mhð�Þ in our
analysis. This means that the renormalization scale �
varies over a wide range of values for the different mh’s
we use. The coupling constant �MSð�Þ used in the pertur-

bative expansions for the rn’s is specified at� ¼ 5 GeV by
fit parameter �0, with prior

�0 ¼ 0:20� 0:01; (22)

where

�0 � �MSð5 GeV; nf ¼ 3Þ: (23)

The prior corresponds to �MSðMZÞ ¼ 0:118ð3Þ—a very

broad range, which means that the prior has little impact
on our final fit results. The coupling value at any scale� �
5 GeV is obtained by integrating (numerically) the QCD
evolution equation for �MSð�Þ starting with value �0 at

scale 5 GeV. We use the MS beta function through sixth
order in �MS,

�2
d�MSð�Þ

d�2
¼ ��0�

2
MS

� �1�
3
MS

� �2�
4
MS

� �3�
5
MS

� �4�
6
MS

; (24)

where �0 	 	 	�3 are known from perturbation theory and
�4 is taken as a fit parameter with prior

�4 ¼ 0� ��; (25)

where �� is the root-mean-square average of �0 	 	 	�3

[20,21]. We include this last term to estimate the uncer-
tainties in our final results caused by unknown terms in the
beta function.

Our simulations include vacuum polarization effects
from only the three lightest quarks. We use perturbation
theory, together with the c and b masses that come out of
our analysis, to incorporate vacuum polarization effects
from the heavier quarks into our final results for the masses
and QCD coupling (using formulas from [22–24] to add
the c and b quarks at scales � ¼ mc andmb, respectively).

5. Nonperturbative condensates

As discussed in our previous paper, nonperturbative
effects dominate the reduced moments when n is large.
The dominant nonperturbative contribution, which is from
the gluon condensate, is quite small, however, for the range
of n’s and quark masses we use here. We correct for it by
replacing

Rlatt
n ! Rlatt

n

�
1þ dn

h�sG
2=�i

ð2mhÞ4
�
; (26)

where dn is computed to leading order in perturbation
theory [25] with mh ¼ mhðmhÞ, which we approximate
by m�h

=2:27. We take

h�sG
2=�i ¼ 0� 0:012 GeV4; (27)

which covers the range of most current estimates [26]. The
correction factor in Eq. (26) adds (slightly) to the error in
Rlatt
n (and introduces new correlations between different

moments, since the same h�sG
2=�i is assumed for every

moment, lattice spacing, and quark mass).

6. Finite-volume errors

We expect small errors due to the fact that our simula-
tion lattices are only about 2.5 fm across. We allow for the
possibility of finite-volume errors by replacing

Rlatt
n ! Rlatt

n

�
1þ fn

�R
pth
n

Rpth
n

�
; (28)

where �R
pth
n is the finite-volume error in leading-order

perturbation theory and

fn ¼ 0� 0:5: (29)

The true finite-volume errors are expected to be smaller,
because of quark confinement, than the perturbative errors
that we use to model them here. We verified this by running
two sets of simulations that were identical except for the
spatial volume (gluon-configuration sets 4 and 5 in
Table I). The differences between the two simulations are
smaller than our statistical errors, but the statistical errors
are much smaller than our estimate above. Our error esti-
mate here is very conservative, but has negligible impact
on our final results.

7. Sea-quark masses

The sea-quark masses used in our simulations are not
exactly correct. To correct for this we replace

Rlatt
n ! Rlatt

n

�
1þ gn

2	ml þ 	ms

ms

�
; (30)

where 	ml and 	ms are the errors in the u=d and s masses
(see [10] for more details), respectively, and

gn ¼ 0� 0:01: (31)

This correction introduces (correlated) errors into the
Rlatt
n ’s that are of order 0.5%–1%. Direct comparison of

results from configuration sets 6 and 7 (or 1–2 and 3–4) in
Table I suggests that sea-quark mass effects are no larger
than 0.1%, so our error estimate is conservative.
We have only included the leading dependence on the

sea-quark mass, which comes from nonperturbative (chi-
ral) effects. Quadratic terms from perturbation theory and
other nonperturbative sources are negligible.

IV. ANALYSIS AND RESULTS

We have computed reduced moments for 30 different
sets of lattice spacing, lattice volume, and quark masses
(Table II). To extract quark masses and the QCD coupling,
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we fit moments with 4 � n � 10 from 22 of these parame-
ter sets (the ones with am�h

� 1:95)—88 pieces of simu-

lation data in all. In this section we first describe the fitting
method used to extract the masses and coupling, and then
we review our results.

A. Constrained fits

We analyze all four Rn’s for all 22 parameter sets
simultaneously using a constrained fitting procedure based
upon Bayesian ideas [19]. In this procedure we minimize
an augmented �2 function of the form

�2 ¼ X
in;jm

�Rnið��2
R Þin;jm�Rmj þ

X



	�2

; (32)

where

�Rni � Rlatt
ni � Rnð�i;m�hi; ai; NamÞ; (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28), and (30); fit function Rnð	 	 	Þ is defined
by Eq. (15); and �2

R is the error covariance matrix for the
Rlatt
n . The sums i, j are over the 22 sets of lattice spacings

and quark masses; the sums n, m range over the moments
4, 6, 8, and 10.

Function Rnð�i;m�hi; ai; NamÞ depends upon a large

number of parameters, all of which are varied in the fit to
minimize �2. Priors 	�2


 are included for each of these:

(i) parameters zj, with prior Eq. (13), from the 1=m�h

expansion of zð�=mh;m�h
Þ;

(ii) parameters cðnÞij , with prior Eq. (17), from the finite-
lattice spacing corrections;

(iii) unknown perturbative coefficients rnj, with prior
Eq. (21) (evolved to �=mh ¼ 3);

(iv) coupling parameter logð�0Þ, with prior Eq. (22);
(v) �4 in the QCD � function, with prior Eq. (25);
(vi) lattice spacings ai for each gluon-configuration set,

with priors specified by simulation results for r1=a
(Table I) and the current value for r1 [Eq. (10)];

(vii) values for am�hi, with priors specified by our simu-
lation results (Table II).

The renormalization scales �i are obtained from the
ratio �=mh ¼ 3, simulation results for m�h

, and Eq. (7).

We take Nam ¼ 30 for our final results.

B. Results

We fit our simulation data for the reduced moments Rlatt
n

(Table II) using fit function Rnð	 	 	Þ [Eq. (15)] with Nam ¼
30, as discussed in the previous section. The best-fit values
for parameters zj give us the mass-ratio function

zð�=mh ¼ 3; m�h
Þ [Eq. (7)], which we plot in Fig. 1. We

also show our simulation results there for Rlatt
n =rn, together

with the best-fit lines for each lattice spacing. Results are
shown for the three moments that depend upon z, 5 differ-
ent lattice spacings, and quark masses ranging from below
the c mass almost to the b mass. The simulation data were

all fit simultaneously, using the same functions zð3; m�h
Þ

and �MSð�Þ [with � ¼ 3m�h
=ð2zÞ] for all moments. The

fits are excellent, with �2=88 ¼ 0:19 for the 88 pieces of
simulation data we fit.
Evaluated at m�c

¼ 2:985ð3Þ GeV [27], the mass-ratio

function is zð3; m�c
Þ ¼ 1:507ð7Þ. Combining this with

Eq. (9) and perturbation theory, we can obtain the follow-

ing results for the MS c-quark mass at different scales:

mcð3mc; nf ¼ 3Þ ¼ 0:991ð5Þ GeV;
mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;

mcðmc; nf ¼ 4Þ ¼ 1:273ð6Þ GeV:
(34)

Similarly at m�b
¼ 9:395ð5Þ GeV [28], the mass-ratio

function is zð3; m�b
Þ ¼ 1:296ð8Þ, and we obtain the follow-

ing results for the MS b-quark mass at different scales:

mbð3mb; nf ¼ 3Þ ¼ 3:622ð22Þ GeV:
mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV;

mbðmb; nf ¼ 5Þ ¼ 4:164ð23Þ GeV:
(35)

FIG. 1 (color online). Function zð�=mh ¼ 3; m�h
Þ �

m�h
=ð2mhÞ as a function of m�h

. The solid line, plus gray error

envelope, shows the a ¼ 0 extrapolation obtained from our fit.
This is compared with simulation results for Rn=rn for n ¼ 6, 8,
10 from our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend farther to the right. The
points marked by an� are for the largest mass we tried (last line
in Table II); these are not included in the fit because am�h

is too

large. Finite-a errors become very small for the larger-n mo-
ments, causing points from different lattice spacings to overlap.
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Note that the ratio mbð�; nfÞ=mcð�; nfÞ is independent
of � and nf. We obtain the following result for this mass

ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

�0 � �MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

�MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for �MSð�; nf ¼ 3Þ correspond-
ing to our value for �0. For this figure we extracted values
for �MS from each Rn separately by dividing out the a2

dependence and zð3; m�h
Þ using our best-fit parameters,

and then solving for �MS by matching with perturbation

theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single �MS for all of them.)

The dominant sources of error for our results are listed in
Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark

masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh 
 mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose � ¼ 3mh in

order to keep scales large and �MSð�Þ small. Our

results are quite insensitive to �, however. Choosing
� ¼ mh, for example, shifts none of our results by
more than 0:2�, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking � ¼ 9mh shifts results by less than
0:4�, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has

essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling �MSð�; nf ¼ 3Þ as a
function of m�h

where � ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of �MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m�h

Þ (n > 4). Results are

given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc �MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%

Perturbation theory 0.5 0.1 0.5 0.4

Statistical errors 0.1 0.3 0.3 0.2

mh extrapolation 0.1 0.1 0.2 0.0

Errors in r1 0.2 0.1 0.1 0.1

Errors in r1=a 0.1 0.3 0.2 0.1

Errors in m�c
, m�b

0.2 0.1 0.2 0.0

�0 prior 0.1 0.1 0.1 0.1

Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%
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unknown perturbative coefficients [Eq. (21)] is twice
as wide as suggested by our simulation results (using
the empirical Bayes criterion [19]); we choose the
larger width to be conservative.

(ii) Include more/fewer finite-a corrections: We set
Nam ¼ 30 for our results above. Using Nam ¼ 15
gives results that differ by less than 0:5� for mb

and much less for the other quantities. Much larger
Nam’s can be tested easily using the trick described
in Sec. III B 2. For example, replacing Rlatt

n by �Rlatt
n

[Eq. (18)] with Nam ¼ 80 and �Nam ¼ 30 gives re-
sults that are essentially identical to those above. As
discussed above, taking �Nam ¼ 0 with the same Nam

also gives the same results and is 22 times faster (see
the Appendix for further discussion).

(iii) Change n dependence of finite-a corrections:
Replacing the n-dependent prior for the expansion
coefficients [Eq. (17)] by the n-independent prior
0� 0:5 causes changes that are less than 0:3�. The
width of the original prior is optimal according to the
empirical Bayes criterion—that is, it is the width
suggested by the size of finite-a deviations observed
in our simulation data.

(iv) Add more/fewer �=m�h terms in z: Increasing the
number of terms in the expansion for z from Nz ¼ 4
to 6 changes nothing by more than 0:1�. Decreasing
to Nz ¼ 3 also has no effect. Again the width of the
prior is optimal according to the empirical Bayes
criterion.

(v) Include more/fewer moments: Keeping all moments
4 � n � 18 changes nothing by more than 0:5� and
reduces errors slightly for everything other than mb,
where the errors are cut almost in half: mbð10Þ ¼
3:623ð15Þ GeV or mbðmbÞ ¼ 4:170ð13Þ GeV, both
for nf ¼ 5. We continue to restrict ourselves to mo-

ments with n � 10 because these are the only mo-
ments for which we have exact third-order
perturbation theory. Keeping just n ¼ 4, 6 gives al-

most identical results for mc and �MS, with almost

the same errors, but doubles the error on mb.
(vi) Omit simulation data: The coarsest two lattice spac-

ings (configuration sets 1–5) affect our results only
weakly. Leaving these out shifts no result by more
than 0:5� and leaves errors almost unchanged.
Leaving out the smallest lattice spacing, however,
increases errors significantly (almost double for
�MS), while still shifting central values by less than

0:5�.
(vii) Add large masses: Including cases with am�h

> 1:95
from Table II leads to poor fits. The excluded data,
however, do not deviate far from the best-fit lines.
For example, the points marked with an � in Fig. 1
are for the largest mass we studied, corresponding to
m�h

¼ 9:15 GeV (last line in Table II). Although

am�h
is too large for this case to be included in our

fit, the values of Rn=rn are only slightly below the fit
results.

V. NONPERTURBATIVE mb=mc

It is possible to extract the ratio of quark masses mb=mc

directly, without using the moments and without using
perturbation theory. This provides an excellent nonpertur-
bative check on our results from the moments.
Ratios of quark masses are UV cutoff independent and

therefore the ratio of MS masses

mbð�; nfÞ
mcð�; nfÞ ¼ m0b

m0c

þOð�sa
2m2

bÞ (39)

for any � and nf, where m0b and m0c are the bare quark

masses in the lattice quark action that give correct masses
for the �c and �b, respectively. We obtain accurate mass
ratios from this relationship by extrapolating to a ¼ 0. We
used such a method recently to determine mc=ms [11].
Here we have to modify our earlier method slightly

because we cannot reach the b-quark mass directly, but
rather must simultaneously extrapolate to the b mass and
the continuum limit. This is most simply done by deter-
mining the functional dependence of the ratio

wðm�h
; aÞ � 2m0h

m�h

(40)

on the �h mass and the lattice spacing. The ratio of MS
masses is then given by the experimental masses of the �c

and �b and the equation:

mbð�; nfÞ
mcð�; nfÞ ¼ mexp

�b
wðmexp

�b
; 0Þ

m
exp
�c

wðmexp
�c

; 0Þ : (41)

It might seem simpler to fit m0h directly, rather than the
ratio w; but using w significantly reduces the m�h

depen-

dence (and therefore our extrapolation errors), and also

FIG. 3 (color online). Lattice-spacing dependence of Rn for
masses m�h

within 5% of m�c
and moments n ¼ 4, 6, 8, and 10.

The dashed lines show our fit for the average of these masses,
and the points at a ¼ 0 are the continuum extrapolations of our
data.
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makes our results quite insensitive to uncertainties in our
values for the lattice spacing.

We parametrize function w with an expansion modeled
after the one we used to fit the moments:

wðm�h
; aÞ ¼ ZmðaÞ

�
1þ XNw

n¼1

wn

�
2�

m�h

�
n
�

��
1þ XNam

i¼1

XNw

j¼0

cij

�
am�h

2

�
2i
�
2�

m�h

�
j
�
; (42)

where, as for the moments,

iþ j � maxðNam;NwÞ: (43)

Coefficients cij and wn are determined by fitting function

wðm�h
; aÞ to the values of 2am0h=ðam�h

Þ from Table II.

The fit also determines the parameters ZmðaÞ, one for each
lattice spacing, which account for the running of the bare
quark masses between different lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the �h is nonrelativistic (finite-a errors
are suppressed by additional powers of v=c [8]), and the
variation with m�h

stronger [twice that of zð3; m�h
Þ]. So

here we use priors

cij ¼ 0� 0:05; wn ¼ 0� 4; ZmðaÞ ¼ 1� 0:5;

(44)

with Nw ¼ 8. We again take Nam ¼ 30, although identical
results are obtained with Nam ¼ 15.

Our fit results are illustrated by Fig. 4 which plots the
ratio m0h=m�h

divided by m0c=m�c
for a range of �h

masses. Our data for different lattice spacings are com-

pared with our fit, and with the a ¼ 0 limit of our fit (solid
line). The fit is excellent, with �2=22 ¼ 0:42 for the 22
pieces of data we fit (we again exclude cases with am�h

>

1:95). We also plot the range of values expected (at a ¼ 0)
for each mass from our pertubative analysis of the mo-
ments (gray band). The two methods agree to within errors
for all quark masses.
Using the �c and �b masses from Sec. IVB, and

Eq. (41) with the best-fit values for the parameters, we
obtain finally

m0b

m0c
! 4:49ð4Þ as a ! 0 ¼ mbð�; nfÞ

mcð�; nfÞ : (45)

This agrees well with our result from the moments
[Eq. (36)].

VI. �MS FROM WILSON LOOPS

In a recent paper [29], we presented a very accurate
determination of the QCD coupling from simulation results
for Wilson loops. Here we want to compare those results to
the value we obtain from heavy-quark correlators. First,

FIG. 4 (color online). Ratio m0h=m�h
divided by m0c=m�c

[which we approximate by wðm�c
; aÞ=2 from our fit] as a

function of m�h
. The solid line shows the a ¼ 0 extrapolation

obtained from our fit. This is compared with simulation results
for our 4 smallest lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. The gray
band shows the a ¼ 0 extrapolation for this quantity obtained
from our best fit to the moments in the perturbative analysis of
the previous section. The point marked by an � is for the largest
mass we tried (last line in Table II); this was not included in the
fit because am�h

is too large.

FIG. 5 (color online). Updated values for the 5-flavor �MS at
the Z-meson mass from each of 22 different short-distance
quantities built from Wilson loops. The gray band indicates a
composite average, 0.1184(6). �2 per data point is 0.3.
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however, we must update our earlier analysis to take ac-
count of the new value for r1 [10] given in Eq. (10) and
improved values for r1=a [13] given in Table I. [The
Wilson-loop paper uses some additional configuration
sets: from Table II in that paper, sets 1, 6, 9, and 11 whose
new r1=a’s are 1.813(8), 2.644(3), 5.281(8), and 5.283(8),
respectively.] We have rerun our earlier analysis, updating
r1, r1=a, and the c and b masses. The results are shown in
Fig. 5. Combining results as in the earlier paper we obtain a
final value from the Wilson-loop quantities of

�MSðMZ; nf ¼ 5Þ ¼ 0:1184ð6Þ; (46)

with �2=22 ¼ 0:3 for the 22 quantities in the figure. This
agrees very well with the result in the earlier paper,
�MSðMZÞ ¼ 0:1183ð8Þ, but has a slightly smaller error, as

expected given the smaller error in r1. This new value also
agrees well with our very different determination from
heavy-quark correlators [Eq. (38)]. A breakdown of the
error into its different sources can be found in Table IV of
[29] (reduce the r1 and r1=a errors in that table by one-half
to account for the improved values used here).

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our
analysis. We also generated results for a variety of quark
masses nearmc, allowing us to interpolate more accurately
to the physical value of mc. New third-order perturbation
theory makes R10 as useful now as R4, R6, and R8 were in
the earlier paper. Finally, in this paper, we fit multiple
moments simultaneously, determining consistent values
simultaneously for both the QCD coupling and the quark
masses for all moments. Previously we examined each
moment or ratio of moments independently, extracting
mc’s or �MS’s independently of each other. Our new re-

sults,

mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;
�MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ; (47)

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using
effective field theories like NRQCD or the static-quark
approximation. By using very small lattice spacings and
the very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization that
we use for c and lighter quarks. A 1.5% extrapolation of
zð3; mhÞ, from the largest m�h

used in our fits to m�b
, gives

us a new, accurate determination of the b-quark mass,

mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV: (48)

This calculation demonstrates the utility of the HISQ
formalism for studying b quarks on lattices that are com-
putationally accessible today. This represents a break-
through for b physics on the lattice since far greater
precision becomes possible when all quarks are treated
using the same formalism, and that formalism is relativistic
and has a chiral symmetry. Even better would be to work
right at the b mass, as opposed to extrapolating from
nearby; this would require a lattice spacing of order
0.03 fm.
Both of our new c and b masses agree well with non-

lattice determinations from vector-current correlators and
experimental eþe� collisions. A recent analysis of the
continuum data gives [7]

mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð13Þ GeV;
mbðmb; nf ¼ 5Þ ¼ 4:163ð16Þ GeV; (49)

which compare well with our values of 0.986(6) and
4.164(23) GeV, respectively. This provides strong evidence
that the different systematic errors in each calculation are
understood.
Function zð�=mh;m�h

Þ is a by-product of our analysis.
It relates the MS quark mass mhð�Þ to the �h mass
[Eq. (7)]. We show our result again in Fig. 6 for � ¼
3mh, as well as for � ¼ mh and � ¼ mh=2, which we
obtain by evolving perturbatively from � ¼ 3mh. The
latter two curves are relatively flat, and the last surprisingly
close to 1 for most masses.
Questions have been raised about the way perturbation

theory is used in analyzing the perturbative parts of the
moments [30]. Like [7] we favor using larger scales than
mc for c-quark correlators, but, as we have shown, our
results are quite insensitive to � over a broad range.
Furthermore, the fact that our results, from pseudoscalar-
density correlators, agree so well with the continuum re-
sults, from vector-current correlators, is also compelling

FIG. 6 (color online). zð�=mh;m�h
Þ versus m�h

(in GeV) for
three different values of �=mh. The curve for � ¼ 3mh comes
from the best fit to the moments. The other curves are obtained
by evolving perturbatively from � ¼ 3mh.
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evidence that perturbation theory is being handled cor-
rectly. We also find consistent results from several different
moments, which is only possible if perturbation theory is
working well. Compare, for example, Fig. 7 for the mo-
ments, as a function of m�h

, with the plots of Rn=rn in

Fig. 1. Figure 7 shows very different m�h
behavior, at the

10%–20% level, for different moments of Rn; Fig. 1, where
the perturbative part rn is divided out, shows behavior that
is almost moment independent.

An additional check on our use of perturbation theory
comes from the close agreement between our perturbative

result for the ratio mb=mc ofMSmasses [Eq. (36)] and our
nonperturbative result for the ratio of HISQ masses
[Eq. (45)]. These should be and are equal to within our
1% errors. Taken together they suggest a composite result
of

mbð�; nfÞ
mcð�; nfÞ ¼ 4:51ð4Þ ðcompositeÞ: (50)

The validity of our perturbative analyses is further sup-
ported by the close agreement between the QCD coupling
we get from the heavy-quark correlators, �MSðMZÞ ¼
0:1183ð7Þ, and that obtained from Wilson loops,
0.1184(6). These are radically different methods for deter-
mining the coupling. The first relies upon a continuum
quantity, extrapolated to a ¼ 0, and continuum perturba-
tion theory. The second relies upon quantities that are
highly sensitive to the UV cutoff (�=a) but are analyzed
to all orders in the cutoff using lattice perturbation theory.
Systematic errors are almost completely different in the
two cases. The fact that they agree to within our 0.6%
uncertainties is highly nontrivial evidence that perturbative
and other potential errors are understood.

Our coupling values also agree well with determinations
from nonlattice methods. Figure 8 summarizes recent re-

sults that were included in a world average by Bethke [31].
The world average result, 0.1184(7), was dominated by our
previous determination from theWilson-loop analysis. The
average excluding our result was 0.1186(11), which also
agrees well. Including our new results into a new error-
weighted world average gives �MSðMZÞ ¼ 0:1184ð4Þ.
Our new cmass is the most accurate currently available.

With it we can improve slightly on our recent determina-
tion of light-quark masses using an accurate value for
mc=ms, 11.85(16), derived completely nonperturbatively
from lattice calculations [11]. Our new c mass, which
becomes 1.093(6) GeV when converted to nf ¼ 3 at

2 GeV, implies

FIG. 7 (color online). Simulation results for reduced moments
Rn with n ¼ 6, 8, and 10 as functions of m�h

for 5 different

lattice spacings. The dashed lines show the corresponding be-
havior of our fit function, with the best-fit parameters. The
curves for smaller lattice spacings extend farther to the right.
The solid lines show the a ¼ 0 limit of our best fit.

FIG. 8 (color online). The 5-flavor QCD coupling �MS at the Z
mass as determined by a variety of different methods. The
nonlattice numbers used here are from the review in [31].

FIG. 9 (color online). MS masses, for the 5 lightest quarks,
from this paper compared with the Particle Data Group’s current
estimates [41]. Each mass is quoted at its conventional scale:
2 GeV for u, d, s (nf ¼ 3); mc for c (nf ¼ 4); and mb for b

(nf ¼ 5).
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msð2 GeV; nf ¼ 3Þ ¼ 92:2ð1:3Þ MeV;

mdð2 GeV; nf ¼ 3Þ ¼ 4:77ð15Þ MeV;

muð2 GeV; nf ¼ 3Þ ¼ 2:01ð14Þ MeV;

ðmu þmdÞ=2 ¼ 3:39ð6Þ MeV;

(51)

where we have allowed for correlations in lattice-spacing
errors between the mc and mc=ms analyses. Our results for
all 5 quark masses are compared with the Particle Data
Group’s 2009 values in Fig. 9. Agreement is excellent, but
our uncertainties are much smaller in every case, and by an
order of magnitude for the strange and light quarks.

Finally we note that the consistency between quark
masses from lattice and nonlattice analyses, and between
couplings from heavy-quark correlators and Wilson loops
provides further evidence that taste-changing interactions
in the HISQ and ASQTAD quark formalisms are under-
stood and vanish as a ! 0. While early concerns about the
validity of these formalisms have been largely addressed
both by formal arguments [13,32–35,13] and by extensive
empirical studies [8–11,29,36–40], it remains important to
test the simulation technology of lattice QCD with increas-
ing precision, given the growing importance of lattice
results for phenomenology.
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APPENDIX: ACCELERATED FITTING

In Sec. III B 2 we used a trick to simplify our fits by, in
effect, transferring fit terms from the fit function into the
errors of the fit data. This trick can greatly speed up
complicated fits. Here we present a formal derivation of
this procedure for three increasingly complicated
situations.

1. Linear least squares—exact data

Assuming we know D values yi for a quantity y which
can be expressed as a power series in x,

y ¼ X
n

cnx
n; (A1)

we wish to obtain a best fit for the first F unknown
coefficients cn. The cn are then our random variables. If
we are able to make reasonable estimates for their means
and standard deviations �n, in the absence of additional
information, maximizing entropy suggests a Gaussian

prior of

PðcÞ / e
�P

n

c2n=2�
2
n

: (A2)

For simplicity, we assume throughout that the cn are un-
correlated and have a prior mean of zero; extending to
more general cases is straightforward.
If we knew all coefficient values, then the data yi would

be completely determined, with

PðyjcÞ / YD�1

i¼0

	

�
yi �

X
n

cnx
n
i

�
: (A3)

Bayes’ theorem

PðcjyÞ / PðyjcÞPðcÞ (A4)

allows us to convert this into a distribution for c given the
data y.
If we are only interested in fitting a subset of coefficients

cn< with n < F, we integrate over the remaining cn> ,

giving

Pðc<jyÞ / e
�P

n<

c2n<=2�2
n

�
�Z

dc>	
D

�
y�X

n

cnx
n

�
e
�P

n>

c2n>=2�2
n
�
: (A5)

We replace the delta function by its Fourier representation,
integrate over first the cn> , then the Fourier variables, to

obtain

Pðc<jyÞ / e
�P

n<

c2n<=2�2
nðdet�2

�Þ�1=2e��y	ð2�2
�
Þ�1	�y: (A6)

Here

�yi � yi �
X
n<

cn<x
n
i (A7)

is the discrepancy between the measured yi and the portion
of the series to be kept in the fit, the dot product sums over
the D data points, and

�2
�ij �

X
n>

xni �
2
nx

n
j : (A8)

The correlation matrix �2
� is independent of c< (so the

determinant is constant), and is the same as one would
compute directly by

h�yi�yjic> ¼
�X
m>

cm>
xmi

X
n>

cn>x
n
j

�
c>

(A9)

using

hcm>
cn>ic> ¼ �2

n	mn: (A10)

Finally, we fit c< by minimizing �2, which includes these
correlations and is augmented by the remaining c< priors.
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Because the distribution is Gaussian, the c< at their min-
ima are equal to their average values.

The correlation matrix �2
� properly accounts for corre-

lations in the discrepancy, due to the neglected terms,
between y and the portion of the series retained. If F terms
are kept in the series, �� is OðxFÞ, enforcing agreement
between y and the finite series to this order, as appropriate.
It also suggests an alternative but equivalent approach. We
may define new random (rather than exact) versions of y,
whose correlation matrix is �2

�, by moving the c> terms to

the left side of Eq. (A1). Using the truncated series as a
model for these random data, straightforward application
of Bayes’ theorem [19] again implies the distribution in
Eq. (A6).

One useful consequence is that, as long as we include the
correlations for the c>, we may arbitrarily reduce the
number of coefficients c< retained, even to as few as 1,
and still obtain the same minimization values. To see this,
note that to compute a particular hcn<i, we could start with
the full distribution and integrate over all c’s. The integral
over c> produces Pðc<jyÞ, which we then use in the
integral over c<; the result will be the same regardless of
where the dividing line is set, as long as it does not include
cn< . (We could even include in �2

� terms of order less than

n.) Because averaging and minimization give the same
result, the minimization value for cn< will also remain

unchanged. This is also true of the cn< error. While the

result is the same, reducing the number of terms in the
series to fit can significantly improve the fitting time.

2. Fits to nonlinear functions—exact data

We now consider fitting to the data yi a general function
giðcnÞ not necessarily linear in the parameters c, and where
we assume yi ¼ giðcnÞ exactly for properly chosen cn.
Now

PðyjcÞ / YD�1

i¼0

	

�
yi �

X
n

giðcnÞ
�
: (A11)

Combining with the prior PðcÞ and integrating over the c>
gives Pðc<jyÞ.

If our estimate of prior means is good, expanding g
around c> ¼ 0 should give a reasonable approximation;
an expansion to first order gives a Gaussian. More specifi-
cally, defining

giðc<Þ � giðc<; c> ¼ 0Þ (A12)

and

�yi � yi � giðc<Þ; (A13)

and integrating over c> in this Gaussian approximation
gives as before

Pðc<jyÞ / e
�P

n<

c2n<=2�2
nðdet�2

�ðc<ÞÞ�1=2e��y	ð2�2
�
ðc<ÞÞ�1	�y;

(A14)

but with

�2
�ðc<Þij �

X
n>

@ngiðc<Þ�2
n@ngjðc<Þ: (A15)

This is again the correlation one would compute directly
for h�yi�yjic> after expanding g to first order in c>.

We have not expanded in c<, so �2
� depends on c<, the

determinant in front is not constant, and the dependence of
�y on c< is not in general linear. In practice, however, we
will often further approximate the distribution by setting
the c< to their prior means in �2

�ðc<Þ before minimization.

Because gðc<Þ is nonlinear, c< from minimization can
differ slightly from hc<i, and due to approximations made,
can vary somewhat with the number of terms retained.

3. Fits to data with intrinsic statistical errors

Finally we consider the most general case, in which the
data y contribute intrinsic statistical uncertainties in addi-
tion to those associated with the truncated series. If we
measure a range of values for y with an average hyi and
correlation matrix �2

y, then for sufficiently large samples

we expect a Gaussian distribution

PðhyijcÞ / e�ðhyi�gðcÞÞ	ð2�2
yÞ�1	ðhyi�gðcÞÞ (A16)

rather than the delta function above. Combining with the
prior PðcÞ gives PðcjhyiÞ.
Expanding giðc<; c>Þ to first order around c> ¼ 0, de-

fining

�yi � hyii � giðc<Þ; (A17)

and integrating PðcjhyiÞ over c> gives

Pðc<jhyiÞ / e
�P

n<

c2n<=2�
2
nðdet�2

y�ðc<ÞÞ�1=2e��y	ð2�2
y�
ðc<ÞÞ�1	�y:

(A18)

FIG. 10 (color online). Same as Fig. 7 but with Nam ¼ 80 and
�Nam ¼ 3, instead of Nam ¼ �Nam ¼ 30. The error bars are almost
entirely due to systematic errors caused by am�h

=2 corrections

omitted from the fit function.
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The resulting correlation matrix is a combination of true
statistical and neglected series contributions, with

�2
y�ðc<Þ � �2

y þ �2
�ðc<Þ; (A19)

as one would obtain by including both sources of uncer-
tainty in computing h�yi�yji directly. With no statistical

fluctuations in y, �2
y ¼ 0, and it reduces to the previous

result. When �2
y is nonzero but small, �2

� still makes an

important contribution.

4. Application to this paper

We used the technique described here in much of our
testing and tuning (but not for our final results) to speed up
the ðam�h

=2Þ2 fit. As described in Sec. III B 2, we kept

corrections through order Nam ¼ 80 but moved all but
�Nam � Nam out of the fit function and into the errors for
the reduced moments. If we set �Nam ¼ 3, for example, our
fit to the Rn simulation data changes from Fig. 7 to Fig. 10.
The small �Nam means that each point in Fig. 10 has much
larger error bars, coming from ðam�h

=2Þ2 terms moved

into the Rn’s. The final fit results, however, are almost
identical in both cases (to within less than 0:1�), with
the same errors. Note that the Rn errors in Fig. 10 are
highly correlated, which is why the fit curve passes through
the central value for each point. As discussed above these
correlations are essential if results are to be independent of
the value of �Nam.
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