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Fluctuations destroying long-range order in SU(2) Yang-Mills theory
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We study lattice SU(2) Yang-Mills theory with dimension d = 4. The model can be expressed as a
(d — 1)-dimensional O(4) nonlinear o model in a d-dimensional heat bath. As is well known, the
nonlinear o model alone shows a phase transition. If the quark confinement is a consequence of the
absence of a phase transition for the Yang-Mills theory, then the fluctuations of the heat bath must destroy
the long-range order of the nonlinear o model. In order to clarify whether this is true, we replace the
fluctuations of the heat bath with Gaussian random variables, and obtain a Langevin equation which yields
the effective action of the nonlinear o- model by analyzing the Fokker-Planck equation. It turns out that the
fluctuations indeed destroy the long-range order of the nonlinear o model within a mean-field approxi-
mation estimating a critical point, whereas for the corresponding U(1) gauge theory, the phase transition to
the massless phase remains against the fluctuations.
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I. INTRODUCTION

We study Euclidean SU(2) Yang-Mills theory on the
hypercubic lattice Z¢ with dimension d = 4. It is widely
believed that' the gauge theory shows a quark confinement
phase with a mass gap for all the values of the coupling in
dimensions d = 4. On the other hand, the corresponding
U(1) gauge theory in dimensions d = 4 is proven to show
the existence of a deconfining transition to a massless
phase [2,3]. Thus it is expected that there exists a crucial
difference between SU(2) and U(1) gauge theories.

In this paper, we explore the origin of this difference.
For this purpose, we go back to the paper by Durhuus
and Frohlich [4]. They showed that the d-dimensional
Yang-Mills system can be interpreted as many (d — 1)-
dimensional nonlinear o models which are stacked up in
the dth direction and coupled through (d — 1)-dimensional
external Yang-Mills fields.> When we view one of the (d —
1)-dimensional nonlinear o models, the system can be
interpreted as a (d — 1)-dimensional nonlinear o model
in a d-dimensional heat bath. When we turn off the inter-
action between the nonlinear oo model and the heat bath,
the nonlinear o model becomes the standard O(4) non-
linear o model because the gauge group SU(2) is homeo-
morphic to the 3-sphere S°. As is well known, the O(4)
nonlinear o model is proven to show a phase transition [7]
in dimensions greater than or equal to 3. This implies that,
if the quark confinement is a consequence of the absence of
a phase transition for the Yang-Mills theory, then the
fluctuations of the external Yang-Mills fields must destroy
the long-range order of the O(4) nonlinear o model.

The effective action of the (d — 1)-dimensional non-
linear o model can be derived by integrating out the
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degrees of freedom of the heat bath. However, carrying
out the integration is very difficult. Instead of doing so, we
replace the fluctuations of the external Yang-Mills fields
with Gaussian random variables. Within this approxima-
tion, the spins of the nonlinear o model can be interpreted
as “particles” which move on S3, acted on by the two-
body force and the random forces. Namely, the dynamics
of the particles obeys a Langevin equation [8]. As is well
known, a Langevin dynamics yields a Fokker-Planck equa-
tion which describes the time evolution of the distribution
of the particles. In the present system, the effective action
of the nonlinear o model can be derived from the steady
state solution to the corresponding Fokker-Planck equa-
tion. In the effective action so obtained, the attractive
potential between the two particles is modified by the
fluctuations of the external Yang-Mills fields.

We show that the height and the width of the barrier of
the attractive potential depend on the coupling constant of
the Yang-Mills theory. Roughly speaking, the critical value
of the coupling constant for the phase transition to a
massless phase can be estimated by the height and the
width of the barrier of the attractive potential. Therefore
the critical value becomes a function of the coupling
constant. In consequence, we obtain that within a certain
mean-field approximation, the critical value is always
strictly less than the value of the coupling constant itself
for weak couplings. This implies that the critical value
must be equal to zero; i.e., there is no phase transition to
a massless phase for nonzero coupling constants.

On the other hand, the corresponding U(1) gauge theory
shows that the attractive potential does not depend on the
coupling constant for weak coupling constants within the
same approximation. Namely, the fluctuations of the ex-
ternal Yang-Mills fields do not affect the critical behavior
of the O(2) nonlinear o- model.

This paper is organized as follows. In the next section,
we express SU(2) Yang-Mills theory in the form of the
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O(4) nonlinear o model with a large heat bath, following
Durhuus and Frohlich [4]. In Sec. III, we obtain the
Langevin equation for the particles moving on S, by
replacing the fluctuations of the heat bath with Gaussian
random variables. In the standard procedure, the Langevin
equation yields the Fokker-Planck equation for the distri-
bution of the particles. In Sec. IV, a steady state solution to
the Fokker-Planck equation is obtained. The result imme-
diately yields the effective action of the nonlinear o- model.
Further, we show that the phase transition of the O(4)
nonlinear o model disappears, owing to the fluctuations,
within a mean-field approximation for the effective action
so obtained. In Sec. V, we apply the same method to the
corresponding U(1) gauge theory, and show that the phase
transition to the massless phase remains against the
fluctuations.

II. YANG-MILLS THEORY AS A o MODEL IN A
HEAT BATH

Let A be a sublattice of Z¢. The SU(2) gauge field on A
is a map from the oriented links or nearest neighbor pairs
(q, q') of sites q, q' of the lattice A to the Lie group G =
SU(Q),

<qr q/> = qu’ SN (21)

obeying

Uq/q = (qu/)il.

2.2)
Let y be an oriented path which is written y = {(q, q,) X
(92, 93) " * *{q,-1, q,,) With the oriented links (q;, q;+) of
the neighboring sites q;, q;+1, for i=1,2,...,n— 1.
When q; = q,, the path vy is a loop. For an oriented path

v, We write
Uy =Uqq,Uqq; """ Uq, 1, (2.3)

The Euclidean action of pure Yang-Mills theory on the
lattice A C Z¢ is given by

AYM(A) = —% D ReTrU,,,

pCA

(2.4)

where p denotes an oriented plaquette (unit square) of A,
and dp is the oriented loop formed by the four sides of p.
The orientation of the loop d p obeys the orientation of the
plaquette p. The expectation value is given by

=23 [ TTavsC Y exl-AMN] 25)

bCA

with the inverse temperature 8 and the normalization Z,,
where b is a link in A and dU,, is the Haar measure of the
gauge group G = SU(2).

Following Durhuus and Frohlich [4], we use the relation
between the d-dimensional Yang-Mills action and a (d —
1)-dimensional nonlinear o model. The coordinates of a
lattice site q are denoted (x(V,x® .. . x\d=1 x@) =
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(1, x) with i= (1, ... x4y e 7471 Write A, =
A n{q: x¥ = 7} for the (d — 1)-dimensional hyperplane,
and A° = A N 747" x {0} for the projection onto the Z¢~!
lattice. Let Uihj(r) denote the gauge field Uqq assigned to
the link {q, q’) in A, with q = (i, 7) and q' = (j, 7), and
U} (7) the gauge field Uy withq = (i, 7) and q' = (i, 7 +
1). The former are called horizontal gauge fields localized
at x' = 7, and the latter are called vertical gauge fields
localized in the slice [ 7, 7 + 1]. Now the Yang-Mills action
can be rewritten as

AMA) = —%Z > ReTrUS,

T pCA,

1
_EZ > Re TrUy (r) ™' Uf(7)
T (i,j)CA°

X UY(nUL(T + 1). (2.6)
The first term in the right-hand side is a sum of Yang-Mills
actions which depend on the horizontal gauge fields in a
(d — 1)-dimensional hyperplane at x'¥ = 7. As to the
second term, the vertical gauge fields in different slices
are not coupled to each other. Therefore the second double
sum of (2.6) is written as a sum of an action of a (d —
1)-dimensional nonlinear o model for the vertical gauge
fields. The explicit form of the action in the slice [7, 7 + 1]
is given by

AT (A% UM ), UM + 1))

1
=== > ReTrUy(r) ' UL(nUY(N)UL(r + 1)
(. HCA°
2.7

in the external gauge fields, U"(r) = {U};(7)} and U"(7 +
1) = {Uihj(r + D}
Let S3 denote the 3-sphere. In order to express the gauge

fields in terms of spins S € S3, we use the homeomor-
phism ¢: S3 — SU(2) which is defined by [4]

o(S) = g0(5(0)’ S(l), 5(2)y S(3))

SO +is®  —sO + 5@
T\ SO 4@ 5O — 5B (28)

with the radius (S©) + (SW)? + (S@)? + (§¥))2 = 1.
Then the interaction potential V, between two spins S,
and S, in the nonlinear o model (2.7) can be written

Vio = —3ReTre(S)) 'o(o)e(Sr)e(0) !, (2.9)

where we have written o-; and o, for the external horizon-
tal gauge fields. When the external gauge fields o, take the
vacuum configurations, o, = o, = (1,0, 0,0), the inter-
action becomes that of the O(4) nonlinear o model in (d —
1) dimensions as
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1
Vip = _5 ReTre(S)) 'e(Sy) = =S, - S,

= Z sWsP. (2.10)

As is well known, the O(4) nonlinear o model shows a
long-range order of spins at low temperatures in three or
higher dimensions [7]. The long-range order leads to the
perimeter law of the decay of the Wilson loop [4]. The
perimeter law implies the deconfinement of quarks. If the
confinement of quarks indeed occurs in the SU(2) gauge
theory, the fluctuations of the external gauge fields around
the vacuum must destroy the long-range order of the O(4)
nonlinear o model.

In order to take account of the fluctuations around the
vacuum configuration of the external gauge fields, we
approximate o, as

oi=K1—-l6¢* 60 =016 (2.11)
with small fluctuations,
6=V, o 0P, fore=12 (2.12)

We write oy = (0, &(). Then the two-body potential is
written

Vio=—8,-8S, — %RCTF(P(S1)_1€0/(50'1)€D(SZ)

—iReTro(S)) ' @(Sy) ¢! (—d0y), (2.13)

dropping the second order’ in the fluctuations dory. Here
we have written

e
Lo
¢'(60) = (U : —ig®

— i r(2)
oV tio
M) 4 i@ ) (2.14)

The right-hand side of (2.13) can be written

Vip = Vo + Vg (2.15)
with
Vo=-8,-S, (2.16)
and
= V26, - (8, X8y — V25 - ("8, — 5V8)),
2.17)
where

The contributions of the second order of the fluctuations dor;
give order of temperature 7 = B~' in the potential V,.
Therefore one can expect that the contributions of the second
order slightly modify the coupling constants of the interaction
potentials at low temperatures.
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1
6. =—7=(6,*0), (2.18)
\/_
and
Se=sV,s? s, =12 (2.19)

Thus the present system can be expressed as the O(4)
nonlinear o model in the heat bath. The interaction be-
tween the nonlinear o model and the heat bath is given by
Vk.

III. LANGEVIN DYNAMICS FOR TWO PARTICLES
ON S?

If we can integrate out the degrees of freedom of the heat
bath, then we can obtain the effective action of the non-
linear o model. However, it is a very difficult problem.
Instead, we replace the fluctuations of the external gauge
fields with Gaussian random variables. Then, the spins of
the o model can be interpreted as the particles which move
on S°, acted on by the two-body force and the random
forces.

In order to derive the effective two-body interaction
between two spins of the o model within this approxima-
tion, we first introduce the Langevin equation for the two
particles. We write X, = (xi,l), xf), xf)) ¢ =1, 2, for the
local coordinates of the two 3-spheres S3. Then the
Langevin equation [8] is given by

d

i=123,
dt

W =F)+ R, =12

3.1

with the forces F/ (()l:)e’ F g,)e’ which are given by the gradient”
of the potentials as

F§y = —g/0,:Vo (3.2)

and

() _ i
FRl,f = _glejaj’gVR, (33)
where g/, is the matrix inverse of the metric tensor g; ;¢ for
the particle €, and we have used the Einstein summation
convention and written

0

al’y( = — .
ax(g')

(3.4)

Let p,(%, X,) be the distribution of the two particles on
S?® X S3. The expectation value of the function f(%,, £,)
on S X S3 at time ¢ is given by

4See, for example, Ref. [9].
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M= [ fGkdpin dpdps GS)
S3xS?
where we have written
dpg = detgedxVdxPax? for € =1,2. (3.6
For a small Az > 0, the following relation must hold:
Pres=E [ 700+ 80,5500 + 80)
S’xS?
X p,(&y, £2)duduy + O((Ar)?), (3.7)

where [E stands for the average over the fluctuations &,
€ =1, 2, and %,(z + At) is the solution of the Langevin
equation (3.1) with the initial conditions £,(¢) = X, at time
t. As usual, we assume that, for the short interval [, t +

At], the fluctuations & A() are constant, and they satisfy

Ho{']=0.  EHof'o']=1 6"
n n / ..
and Eol'ol] = ZT 8, (3.8)

where @ and o' are nonnegative constants, and 6% is the
Kronecker delta. Physically, a natural assumption is that «
and o' satisfy the condition @ > o’ > 0. From the relation

between the fluctuations and the temperature of the heat
|

L) _ o o
Jans @5 = [ w3 G e
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bath, both @ and o’ are proportional to the temperature
B! of the heat bath.
From the Langevin equation (3.1), we have

. . s dxd( s .
20(s) = 20(1) = f dﬂi";(”z [ ' F (1)),
' t '
(3.9)

where we have written F (ei) =F (()’;){, +F 5& and %(1) =
(%,(2), 2,(2)). Using this relation, we obtain

aFV(%(1))

Fé)(x(t’)) =F, )( (1) + Z ox ﬁt/ dl‘”Fﬁy]f)()E(t”))

+ e (3.10)

Combining these, the expansion with respect to At is
derived as

A+ A = 2P0 + F(7(0) At
oF, ((1))

Z o

Fi(3())(An? +

(3.11)

Substituting this into (3.7) and using (3.8), the order of At
yields

9 f(X)

> )+ _[ PRI ELF (D FY, (2)]p. (%)

(@)

X oFY (3
o [ 3 AR Fm]pm,

(3.12)

where we have written M = S X S? and du = du,du,. Since this equation holds for any function f, we can derive the
equation of the time evolution for the distribution p,, i.e., the Fokker-Planck equation.
To this end, consider first the first term in the right-hand side of (3.12). Note that

etgg

t €

«/detg ( i)

= div[F () f(®)p,(£)] = f(F) dive[Fo,¢(¥)p,(%)]

where div, stands for the divergence for the particle €.
Combining this with the divergence theorem,’

f due divev, = 0, (3.14)
SS

for a vector field v, on S3, the first term in the right-hand
side of (3.12) is written as

3 See, for example, Theorem 5.11 in Chap. II of Ref. [9].

o (B f (), (%) —

Zf( ¥) ——— ,)V etggFO{,(x)pt(x)

(3.13)

fdmmﬂ%m——gﬁﬂmmM%mJ

(3.15)

As to the second and third terms in the right-hand side of
(3.12), we must compute the second moments of the ran-
dom forces. But one can treat these terms in the same way
as in the above. The details are given in Appendix A. As a
result, the Fokker-Planck equation is given by
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ap .
a_tt = —glee(Fo,epz) + (a + &)

X 3 {A¢p, — dive[€pdive(€ep)]}
4

— (a + a@'}{div [, W - divy(n,p,)]
+ divo[n, W - divi(n,p,)]}

= 2a'Y div,[£, - div,(£up)] (3.16)

where A, is the Laplacian for the particle €, and we have
written W = S, - S,; the vector fields &, 1, and {, are
given by

£ 1= g0, (W, (3.17)
Ny = g",9;6Sq, (3.18)

and
Zi=gi,0,,5"8, — sV§)) (3.19)

fori =1,2,3and € = 1, 2. Here the vectors n% have four

components like Sy, and f 2} have three components like S ¢-
This Fokker-Planck equation can be written

.

o = —divJ with divJ = div;J; + div,J,

(3.20)

in terms of the current J = (J;, J,), which is given by

Ji, = g"jejj,g (3.21)

with

Jii=—(;1Vo)p, — (a+ a'){d;1p, — [(9;,W)div,(&,p,)
+ W(9;,S)) - diva(n,p,) 1}

+20/¢;1 - [divi(§1p) + diva(p)] (3.22)
and with J;, given by exchanging the subscripts 1 and 2 in
Jj1. Here we have written

A

Eioi=0,08"8, — sV§)). (3.23)

IV. A STEADY STATE FOR THE FOKKER-PLANCK
DYNAMICS

The effective potential Vg between the two particles is
derived from a steady distribution p, = p for the Fokker-
Planck equation (3.20), as in (4.7) below. For a steady
distribution p, = p, the Fokker-Planck equation (3.20)
becomes divJ = 0. In order to obtain the solution near
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the north pole, S, = (1,0, 0, 0), for £ = 1, 2, we introduce
the local coordinates (xg, y, z¢) for € = 1, 2, as

S,= (\/1 — X2 =y — 25, X0 Ve, Z(). 4.1)
We write
r=0yz=0 —xy —ypz —2) (4.2)
and
R=XY2) =@ +x3y +y02z1 +22). (4.3)

We also write » = |r| and R = |R|. In order to solve the
partial differential equation divJ = 0, we employ the
Cauchy-Kowalevski-type expansion® with respect to small
Xes Vs 2¢-

Let us compute the x component J, | of the current J, for
particle 1. Note that

V():_Sl'Szz_1+%72+%(P‘R)2+"'. (44)
Immediately,
aV, 1 1
0 = x4+ Rx+-(r-RX+---.  (45)
dx; 4 4

Therefore, the first term of J, ; of (3.22) becomes

— (0, Vo)p =[x = -Rx—Lr-R)X +--]p.
(4.6)

In order to treat the rest of the terms of J, |, we assume
that the steady state solution p, = p of divJ = 0 has the
form

p = exp[—BVl, 4.7)

where V; is the effective potential to be determined, and 8
is the inverse temperature of the heat bath. Both « and o’
are proportional to the temperature 8!, as mentioned in
the preceding section. The effective potential V. must be
vanishing for r = 0 because the two-body potential (2.13)
becomes constant irrespective of the external fluctuations
for S; = S,. From this and taking account of the spherical
and exchange symmetries, we assume that the effective
potential Vg can be expended as

Veff = CZO}’Z + C407'4 + C22}’2R2 + C/22(r : R)2 +oee,
4.8)
where Cy, Cy, Cyy, and C), are the coefficients to be
determined. In the following, we take « and ' to be small,

and ignore the order of a and o'
For small x;, y¢, z¢, the current J, ; is written

5See, for example, Sec. D of Chap. 1 in Ref. [10].
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Jo1 = [—X—%(r'R)x —%(r-R)X:Ip — (@ — a/)(%_

ax, ay, 9z dx;
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%)
apr

d d d d
y—p+ z—p) ~|—x(x2—p+y2—p

N ap> s ap]
) “ ¥ 2 9x,

d d d d d 3 1 d d d
+ 2a’|:—x1(x—p + y—p + z—p) + xz(xl—p + 3 ° + 21 —p) - (fx + fX)(xz—p + yz—p + 12—/0)
0x, ay; 97y dx; dy; 474 2 2 Xy A% 02,
ap 1 ap ]
_2_+_ 2_|_ 2\ 4+ .. 4.9
r2 le 2 (r] r2) 6x2 ( )
The derivation is given in Appendix B. Let us substitute p > op B
of (4.7) into this right-hand side, assuming the expansion B 72 = [_ Zxr 2t ] exp[—BVer]  (4.18)
(4.8) for the effective potential. First of all, since the
leading order which is proportional to xexp[—BV.] and
must be vanishing, we have 0 1 0
—r%—p+—(r%+ 2 a°
4B(a — a')Cyy = 1. (4.10) ax; 2 d
Since we can choose = gx[r2 + R?> — (r-R)]exp[— BVl + -+, (4.19)
B = 1 - 4.11) Substituting these into (4.9), we obtain
a—a
/
without loss of generality, we have Je1explBVer] = [8C4o — 1]r7x + a—zﬁ[rzx —(r-R)x]
Coo = - 4.12 !
04 4.12) + [4C22 + oz2,8 ]sz
Using these, we get o
9 9 +[4C’22—7(a a)ﬁ](r-R)X+---.
— (e — a’)(ﬁ - 5) expl— BV 4
. alv 2 (4.20)
_ eff eff _
- ( ax, ax, )exp[ BVeit] “13) " From div/ = 0, the coefficients must satisfy the relations
with 5B8Cyp—1)+a'B=0 (4.21)
9 F 5 R and
— = —|Veg = x + 8C + 4Cx»R
<8x1 axz) eff — X 407" X 20 K7X a'B (a+ o)
3[4C22 + —:| + |:4C’22 - —] =0. (4.22)
+4C,(r-R)X + ---. (4.14) 2 4
Moreover. we have Using these relations, the current J, | can be written
o o
(r syl 1o ==L Lx - g
le 8y1 821
1 2, _ . — e
(Lere e Yewiopvad @) + AR = 3(r - ROXIfexpl—BVeg] -+ (@4.23)
with the constant
( A I ) o'
¥y —— - -
Vox,  ay, Moz )P A=4Cpn + 55, (4.24)
1 1
= I:_ 4 Br 2 - 4 B(r-R)+-- :| expl — BV ], (4.16) which we cannot determine in the present method. Clearly
one notices that in divJ/, the other terms appear,
1,/ 732,4 _ 2p2 _ CR)2
( 2%+Y26i+ Zz%)p sa'B7r" and AB[r*R* — 3(r - R)?]. (4.25)
2 2 2 These are higher order contributions in powers of the local
= I:_l Br? + 1 Br-R)+-- ] exp[—BVer)  (4.17) coordinates but of order 8. Since the equation div/ = 0
4 4 must hold, this implies that there must exist some terms of
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order of S in the effective potential Vg so as to cancel the
above terms of (4.25).

When both of the coefficients Cy, and C’, depend on S,
the corresponding terms may appear in the expansion. In
this case, from (4.22), we have

Cy,~CB and Ch, ~—3CB (4.26)

with some constant C for a large 8. Substituting these into
Vs, we have

Veff ~ %rz + C40}"4 + Cﬂ[r2R2 - 3(1’ . R)Z] (427)
This leads to instability of binding of the two particles
because the value of R? is expected to become larger than
order B! in the thermal equilibrium. Thus we require that
both C,, and C%, are of order 1.

In consequence, we need the following terms in the
effective potential Vi g:

C60r6, C42r4R2, Cf‘zrz(l‘ . R)2 (428)
Here all the coefficients, Cgp, Csp, C},, are proportional to
B for a large B. In the same way as in the above, we can

determine these coefficients as

3!
Coo = — ﬁa/ﬁz,
L ; (4.29)
C4_2 = %AB, and Cﬁu = _%AB

so as to cancel the above terms (4.25) which appear in divJ.
As a result, the dominant contributions in the effective
potential Vg are given by

1 ! 1
Vg ~ 1> — %a’ﬁ2r6 + %Aﬂrz[rsz —3(r-R)?]

4
(4.30)

for a large 3 because the second, third, and fourth terms in
the right-hand side of (4.8) do not affect the critical
behavior.

Now we discuss the critical behavior of the (d —
1)-dimensional o model with the above two-body interac-
tion V.. Consider first the case of A = 0. Namely, the
effective potential is given by

1,

3!
Vegr ~ -1 — ﬂalﬁzrf’

Z 4.31)

for small r and large (. The second term lowers the
potential barrier. Within a mean-field approximation [11],
the critical temperature 7 can be estimated by the volume
and the height of the potential well. More precisely, T ~
(volume) X (height). In the present case, the width w and
the height /4 of the effective potential V¢ are estimated as

w~(AB)V4, h~(AB)~'2, (4.32)

where we have written
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3!
ﬁa',B.

Therefore the critical temperature 7 is estimated as

Te~ w3 X h~(AB) /4, (4.34)

A=12X (4.33)

This is lower than B~! for small temperature 7 = B!,
This implies that the true critical temperature must be
equal to zero.

In the case of A # 0, the third term in the right-hand side
of (4.30) may heighten the potential barrier if R?> does not
take a small value. But it is impossible that the term
heightens the potential barrier in all the directions of r.
Thus we reach the same conclusion, T = 0.

Let us make the following two remarks:

(1) Our argument can be applied to the systems in
arbitrary dimensions. Therefore a reader might think
that our method suggests no phase transition for
non-Abelian lattice gauge theory also in five or
higher dimensions. On this point, we should remark
the following: We used the two-body approxima-
tion, considering only a single plaquette. When
dealing with two plaquettes within our method,
three- and four-body interactions would appear in
the effective potential for the nonlinear o model.
The resulting interactions may change the conclu-
sion of this section. Namely, a high-dimensional
system may exhibit a phase transition. Actually, in
five or higher dimensions, the effect of the three- or
four-body interactions may not be ignored because
the number of the neighboring plaquettes for a fixed
plaquette becomes large, compared to low-
dimensional systems. However, taking account of
such interactions is not so easy.

(2) Consider the O(4) nonlinear o model on the three-
dimensional lattice with the effective two-body in-
teraction which we obtained. Then the correlation
length of the model leads to an estimate of the string
tension [4,5]. Does the scaling limit so obtained give
the standard continuum? This problem must be very
important. But it is very difficult to compute the low
temperature asymptotics of the correlation length
for such a weakly attractive potential.

V. DIFFERENCE BETWEEN U(1) AND SU(2)
GAUGE THEORIES

Let us look at the difference between U(1) and SU(2)
gauge theories.

For this purpose, we apply the present method to the
Abelian case G = U(1). In the case, the gauge field U, on a

link b is written
Ub = CXp[igb] (51)

in terms of the angle variable 8, € [0, 27). Therefore the
two-body interaction V|, between 6, and 6, is written
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V12 = — COS(01 - 02 + o — 0'2), (52)

where o and o, are the angle variables of the external
fields. We write 8 = 6; — 6, and 60 = oy — 0,, and
assume that 60 is a small fluctuation. Under this assump-
tion, the potential can be approximated as

Vi, = —cosf + 6o sinf. (5.3)
Then the Langevin equation is given by
ﬁ = —sinf — 6o cosh. 5.4
dt
As usual, we assume
E[(80)°] = (5.5)

At
|

0

Since the diffusion disappears at # = */2 in the right-
hand side of (5.4), the particle cannot move beyond the
points. Clearly, we have

p ~ constexp[—a~'6?] (5.9)

for a small . Thus there is no term which is proportional to
a~ ! or higher powers of @~ ! in the effective potential, and
the critical behavior can be expected to be the same as the
standard O(2) nonlinear-o- model. This is consistent with
the rigorous result of [2,3].

APPENDIX A: DERIVATION OF THE FOKKER-
PLANCK EQUATION

Consider first the case with ¢’ = 0 in (3.8). We intro-
duce o, satisfying 0/* = —o"/, with
|

_ {(0089)71 exp[—2a '/ cosf] for — 7w/2<60<m/2

PHYSICAL REVIEW D 82, 034509 (2010)

for a small At. In the same way as in the SU(2) case, we
obtain the Fokker-Planck equation,

0 0 9 a 92
9Pt [— sinf + 2 % ginfcosh + < —cos20:|

at a6 2 90 2 06°
(5.6)
For a steady state p, = p, we have
I:s'nﬁ + 2 Ginfcosh + 2 9 coszﬂ] 0 (5.7
i —si - — =0. .
2 2 96 P
One can easily find the solution
otherwise. (5-8)
(o, 62, ¢%) = (0'(1) (f), a'(f)) and
(023, 53, 012) = (o1, 0@, o). (A1)

Then the random potential Vi of (2.17) can be written

1 i olk) ol
VR = —\/—zeijngJS(l )S(2 ),
where &;;, is completely antisymmetric and satisfies

€013 = 1, and we have used the Einstein summation
convention. From «’ = 0, we have

(A2)

1 5
E[(9¢1VR) (01 VR)] = = [E[saﬂyaaaﬂwe,ls§7’>s§5>smmamn<ak,ls&>>s§’>]

_a
2At

= EZ[(af,15(17))(31{,15(17))5;5)5(25)
5

Using the metric

IS¢ S,
8ij, (AS5)
T ax)
of S? for the particle ¢, the above result is written
2a
E[(0¢1VR)(9y1VR)] = E[g{’k,l = (91 W) 1 W)]
(A6)

E[oef o] = £ (5265 — 6266™).  (A3)
Using (A2) and (A3), we obtain
aﬁ"yésSmmt((S maﬁn - Banaﬂm)(ae lS(y))S(a)(ak S(‘))S(t)
(06,187)57 (9,1 81)85. (A4)
|
and
2
E[(9¢VR)(I2VR)] = E[gek,z = (92 W) (92 W)],
(AT)

where we have written W = S, - S,. Similarly, we have
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E[(04,191VR)(9¢1VR)]

Q2a ZS(‘Y) BS(
At Z[ax(k)ax(J) Ix (()

2¢(y)
asly

(5) 500

() 85

1 ¢(d)
- . S5 ] (A8)
ox®ax) "2 gxl0 72
Combining this with
2S(7) S(y)
0. =TI 8mers (A9)
= axPaxl) g0 el
we obtain
E[(04,19;1VR)(9¢1 VR)]
2a
= E[Fﬁ',lgm{f,l = (9191 W)(0¢1W)], (A10)

where F;”m are the Christoffel symbols [9]. In the same
|

IFRh
SE[ LB A ] = El01s” 0,0V 0 Vi)
k 1

PHYSICAL REVIEW D 82, 034509 (2010)

way, we get
2ar
E[(0¢1VR)(912VR)] = _Ew(a(f,lak,zw) (A11)
and
2a
E[(9420,1VR)(e2VR)] = — A_t(ak,ZW)(aj,laé,ZW)-
(A12)
Using (A6), we have
ELF, F&\1 = ELg™ (941 VR)g™ (811 VR)]
a ., .
= A—tglelgjkﬂgfk,l — (91 W)(9 1 W)]
20, .. o
29, glé)) (A1)

where 5;} is the vector field which is given by (3.17). From
(A6) and (A10), we obtain

= (91,18 E[(3,1 VR)(9¢1 VR)] + g7, g E[(0419 1 VR)(9¢1 V)]

2a »
= A—(ak,1g”1)gk€1[gj€,1 -

[3;1811+8 1 kjl (aklfl)fk]_—[\/a—l—t—— 918" /detg, _(8k,1§li)§]1€:|y

where we have used’

] -

kji1 det 1

(A15)

81 1\/detg1

In the same way, the relations (A11) and (A12) yield

ELFQ, Fih] = i gd EL(90,1 VR) (942 Vi)]

200 . .
Ay g g/ W(dg,0,2W)

(A16)
(0

oF -
Z[E[ a;l Fl(zlf)zil = E[(0428"10;,1VR)(8*,0,2VR)]
2

= ¢, 8", E[(9120,;,, VR)(902Vi)]

2a
=8 87,84 (01, W)(9,,00,W),
(A17)

7See, for example, Sec. 7 of Chap. I of Ref. [12].

20 ..
(aj,lw)(ae,lw)] + A_tgljlgM][FZhgm(,l -

(0,10, 1 W) (g1 W)]

(A14)

respectively. The contribution from the two random forces
Fg ¢ with the same indexes € = 1 in the right-hand side of
(3.12) becomes

SESa) ) [ BN
2 ij JM ax(ll)ax(l]) ’ '
(i)
of [OFR1
+ d,u,—4[E|: = F :I}p
Z ax(ll) ax(lk) D
92 f .
=a dp—————(g"
Z /M axWoxt) :
af 1 i
+ az d/.L . \/TTgéj’lgjlvdetgl
1

M ax({)

- fll f{)ﬂt

- (8k,1§’i)§’f]p,, (A18)

where we have used (A13) and (A14). Note that
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I ) of
d,u[ gY (—& g" 4/detg )—]p
Jol s+ s ) S

iJ 1

_fMdM(\/dfl:Tg g 1\/@&1]”)/); [dM(Alf)pt fd#f(Amt) (A19)

where the second equality follows from the property8 of the Laplacian A,. The rest of the contributions in the right-hand
side of (A18) are computed as

fMdMI:Za 3)f )flf] +Z (,)( k1§)§k]

L]

fMd#l:\/d—ai,l\/detgl(aj,lf)flif{l)t_( ,1f)\/—311\/det81§ flpz]‘*‘[Mdﬂ(aj,lf)(ai,lf{)flipz
=~ | au,une] Fa,lddetglflp,— | au;inel aivitéind

[ Fa,leetglf Fdivi(€,p0) + j duf Fa,lddetglfl div,(é1p,)

- fM duf divi[€, divy(£,p,)] (A20)

where we have used the divergence theorem (3.14). Substituting this and (A19) into (A18), we obtain
In=a [ dufldip, — divilé divi(€p)]: (A21)

Next consider the contribution from the two random forces Fy , with different indices, € = 1 and € = 2, in the right-
hand side of (3.12). Using (A16) and (A17), we obtain

(i)
. ) JoF
(i) 1~(j) R,1 (k)
Iy = {Z/ m (’>a <J>[E[FR11FR,2]+Z j dp () [ fy FRJ]}”I

2f .
= _af dMZWg'€1gjk2W(ae,lak,zw)/)z - a[ dﬂz i 8"7,8M (02 W)(3,19¢,W)p,
M iy 0x] 0x;

1 ) .
— dp ——— 09 24Jdetg,87%, (3, 1 1)g (3¢ 10, , W)Wp, + [d a;
an M\/(TE@Z j2 828 2( ,1f)g 1( 0,192 Wp, + a y we( ,1f)

1 o .
NeET 9j2/detg g7, 8" (919, W)Wp, — a /M dp(d;1£)8", 8, (31,,W)(0 192 W)p,

1
= a[ d#(az1f)g’€1wﬂajz\/detgzg] 2(06192W)p, (A22)

where we have used the divergence theorem (3.14). Recalling W = S - S,, we have

901010 W = (901S1) * (942S,). (A23)

Substituting this into the above result, we get

8See, for example, Corollary 5.13 in Chap. II of Ref. [9].
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I, =

= dp—— o, TG fW - di —~
a[M M\/(Fgl i,1 egﬂhf 1V2(7’2pt)

— -a [M dpsf div, [ W - divy(1,,)]

where 1]@ is given by (3.18). From (3.12), (3.15), (A18),
(A21), (A22), and (A24), we obtain the Fokker-Planck
equation,

ap .
—L = =>"div¢(Fo¢p,)
n

at
+ad {Agp, — dive[&dive(£ep) T}
7

— af{divi[n,W - divy(n,p,)]
+ divy[n, W - div, (9, p,)]},

for &’ = 0.
Next consider the case with &’ # 0. To begin with, we
note that

(A25)

i _(j 1 i i i j
Hol'o?'] =S @y + o)@y + o1
1 i i j
= S {Elo} 0y] + Elo}o}]

+ [E[O.(i) (j)] + [E[O'(li)a'g)]}

+
— At“ 8. (A26)
Similarly,
/
Elo0gi] =2 % 5ii, (A27)
At
Further, we have
ot o] = JE(05 + o))y = o))
= l{[E[(r(zl)(r(zj)] [E[a'(ll)a'gl)]
Since we can write
N +a .. 2a ..
E[o®o)] = 2% 50 — =% 51, A29
[eV o] A A (A29)

it is sufficient to calculate the corrections from the second
term in this right-hand side, by replacing a with & + ' in
the above result (A25).
In (A13), the correction to E[g", (9, Vr)g/* (9.1 Vr)]is
given by
4o’

_Egll' jl

where ¢ i is given by (3.19). Similarly, the correction to

(A30)

PHYSICAL REVIEW D 82, 034509 (2010)

1
[ Al N8 SOV BTG 0182)p, = [ (8, MW - divs(np,)

a[ ,uf\/—azn/detgmlW divy(n2p,)

(A24)

[

E[(9118Y,,1Vr)(g" 01 VR)] in (Al14) is given by

4o’ o
- (008D - £ (A31)

Therefore the same calculations as those from (A18)-—
(A21) yield the correction

—2a/ divi[¢, - div,(£,p,)] (A32)

in the right-hand side of the Fokker-Planck equation (A25).
In (A16), the correction to E[g, (9, | VR)gék(ak,zVR)] is
given by

4o’ 5. 4
_Egll e (A33)

Further, the correction to E[(9;,87,9 ;1 Vr)(g",9¢,Vr)]in
(A17) is given by

4a' siv 2
- S (00l - 85 (A34)

Therefore similar calculations to those from (A22)—(A24)
yield the correction

- 2a' divi[, - divy(¢rp)] (A35)

in the right-hand side of the Fokker-Planck equation (A25).
In consequence, the Fokker-Planck equation is given by

L= =Y div(Foep,)
€

+ (@ + &)Y {Ap, — dive[ € dive(éep)T}
v

— (a + a){divi[m, W - div,(n,p,)]
+ divy [0, W - div(n,p) ]}

= 2a') div,[{, - div,(£,p.)) (A36)
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APPENDIX B: DERIVATION OF THE EXPANSION
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where we have written

4.9) 1 . - - -
The metric g;;¢ of S is computed as Ye= - with re = yxg +y; + 2. (B2)
¢
L+ yed vevo yered Therefore, the inverse g/, is given b
e =1 Yvexe 1+voyi  vevez ’ 8158 y
Yezexe  Yezye 1+ vezg 1 —x2  —Xxeye —X¢Ze
ij_ | _ 2
1+ x% X¢Ve X¢Ze 8¢ = _}’L’xe 1_ e . {eZg + (B3)
= VeXe 1 +y% Ve + - (B1) ZeXy Z¢Ye Zy
2
Zeke zye 147z Using this, we have
(0, W)div,(&,p) = 95, 'SzLa- Jdetg,g7.(0:1S; - Sa)p = —xg7 (9,18, -S2)d;1p + -+
x1 1\61 axl \/CW i1 1 1\Yj191 2 1\Y5 191 2)901
Jd J J
—ox20 gy 2 2N (B4)
E)x1 8y1 aZI
Similarly,
W(9,181) - diva(map) = W(9,1S1) - 87,(0;28:)9;0p + -+ - = W(3,19,28, - 82)g”,d;0p + -+~
1 g
= W{aj,z[—x - 5(1‘ "R)xy + - ':I}gljzai,zp T
i1 ap op
=Wg'hoip + Wlxix, — + x1y, txin— |+
’ ax dy, 42,
1 ap ap ap ap
=(1—-=r [ = 4+ g2, =+ g3 —]+[ —+ Xy — + Xz —]+
( 27> 8 28x2 8 28y2 8 92, X1X2 ) 1Y2(9 1 2azz
Jd 1,0 Jd Jd J J Jd J
=P _ _r2_p — I:x%_p + x2y2_}0 + XZZZ_p:I + I:xlx2_p + xlyz—p + leZ—p:I 4+ e
8X2 2 8)(?2 6x2 Y2 aZz 8x2 8y2 aZz
Jd 1,0 d Jd d
=—’0——r2—p+x[ 2—p+y2—p+Z2—p]+ (B5)
8x2 2 8x2 0 X9 6y2 aZz
|
We write 2
Do fy,1—( YiXa, Y1Y2_V1_”%, _Y122>+"' (B9)
Cie=(L. 07,85 (B6)
and
Note that
Jd Foo=(—= — _ _ — 2 A
£ = (sPsp — 595) o ( 21X, 21y ~21z ~ o1 rz) +
’ X
! “ (B10)
—X a asy
= ! ; S(z ) - V1= r%ﬁ (B7)  From these results, we obtain
1—r 1 .
gx,l'gx,1=l—r%+2x1x2+ (Bll)
Therefore, we have
( B B P e B ) Coi b =yim+xy, + (B12)
1/1—r1 ‘/1—;'1 ‘/1—r1 and
= (—x1x2 - ‘,l — 13, —x1y2 —x1Z2> . (BY) Z’x,l . é;z,l =%y Fxzy e (B13)

In the same way,

Using these, we have
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g:x,l ~divi(£,p) = Zx,l 'gijlfj,lai,lp +-

PHYSICAL REVIEW D 82, 034509 (2010)

= (1 =73 +2xx)8" 10,10 + (1x2 + x192)87%1051p + (21xy + X122)87 10,19 + -+

ap ap ap ap ap
=(1-r+ 2x1x2)[(1 — X)Xy X —] + X +xy) —— + (X + x92) —+ -
9x, ay 9z 9y 92y
d d J Jd d Jd Jd d
=9 _ r%—p—xl(x—p+y—p+z—p) +x2<x1—p+y1—p+zl—p)+ (B14)
le axl axl 6y1 aZI axl 6y1 (321
In the same way,
lon = (12 +4/1 —rhxyL )t (B15)
fy,zz(yle;yl)’2+vl_’"%,)’2Zl)+"', (B16)
and
$on=(axp 2y iz Hyfl = 1)+ (B17)
Combining these with (B8)—(B10), we obtain
Caoi b= -0} =13 +20x) + -, (B18)
o b= "2y, 0, (B19)
and
o b= 2+ (B20)
Using these, we have
£ or - diva(lop) = ¢, - gijzfj,zai,zp +-
1 1 . . .
= _(1 - 5”% - 5’% + 2x1x2)g”26[’2p — 2x1328"59i2p — 2X12287,9;0p + -+
. 1 ap ap ap 8/))
— il 24,2
=g ap+ =P+ ) =2yt yy )+
8 29i2pP 2(r1 r3) xy x1<x2 oxs Y2 3y, 22 92,
J 1 J 3 1 Jd J Jd
=—a—p+—(r%+r%)—p—(—x+—X)<x2—p+y2—p Zz—p)-i---- (B21)
Xo 2 8x2 2 2 8X2 6y2 622

Substituting (4.6), (B4), (BS), (B14), and (B21) into (3.22), we obtain the expansion (4.9).
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