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Toward the excited meson spectrum of dynamical QCD
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We present a detailed description of the extraction of the highly excited isovector meson spectrum on
dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis
of operators. With careful operator construction, the combination of these techniques is used to identify
the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic
lattice. Excited states, states with exotic quantum numbers (07—, 17 and 2% ™), and states of high spin are
resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of
the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and
with pion masses down to ~400 MeV, with statistical precision typically at or below 1% even for highly

excited states.
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I. INTRODUCTION

Computing the bound states of QCD is vital if we are to
claim a complete description of the strong interactions.
Confronting high-precision calculations of the spectrum
with future experimental measurements will test the theo-
retical framework for such a description rigorously. There
has been a resurgence of interest in the experimental
investigations of the spectrum, notably in the charmonium
sector where a wealth of high-quality data from the
B-factories has challenged our understanding of spectros-
copy. A comprehensive investigation of the spectrum of
mesons composed of light quarks is the goal of the GlueX
collaboration, after the 12 GeV upgrade of Jefferson
Laboratory. Here the aim is to photoproduce mesons,
and, in particular, those with exotic quantum numbers, as
a means of revealing the role of gluonic degrees of freedom
in the spectrum. There are also plans to study such mesons
elsewhere, for example, at the PANDA experiment at
FAIR.

Lattice calculations offer a method of performing a first-
principles computation of the spectrum of QCD, and the
calculation of the masses of the lowest-lying states has
been an important benchmark of lattice studies since their
inception. However, recently there has been considerable
progress aimed at extracting the spectrum of excited states,
both for mesons and for baryons. This has been accom-
plished through the use of the variational method, employ-
ing a large basis of interpolating operators satisfying the
symmetries allowed by the cubic lattice [1-4]. In a series of
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recent papers, we have applied this methodology to the
extraction of the meson spectrum [5], and the radiative
transitions between excited and low-lying meson states
[6,7]. The first studies were performed in the quenched
approximation to QCD, for mesons composed of the heav-
ier charm quark and its antiquark, a system which is
computationally less demanding yet for which there is a
wealth of high-quality experimental data. In this paper, we
investigate the spectrum of mesons for quark masses below
the strange quark mass, going down to pion masses of
around 400 MeV, and expand on our earlier letter [§]
focused on the spectrum of mesons in full QCD with three
mass-degenerate quark flavors.

Several previous studies of the spectrum have focussed
on obtaining precision results for ground-state masses
through controlling systematic errors [9-12]. Others have
aimed at extracting the masses of some of the excited states
[13-19]. The extraction of excited state masses is more
difficult owing to the decrease in the signal-to-noise ratio
with increasing time as we move progressively higher in
the spectrum. To circumvent this difficulty, we use aniso-
tropic lattices, with finer temporal than spatial lattice spac-
ing, enabling the behavior of the FEuclidean-space
correlation functions to be examined at small temporal
separations.

The (hyper-) cubic lattice does not possess the full rota-
tional symmetry of the continuum. Thus, in a lattice cal-
culation, states at rest are classified not according to the
spin (J, J.), but rather according to the irreducible repre-
sentations (irreps) of a cube; for states of higher spin, the
different continuum degrees of freedom are distributed
across several lattice irreps. In this study, we use a large
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basis of interpolating operators, decomposed into their
lattice irreps, that enable us to explore all JC up to spin
4, except for the exotic 4 ~, with as many as 26 operators
in a given symmetry channel. Our ability to calculate
correlation functions efficiently for such a large basis of
operators relies on a new method, “distillation” [20], for
the construction of quark-antiquark operators, including
those with nonlocal construction.

As the lattice spacing approaches zero, full rotational
symmetry is restored and thus, in principle, the spins can
be identified through the emergence of energy degenera-
cies between different irreps. The increasing density of
states in each irrep as we rise in the spectrum makes the
identification of such degeneracies a challenging task, and
thus the assignment of the continuum spins has been a
formidable barrier to the interpretation of lattice calcula-
tions. In this paper, we adopt a very different approach, in
which by judiciously constructing operators so as to have a
known continuum behavior, the spins of the excited states
are determined and thus the barrier imposed by the reduced
cubic symmetry of the lattice is overcome.

A particularly interesting class of mesons are those with
exotic JPC, such as the 1~ channel. Extracting clean
signals for even the lightest state with these quantum
numbers has proven difficult [18,21-26], with statistical
noise levels typically being significantly higher than for
other states. There is also a requirement to determine that
any such extracted state is, in fact, the exotic spin 1 and not
a nonexotic 4~ state which would live in the same lattice
irreducible representation. We found that we can extract
information about exotic state masses at the same level of
precision as excited nonexotic states ( < 1%), with the
spins clearly identified.

First results, exploiting the full panoply of anisotropic
lattices, ‘““distillation” for efficient computation of the
interpolating operators, and the identification of the con-
tinuum spins, have been presented for the case of three
degenerate “‘strange” quarks [8]; the spectrum of excited
states, including those with high spin, was extracted with
confidence.

In this paper, we expand on the earlier work (at m, =
700 MeV) to include calculations in full QCD both with
three degenerate flavors of quark, and with a strange quark
and two light quarks (N, = 2 @ 1), corresponding to pion
masses m, = (520, 440, 400) MeV. Furthermore, we per-
form calculations at two spatial volumes, enabling us to
seek possible finite-volume effects, and potentially the
presence of multihadron states in the calculated spectrum.
Precise extraction of such states is required in order to
carry out analyses of resonances in the manner suggested
by Liischer [27].

The structure of the paper is as follows. We begin in
Section II by presenting details of the QCD gauge-field
configurations to be used. We describe the technology of
two-point correlator measurement using distillation on
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dynamical gauge-field configurations in Section III. In
Section IV, the construction of a set of composite QCD
operators suitable for use in the extraction of the meson
spectrum is outlined, along with a description of the pro-
cedure used to make these operators transform irreducibly
under the limited rotations allowed on a cubic lattice. In
Section V, we present the methodology utilized to extract
meson spectral information from correlation functions.
Section VI discusses the possibility of using the informa-
tion embedded in vacuum-operator-state matrix elements
to determine the spin of a meson, overcoming ambiguities
introduced by the reduced rotational symmetry of a cubic
lattice. The stability of the extracted spectral quantities to
changes in the details of the correlator analysis is consid-
ered in Section VII, where it is seen that we can extract
results of considerable robustness. In Section VIII, we
report meson spectrum results extracted from calculations
at4 pion masses and 2 different lattice volumes. Results for
isovector mesons, kaons, and the connected part of ss
(“‘strangeonium’) are shown. Section IX considers the
apparent absence of multiparticle states within our ex-
tracted spectra. Finally, in Section X, we summarize our
observations and suggest future directions.

II. LATTICE GAUGE FIELDS

In Euclidean space, excited state correlation functions
decay faster than the ground state, and at large times are
swamped by the signals of lower states, thus complicating
the resolution of excited states. To ameliorate this problem
we have adopted a dynamical anisotropic lattice formula-
tion whereby the temporal extent is discretized with a finer
lattice spacing than in the spatial directions [28,29]; this
has proven crucial to obtain the results shown in this paper.
This method avoids the computational cost that would
come from reducing the spacing in all directions.
Improved gauge and fermion actions are used, correspond-
ing to two light dynamical quarks and one strange dynami-
cal quark. Details describing the formulation of the actions
as well as the techniques used to determine the anisotropy
parameters can be found in Refs. [28,29]. The lattices have
a spatial lattice spacing a, ~ 0.12 fm with a temporal
lattice spacing 3.5 times smaller corresponding to a tem-
poral scale a; ! ~ 5.6 GeV. The gauge fields are periodic
in all directions while the quark inversions are periodic
spatially and antiperiodic temporally.

Previous work [8] showed results using the three-flavor
degenerate quark-mass data set corresponding to bare light
and strange quark masses a,m; = a,m; = —0.0743 and
lattice size 16° X 128. In this limit, the bare strange quark
mass was determined by tuning the ratio of the kaon mass
to () baryon mass to its physical value [29]. The pion mass
(degenerate with the kaon and 7 masses) is roughly
700 MeV. In this work, results are extended to lighter
masses a,m; = (—0.0808, —0.0830, —0.0840) and a,m; =
—0.0743 corresponding to 2 + 1 flavors of dynamical
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The lattice data sets and propagators used in this paper. The lattice size and number of configurations are listed, as well as

the number of time sources and the number of distillation vectors N,... The total number of inversions for each quark mass =

4 X Ny X Nyees X Neggg 18 shown.

e m.,./MeV my/m,, volume Neggs . Nyees Ny /100
743 0T 702 1 16% x 128 536 9 64 1.2
20° X 128 198 6 128 0.6
808 o808 524 115 16° x 128 500 7 64 0.9
20° X 128 382 4 96 0.6
830 oonae 444 1.29 16% x 128 601 10 64 L5
840 Thoras 396 1.39 16° X 128 479 32 64 39
20° X 128 600 6 128 1.8

quarks, and lattice sizes 163 X 128, as well as 20° X 128.
The bare strange quark mass was held fixed to its tuned
value of a,m; = —0.0743. These fully dynamical data sets,
described in more detail in Table I, allow for some inves-
tigations of the quark-mass dependence as well as finite-
volume dependence of the spectrum.

The lattice scale, quoted above, is determined in the
physical quark-mass limit using the () baryon mass (de-
noted by a,mq). As noted, these calculations are carried
out away from this limit. To facilitate comparisons of the
spectrum at different quark masses, the ratio of hadron
masses with the () baryon mass is used to remove the
explicit scale dependence [29].

III. CORRELATOR CONSTRUCTION

The determination of the excited spectrum proceeds
from the calculation of correlation functions between a
basis of Hermitian creation and annihilation operators O
at Euclidean times O and ¢,

Ci;(1) = (010;(1)0;(0)]0).

Inserting a complete set of eigenstates of the Hamiltonian,
such that H|n) = E,|n), this correlation function decom-
poses into a sum of contributions from all states in the
spectrum with the same quantum numbers as the source
operators,

1
Ci;(1) = Z SE. (010;|n)(n|O;]0)e £,
n n

where the discrete character of the spectrum follows be-
cause the calculation is performed in finite-volume. In
order to measure energies of low-lying states, it is crucial
to construct operators that overlap predominantly with
light modes.

Smearing is a well-established means to improve opera-
tor overlap, whereby a smoothing function is applied to the
quark fields used in the creation operators. This smoothing
function should effectively remove noisy short-range
modes which should not make a significant contribution
to the low-energy correlation functions. The Jacobi method
[30] uses the gauge-covariant—second-order—three-

dimensional lattice Laplacian operator
3 ~
~V2,(1) = 68, — D (U;(x, 18,4,
j=1

+ 0l (x = 7,08,-5,).

where the gauge fields, U, may be constructed from an
appropriate covariant gauge-field-smearing algorithm [31].
To suppress high-energy modes of V2, this operator is
exponentiated, exp(c'V?), with some smearing weight o.
The resulting smoothed operator is then applied to the
quark fields .

The suppression of the high-energy modes of the Jacobi
smearing operator exp(c'V?) means that only a small num-
ber of modes contribute significantly to the construction of
the smeared quark fields, ¢. As suggested in Ref. [20], this
smearing function can be replaced with a low-rank ap-
proximation. The ““distillation” operator defines a smear-
ing function

N
o) =Y eP0&ad ), (1)
k=1

where fik) are a finite number, N, of eigenvectors of V2
evaluated on the background of the spatial gauge-fields of
time slice ¢, once the eigenvectors have been sorted by
eigenvalue. This is the projection operator into the sub-
space spanned by these eigenmodes, so [1> = [.

This smearing function is used in the construction of

isovector meson operators of the form ¢ I'¢s, where I" acts
in spin and color as well as coordinate space. Applying the
distillation operator [ onto each quark field, iy = (¢, the
creation operators at zero three-momentum are written as

O.,(0) = ¢ (00,,(0) - T0. (1) - O, (D), (),

where there is an implied volume summation over repeated
spatial indices. In a shorthand notation, the correlation
function can be written as

Cij(l) = <lz/t|:|IF§Dl¢l ’ &ODOI‘%DO‘//O)
After evaluating the quark-field path-integral and inserting
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the outer-product definition of the distillation operator []
from Eq. (1), the correlator can be written

C;;(1) = Tr[ /(1) 7(z, 0) D (0)7(0, )],
where
D! 5(0) = 10T (0)]apé(0),
encodes the structure of the operator and
Tap(t, 0) = ET(OM (1, 0)£(0),

is the “perambulator”, with M the lattice representation of
the Dirac operator, and where the quark spin indices, «, 8
of ® and 7 have been explicitly written. @ has a well-
defined momentum, while there is no explicit momentum
projection in the definition of 7. The ® and 7 are square
matrices of dimension NN, where N, = 4 are the number
of spin components in a lattice Dirac spinor. Construction
of the 7 requires NN, inversions of the fermion matrix to
compute all elements. These matrices are small compared
to the dimension of the space of quark fields. Once the 7
have been computed and stored, the correlation of any
source and sink operators can be computed a posteriori.
The method straightforwardly extends to the determination
of multihadron two-point correlation functions [32] as well
as three-point functions [20].

IV. CONSTRUCTION OF MESON OPERATORS

Meson spectral information will follow from analysis of
two-point correlators featuring a large basis of composite
QCD operators having mesonic quantum numbers. The
simplest such operators are color-singlet local fermion
bilinears, 4, (X, )Ty g4,5(%, 1), where the quantum num-
bers are determined by the choice of gamma matrix, I'. In
distillation [20], the quark fields ¢ are replaced by the
smeared quark fields ¢, but the rotationally symmetric
nature of the smearing does not change the quantum num-
bers of the bilinear operators. These simple local operators
are extremely limited in that they allow access only to the
set JFC =077, 07", 177, 17", 17, and they do not offer
significant redundancy within any J”C. In order to consider
higher spins, exotic J©¢, and to produce multiple operators
within a given symmetry channel, one must consider ex-
tending to the use of nonlocal operators [13—18]. Our
approach is to use spatially-directed—gauge-covariant de-
rivatives within a fermion bilinear, that is to construct
operators of essential structure

> $@EOrDD;... w(E 1)

where D = D — D and where spin and color indices are
suppressed for clarity. The use of the “forward-backward”
derivative, D, is not strictly necessary at zero momentum
(projected by the sum over spatial sites), the only case we
consider here, but it does somewhat simplify the construc-
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tion of eigenoperators of charge conjugation as will be
discussed below.

With the continuum SO(3) rotational symmetry it is
straightforward to produce operators of this type that are
of definite spin, parity and charge conjugation at zero
momentum. This follows from forming a circular basis of
the Cartesian vectorlike derivatives and gamma matrices,

Bi’ Yi> V5Yi> YoVi> €ijkYjYk> -8

>

(D, —iD,) D,y =iD,

i
2
i

m=+1 " \/z

Once expressed in this basis, which transforms like spin-1,
operators of definite spin can be constructed using the
standard SO(3) Clebsch-Gordan coefficients. For example,
with a vectorlike gamma matrix and one covariant deriva-
tive, operators of J = 0, 1, 2 can be formed

ot

(D, + iD,).

(@ x DY )M =5 (1, my; 1, mylJ, MYGT,, D, .

my,my

The choice of I' plays a role in setting the parity and
charge-conjugation quantum numbers of the operator—
our naming scheme for these matrices is given in Table II.
At the two-derivative level we adopt the convention of
first coupling the two derivatives to a definite spin, Jp, then
coupling with the vectorlike gamma matrix (if any) as

CxpPym =y

my,my,msz,mp

X <1’ my; 1’ m2|JDr mD>JJFm3ﬁmIBmZ l;b

<1’ m3;JD’ le‘]r M>

It is worth noting here that while the Clebsch-Gordan for
1®1—1 is antisymmetric and Bmlﬁmz appears to be
symmetric, there are nonzero operators with J, = 1 be-
cause the gauge-covariant derivatives do not commute with
each other in QCD. Rather these “commutator” operators
are proportional to the gluonic field-strength tensor which
does not vanish on nontrivial gluonic field configurations.

At the three-derivative level, we need to choose a con-
vention for the ordering in which we couple the derivatives.
A natural choice comes from insisting the operators have
definite charge-conjugation symmetry. By exchanging the
quark and antiquark fields, the charge-conjugation opera-
tion effectively acts as a transpose of the operators between
the quark fields—for three derivatives then, one ensures
definite charge conjugation by coupling the outermost
derivatives together first since this gives them a definite
exchange symmetry (even for J;; = 0, 2, odd for J3 = 1).

TABLE II. Gamma matrix naming scheme.
ao T T by P P2 aj by
r 1 Vs Yo7s Yo Yi YiYo YsYi YiVj
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This simple formulation is possible because we have used
the forward-backward derivatives, D.

3
(' x D[J&JD)J’M = Z

my,np,ms3, My, My3,Mp

<1, m4;JD, lef, M>

X (1, my; J 3, my3lJp, mp)
X (1, my; 1, mslJy3, my3)
X LZI‘mﬁmllH)mle)m}g[/.

Clearly this procedure can be extended to as many
covariant derivatives as one wishes. In this paper, we will
use operators with up to three derivatives providing access
to all J7€ with J = 4.

The operators as formed are eigenstates of parity: when
there are an even (odd) number of covariant derivatives, the
parity is equal to (opposite to) that of the local operator
containing the same gamma matrix. The operators are also
eigenstates of charge-conjugation in the case that the
and ¢ fields are of the same flavor. In the case that the
fields are degenerate but not identical (e.g., the u and d
quarks in our calculation), the C-parity is trivially gener-
alized to G-parity. For kaons, where the light and strange
quarks are not degenerate, there is no C-parity or any
generalization of it. In this case, the symmetry channels
are labeled by J* and operators of both C can be used.

Subduction into lattice irreps

In lattice QCD calculations, the theory is discretized on
a four-dimensional hypercubic Euclidean grid. The full
three-dimensional rotational symmetry that classifies en-
ergy eigenstates in the continuum is hence reduced to the
symmetry group of a cube (the cubic symmetry group, or
equivalently the octahedral group). Instead of the infinite
number of irreducible representations labeled by spin J, the
single-cover cubic group relevant for integer spin has only
five irreducible representations (irreps): Ay, Ty, T, E, A,.
The distribution of the various M components of a spin-J
meson into the lattice irreps is known as subduction, the
result of which is shown in Table III.

To be of any use in lattice computations, the continuum
operators described above must be subduced into lattice
irreps. Noting that each class of operator is closed under
rotations, the subductions can be performed using known
linear combinations of the M components for each J:

o'l = @ x Dl | = S SHM(T x plwlym
M
_ M 7,
- ZSA,A@J M,
M

where A is the “row” of the irrep (1 ...dim(A)). Note that,
although (95(,])\ can have an overlap with all spins contained

"Except the exotic 4*~, which requires a minimum of four
derivatives.
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TABLE III. Continuum spins subduced into lattice irreps
A(dim).
irreps
0 A1)
1 T,(3)
2 7,(3) ® EQ2)
3 T,(3)® T,(3) ® A,(1)
4 A()eT,3)eT,3)® EQ)

within A (as listed in Table III for J = 4) it still carries the
memory of the J from which it was subduced, a feature we

exploit in Section VI. The subduction coefficients, Sﬁﬁ/’{,

form an orthogonal matrix, ZMSQ%S%{: = SANO s

and this fixes their normalization.

The subduction coefficients can be constructed in a
number of different ways and here we give a simple
derivation. More details and an alternative method using
a group-theoretic projection formula can be found in
Appendix A.

The simplest case is the subduction of the J = 0 opera-
tor; from Table III, this only subduces into the A; irrep and
so trivially we have 89\’31 = 1. The J = 1 operator is also
relatively straightforward, only subducing into the 7 irrep
with subduction coefficients shown in Appendix A. Note
that S%%\ = 8,,-um, wWhere the shift by 2 places A in the
range 1...dim(A).

Subduction coefficients for all higher spins can be con-
structed by iteration, starting from the / =0 and J =1
coefficients and using

IM _ Ji, M oJr, M. A Al A2
SWl=Nd > SAI,AiSAzz,Aic(A A /\2>

AL Ay My, M,

X (Jy, My Jy, Mp|J, M).

Here (J,, M,;J,, M,|J, M) is the usual SO(3) Clebsch-
Gordan coefficient for J; ® J, — J and

A A A,
C(A A )u)

is the octahedral group Clebsch-Gordan coefficient for
A; ® A, — A. N is a normalization factor, fixed by the
requirement that the subduction coefficients form an or-
thogonal matrix as discussed above. We give explicit val-
ues for the subduction coefficients up to J =4 in
Appendix A.

In Table IV we show the number of operators we have in
each lattice irrep, i.e., using all operators with up to 3
derivatives. We have performed extensive tests of this
operator set to check that two-point correlators having
operators in differing irreps at source and sink are consis-
tent with zero and that similarly within an irrep, correlators
of differing rows at source and sink are consistent with
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TABLE IV. Number of distinct operators in each lattice irrep
APC, using all operators with up to three derivatives. Each
operator has dim(A) “rows”.

APt 13 AfT 5 AT 12 AT 6
T/t 2 Ty 2 T, 18 T, 26
TSt 2 TS 14 T,T 18 T, 18
EYY 17 ETC 9 E* 14 E- 12
Aft 5 AfC 5 A* 4 Ay 6

zero. All such “orthogonality tests” are passed in explicit
calculation.

For our final spectral extractions, we form a correlator
matrix in a given irrep A and average over equivalent rows,
A,

— A
dim(A) AZZI Citn

A =
ch=

_ 1 V1 Al
= gy SO0,

where i, j labels the different operator constructions within
the irrep A.

V. CORRELATOR ANALYSIS

The variational method for spectral extraction [33-35],
which takes advantage of a redundancy of operators within
a given symmetry channel, is now in common usage
[5,13,15-17]. This method finds the best (in a variational
sense) linear combination of operators within a finite basis
for each state in the spectrum. Mathematically, it boils
down to the solution of a linear system of generalized
eigenvalue type:

C(Ov"™ (1) = A,()C(1p)v" (1) ()

where A,(fy) = 1 and where there is an orthogonality
condition on the eigenvectors of different states (i1, 11'),
v C(ty)v" = 8, v. As discussed in Ref. [5], this or-
thogonality condition is very powerful in extracting near
degenerate states which would be difficult to distinguish by
their time dependence alone.

In our particular implementation of this method, Eq. (2)
is solved for eigenvalues A, and eigenvectors v", indepen-
dently on each time slice, ¢. Ensuring the same ordering of
states between time slices requires some care owing to the
high degree of mass degeneracy in the meson spectrum.
Rather than the obvious ordering by size of eigenvalue
which might fluctuate time-slice by time-slice for nearby
masses, we associate states between time slices using the
similarity of their eigenvectors. We choose a reference
time slice on which reference eigenvectors are defined,

v = v"(), and compare eigenvectors on other time

slices by finding the maximum value of v;‘e’fT C(ty)v" which

associates a state n with a reference state 1. Using this
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procedure, we observe essentially no “flipping” between
states in either the principal correlators, A, () or the eigen-
vectors v"(z), as functions of r.

Within finite-volume field theory, which has only dis-
crete eigenstates, any two-point correlator can be ex-
pressed as a spectral decomposition,

NEgal
Z Zj

Cii(t) = Z—

n My

e ", 3)

where this is an approximation valid providing ¢ < L,, the
temporal length of the box. The “overlap factors”, Z}' =
(n|O;|0) are related to the eigenvectors by ZI' =
2™ 2y C i (19). The state masses follow from fit-
ting the principal correlators, A, (f), which for large times
should tend to e™=(~), In practice we allow a second

exponential in the fit form and use even relatively low time
slices in order to stabilize the fit. The fit function is

/\n(l) = (1 — An)e_mn(l_to) + Aue—m;](t—to)y (4)

where the fit parameters are m,,, m, and A,,. Typical fits for
a set of excited states within an irrep are shown in Fig. 1
where we plot the principal correlator with the dominant

0 R 4
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L S creszzz 09 “{E 1‘ ‘
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FIG. 1 (color online). Principal correlator fits according to Eq.
(4). Eight states from the 7} ~ irrep (743, 16°). Plotted are A"(7) -
e"™"=1) data and the fit for 7, = 8. Data used in the fit are shown
in black, while points excluded from the fit are in grey.
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time-dependence due to state 11 divided out. In such a plot
one would see a horizontal line of value 1.0 in the case that
a single exponential dominates the fit and clearly the data
shows flat behavior for 7 > ¢.

Empirically we find that the size of the second exponen-
tial term decreases rapidly as one increases #,. Further, we
find, in agreement with the perturbative analysis of
Ref. [35], that for large f, values the mj extracted are
larger than the value of m,_giy(c), the largest “first” ex-
ponential mass extracted. At smaller 7, values, this is not
necessarily true and is indicative of forcing an incorrect
orthogonality as discussed below. The values of A, and m},
are not used elsewhere in the analysis.

From the spectral decomposition of the correlator,
Eq. (3), it is clear that there should in fact be no time
dependence in the eigenvectors, while our independent
solution of the generalized eigenvalue problem as a func-
tion of ¢ has allowed there to be. The time-independent
overlap factors, Z}', which will be used later to identify the
spin of extracted states, follow from fitting the Z!'(z),
obtained from the eigenvectors, with a constant or a con-
stant plus an exponential (in the spirit of the perturbative
corrections outlined in [35]).

The importance of choosing an appropriately large value
of t, was emphasized in Ref. [5]. In this paper, we will
follow the “‘reconstruction” scheme outlined therein in the
selection of #;. In short, the masses, m,,, extracted from fits
to the principal correlators and the Z}' extracted from the
eigenvectors on a single time slice are used in Eq. (3) to
“reconstruct” the correlator matrix. This reconstructed
matrix is compared to the original data for all r> 1,
with the degree of agreement indicating the acceptability
of the spectral description. The description generally im-
proves as one increases #, until at some point the increase
in statistical noise prevents further improvement. In par-
ticular, see Fig. 6 in Ref. [5], where the effect of choosing
o too small is clearly seen. Forcing the dim(C)-state
orthogonality, v™!C(t))v" = 8, , in a situation where
accurate description of C(f,) requires more than dim(C)
states leads to a poor description of the correlator matrix at
times ¢t > t;. The reconstruction procedure gives a guide to
the minimal #, for which the correlator matrix is well
described by the variational solution. The sensitivity of
extracted spectral quantities to the value of 7, used will
be discussed in detail in Sec. VII A, but in short it is usually
necessary for us to use 7o = 7.

The RECONFIT2 code used for variational analysis is
available within the ADAT suite [36].

VI. DETERMINING THE SPIN OF A STATE

In principle, the most rigorous method to determine the
spin of a state is to perform the extraction of the spectrum
for each lattice irrep at successively finer lattice spacings,
and then to extrapolate the energies in each irrep to the
continuum limit. There, one expects to see degeneracies
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emerge according to the pattern of subduction, free of
splittings arising from the discretization effects. Thus, for
example, a spin-3 state would appear as degenerate ener-
gies within the A,, T, and T, irreps. This procedure has
been successfully applied to identify a number of low-lying
states in the calculation of the glueball spectrum within
pure SU(3) Yang-Mills theory [37].

There are two reasons why this technique is not cur-
rently practical for the QCD meson spectrum. First, the
procedure relies on a series of calculations on progres-
sively finer lattices, and hence at increasing computational
cost. Second, the continuum spectrum, classified according
to the continuum quantum numbers, exhibits a high degree
of degeneracy; when classified according to the symme-
tries of the cube, the degree of degeneracy is vastly mag-
nified. Identification of degeneracies between irreps would
require a statistical precision far beyond even that of the
high-quality data presented here, as seen in Fig. 10 and
subsequent figures.

To alleviate these difficulties, it would be useful to have
a spin-identification method that is effective when using
data obtained at only a single lattice spacing. Obviously,
this lattice spacing should be fine enough that rotation
symmetry has been restored to a sufficient degree in order
that it be describing QCD. The mass degeneracy compli-
cations outlined above suggest that any alternative method
needs to use state information beyond just the mass. Our
suggestion is to consider the values of the vacuum-to-state
matrix elements, or “overlaps” ((11]@]0)) of our carefully
constructed subduced operators.

The operators constructed in Section IV transform irre-
ducibly under the allowed cubic rotations, that is, they
faithfully respect the symmetries of the lattice. However,
it is also clear from the method of construction that each

04 06 08 1.0

FIG. 2 (color online). Normalized correlation matrix
(C;;/{[C:C;j) on time slice 5 in the T; ~ irrep (743, 16°).
Operators are ordered such that those subduced from spin 1
appear first followed by spin 3 then spin 4.
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FIG. 3 (color online). Overlaps, Z, of a selection of operators
onto states labeled by m/mgq in each lattice irrep, A~ (743,
16). Z’s are normalized so that the largest value across all states
is equal to 1. Lighter area at the head of each bar represents the
one sigma statistical uncertainly.

operator (95\” carries a “memory”’ of the continuum spin,
J, from which it was subduced. If our lattice is reasonably
close to restoring rotational symmetry, we would expect an
operator subduced from spin J to overlap strongly only
onto states of continuum spin J. In fact, this is clearly
apparent even at the level of the correlator matrix as seen in
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Fig. 2. Here the correlator matrix for 7, ~ is observed to be
approximately block diagonal when the operators are or-
dered according to the spin from which they were sub-
duced. The elements outside the diagonal blocks are
smallest when the operators feature zero, one, or two
derivatives and are somewhat larger for three-derivative
operators. Possible reasons for this will be discussed later
in this section.

The effect is seen even more strongly at the level of
individual states, where the “overlaps”, ZI' = (11]0,]0) for
a given state show a clear preference for overlap onto only
operators of a single spin. In Fig. 3, we show the overlaps
for a set of low-lying states in the A~ irreps of the 743 163
calculation, the mass spectrum being shown in the second
pane of Fig. 10. While we show only a subset of the
operators for clarity, the same pattern is observed for the
full operator set.

In fact, we can be more quantitative in our analysis and
compare the overlaps obtained in different irreps. In the
continuum, our operators are of definite spin such that
OlO"M|J, M"Yy = Z18; 118y a0 and therefore
<0|(9[AJ,])‘|J’, My = 8\"7115, ; so that only the spin J
states will contribute, and not any of the other spins present
in the irrep A. Inserting a complete set of meson states
between the operators in the correlator and using the fact
that the subduction coefficients form an orthogonal matrix,
ZMSi”A){Sf{KT = Op A0, v, We obtain terms in the corre-
lator spectral decomposition proportional to ZL/FzL;
these terms do not depend upon which A we have sub-
duced into, up to discretization uncertainties as described
below. Hence, for example, a J/ = 3 meson created by a
[/ = 3] operator will have the same Z value in each of the
A,, T, T, irreps. This suggests that we compare the
independently obtained Z-values in each irrep. In Fig. 4
we show the extracted Z values for states suspected of
being spin 2, 3, and 4 across the A~ irreps.

4 4 ———
By, /mo =1.201(4) Omg,/mq = 1.554(25) | 1 == | B, /ma =1.210(5) O ma,/mg=1626(16)| | .oy | Bma, /ma = 1.603(26)
m mp/mq =1190(4) O mg/mq =1.577(21) | ! 4 mr, /ma = 1.207(5) mr, fmo = 1.648(23)| | E mr, /ma = 1.620(12)
‘ T ‘ T 1 ‘ ® mp,/mo = 1.204(4) O my,/mq = 1.626(8) | | | ® e, /me, = 1.576(16)
3 : . - - | | 3 B mp/mq = 1.565(25)
e et g 1 - 1
1 | | | [
 @ss | svs® | ! | 3
2 ' ozm sog | X1 2 !
2 | | |
il | | |
o® Eee | TOT % | |
: i | | B ! o%o | go© x10 “H ;
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FIG. 4 (color online). A selection of Z values across irreps A~

for states suspected of being J = 2, 3, 4 (743, 163). Left to right, the

operators are (ay X DY)/ 72, (p X D)2, (py X DFLY 72, (ag X DY, ;)72 (by X D[fj_1 =72 (ay X DY Y2,

x D

D5£2)1=3’ (ag X D[13]1=2,J=3)J=3’ (a) I

(p x D )1=3 (p, ¥
3] _
Dy -3 ..

J
—2,]=3)
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FIG. 5 (color online).
A(t) - e™=%)_ Grey points not included in the fit.

As seen in Fig. 4, at finite lattice spacing there are
deviations from exact equality. Some discretization effects
scale with positive powers of the lattice spacing, such as
the effect of using finite differences to represent deriva-
tives. There are no dimension-five operators made of quark
bilinears that respect the symmetries of lattice actions
based on the Wilson formalism and that do not also trans-
form trivially under the continuum group of spatial rota-
tions. Thus, rotational symmetry breaking terms do not
appear until @(a?). This argument holds even though the
action used in this work describes an anisotropic lattice. As
a result, we expect the rotational breaking between lattice
irreps to be suppressed in both the spectrum as well as for
the wave-function overlaps. On the other hand, renormal-
ization mixing of high mass-dimension operators with
lower mass-dimension operators can give rise to effects
scaling with negative powers of the lattice spacing and
these we would expect to cause more trouble when Z
values are to be used to determine spin. In practice, we
do see the largest discrepancies for operators with three
derivatives, but even here the effects are not so large as to
prevent use of the method. We suggest that it is our use of
smoothed fields” that has rendered these mixings relatively
small, sensitive as they are to high-energy physics which
has been filtered out.

In summary, we have demonstrated that the Z values of
carefully constructed subduced operators can be used to
identify the continuum spin of states extracted in explicit
computation, as least on the lattices we have used.

Given that this is possible, suppose we confidently iden-
tify the components of a spin-J meson subduced across
multiple irreps; what then should we quote as our best
estimate of the mass of the state? The mass determined
from fits to principal correlators in each irrep can differ
slightly due to unavoidable discretization effects and
avoidable fitting fluctuations (such as variations in fitting
time-region). In practice, we have found that variations due
to changes in the fitting of principal correlators are typi-
cally much larger than any discretization differences and
we propose a simple scheme to minimize these in a final
quoted mass. Rather than averaging the masses from inde-
pendent fits to multiple principal correlators, we perform a

2All gauge links are stout-smeared and the distilled quark
fields are effectively low-momentum filtered.

Fit to the four subduced principal correlators of a 4" meson using a common mass (743, 163). Plotted is

joint fit to the principal correlators with the mass being
common. We allow a differing second exponential in each
principal correlator so that the fit parameters are m,,, {m/}},
and {A}}. These fits are typically very successful with
correlated y?/Ngyo close to 1. An example for the case of
4*% components identified in AT *, T/*, Ty ", E*" is
shown in Fig. 5. When we present our final, spin-assigned,
spectra, it is the results of such fits that we show.

VIL. STABILITY OF SPECTRUM EXTRACTION

In this section, we consider to what extent the extracted
spectrum changes as we vary details of the calculation,
“keeping the physics constant”. Variations to be consid-
ered are the specific reference time slice, f(, used in the
variational analysis, the set of meson operators used, and
the number of distillation vectors. We will use the 7~
irrep in the 743, 16° dataset to demonstrate our findings.

A. Variational analysis and ¢,

Our fitting methodology was described in Section V,
where reconstruction of the correlator was used to guide
us to an appropriate value of #,. As seen in Fig. 6, for 7y =
6, the low-lying mass spectrum is rather stable under
variations of #;. This appears to be mostly due to the
inclusion of a second exponential term in Eq. (4), which
is able to absorb much of the effect of other states “‘leak-
ing” into this principal correlator through use of an inac-
curate orthogonality. The contribution of this second
exponential typically falls rapidly with increasing #, both
by having a smaller A and a larger m’.

Overlaps, Zi, = (11/0;]0), can show more of a sensitivity
to ¢, values being too low as one might expect given the
argument of an incorrect orthogonality in the generalized
eigenvector space at small #,. In Fig. 7, we present overlaps
of various J = 1 states onto an operator subduced from
J = 1 and the overlap of an extracted J = 4 state onto the
only JP€ = 4=~ operator in our basis. Clearly, in the J = 4
case, one only extracts a stable Z for large #;, which is
likely due to heavier J = 4 states only here becoming
negligible contributions to C(#).

We note that one may fit the extracted Z(z,) with either a
constant or a constant plus an exponential as shown in
Fig. 7. Since the data between 7, values are strongly
correlated, the statistical uncertainty is not significantly
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FIG. 6 (color online). Extracted 7, - mass spectrum as a
function of #y. Horizontal bands to guide the eye.

decreased by this procedure, but it does seem to “‘average
out” some of the fluctuations in fitting at each #,.

In summary, it appears that variational fitting is reliable
provided ¢, is “large enough”. Using two-exponential fits
in principal correlators, we observe relatively small ¢,
dependence of masses, but more significant dependence
for the Z values which we require for spin-identification.
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FIG. 7 (color online). Extracted overlaps as a function of 7.

Fits to a constant or to a constant plus a decaying exponential

shown by the colored regions. (a) JP¢ = 17" overlaps onto

(a, X D[jlil)J=1. (b)y JPC=4"" overlap onto (a; X
[3] =

DJ|3=2,J=3)J .
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B. Changing the operator basis

Our approach, as described in Section IV, is to construct
a variational correlator matrix featuring all operators avail-
able to us in a given irrep at up to three derivatives. Here we
consider the effect on the extracted spectrum of reducing
the size of this operator basis. In the plots that follow, we
will use the color-coding described in Table V to indicate
spin-assignments.

In the first four columns of Fig. 8, the operator basis is
reduced by discarding operators, first discarding those
whose diagonal correlators are noisiest and then, in
Fig. 8 [column (d)], discarding all three-derivative opera-
tors except the one J = 4 operator. We observe that it is
only high in the spectrum that any change takes place and
that there it is only at the level of statistical fluctuations. In
Fig. 8 (d), the first excited J = 3 state is no longer ex-
tracted—this is most likely due to the basis only retaining
two J = 3 operators.

In the next four columns, we deliberately discard opera-
tors we believe are important. In Fig. 8 [column (e)], all
operators featuring commutators of derivatives are dis-
carded. As discussed later in this manuscript, these opera-
tors may have good overlap onto states containing an
excited gluonic field. The state at m/mg ~ 1.35 is ob-
served, using the full basis of operators, to have large

overlap onto a commutator operator, (7 X D[Jﬂl)f =1 along
with smaller overlaps onto noncommutator operators such
as p. In column Fig. 8 (e), the commutator operators being
discarded, we find that this state is less cleanly extracted
when it can only be produced through its suppressed non-
commutator overlaps. Otherwise the spectrum in Fig. 8 (e)
is rather similar to that obtained with the full operator
basis.

In Fig. 8 [column (f)], all operators subduced from spin
J =3 are discarded. The observed spectrum is almost
identical to that with the full basis with the expected
exception of the previously identified J = 3 states. This
would appear to suggest that one cannot rely upon discre-
tization corrections to continuum J = 1 operators to reli-
ably produce J = 3 states. In Fig. 8 [column (g)], the
continuum J = 4 operator is also discarded and the J =
4 state vanishes. Finally, in Fig. 8 [column (h)], the full
operator basis, less the continuum J = 4 operator is used
yielding a spectrum that lacks only the J = 4 state.

TABLE V.  Color-coding used in spectrum irrep plots.

black J=0

red J=1

green J=2

blue J=3

yellow J=4

orange undetermined J
grey badly determined mass
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FIG. 8 (color online). Extracted 7| ~ mass spectrum for vari-
ous operator bases. (a)—(d) are “‘reasonable’ operator bases, (e)—
(h) discard important operators. (a) Full basis (dim= 26),
(b) Full basis less two noisiest @’=! and noisiest @’=3 (dim=
23), (c) Full less four noisiest @’=! and two noisiest ©’/=3
(dim= 20), (d) No three-derivative operators except O’/=*
(dim= 13), (e) No operators with commutators of derivatives
(dim= 15), (f) No 0’=3 (dim= 20), (g) No 0/=>* (dim= 19),
(h) No O’/=* (dim= 25).

In summary, one should be sure to have operators with
continuum overlap on to all the spins you expect to see.
There is apparently little benefit, in terms of improving the
precision of determination of the low-lying spectrum, of
reducing the operator basis size by discarding operators.

C. Number of distillation vectors

The results presented so far came from analysis of
correlators computed on 163 lattices using 64 distillation
vectors. We might wonder how the determination of the
spectrum varies if one reduces the number of distillation
vectors and thus reduces the computational cost of the
calculation. This is particularly important given that, as
shown in [20], to get the same smearing operator on larger
volumes one must scale up the number of distillation
vectors by a factor equal to the ratio of spatial volumes.
To scale up to a 32° lattice this would require 64 X (32)* =
512 vectors, which is not currently a realizable number
without using stochastic estimation [38].

PHYSICAL REVIEW D 82, 034508 (2010)

In Fig. 9 we show the low-lying part of the extracted
T;~ spectrum on the 743 16° lattice as a function of the
number of distillation vectors used in the correlator con-
struction. It is clear that the spectrum is reasonably stable
for N = 32 but that the spectrum quality degrades rapidly
for fewer vectors.

It is also possible within distillation to implement a
smearing operator other than [0 = YN, £,&0. This is
particularly relevant for large N, where this smearing
choice tends toward the identity and hence does not ac-
tually filter out high-energy modes. An alternative smear-
ing includes a weight function as (J,, = >V | w(A,)E, &L,
where w(A,) might, for example, be a Gaussian damping
e~ 7"M/4 In Fig. 9, we also show the spectrum obtained
using N = 64 and o = 5.7 which, as shown in the inset, is
a smearing radius that crudely approximates using only 24
distillation vectors. The thus extracted spectrum differs
very little from the N = 64 spectrum, suggesting that
with 64 vectors we are still far away from the ‘‘un-
smeared” limit.

One place (not shown in Fig. 9) where the effect of
reduction of the number of distillation vectors is seen
clearly is for high-spin states. In particular the 4™~ state
seen at m/mgq ~ 1.6 in T} ~ is not reliably extracted for
N < 48. The need to have large numbers of distillation
vectors to reliably extract high-spin mesons can be de-
scribed in a simple free-field picture: In the continuum
without gauge-fields, the eigenvectors of the Laplacian
(— V2 =1Kk*¢) can be expressed as &(7F) = ek’ =
47TZ€i€jg(kr)ZmY§”*(0, d))Yg”(lg). From this expression,
it would appear that all € values should contribute for
any value of the eigenvalue k*> and that high-spin states
should be excited even by low eigenvectors. But this argu-
ment does not take account of the radial behavior which
must be compared to the typical size of hadrons. The
spherical Bessel function j,(kr) is peaked at low values
of kr with the peak position moving out to larger kr for

o
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FIG. 9 (color online). Extracted 7, - mass spectrum as a

function of number of distillation vectors. Green points and inset

show the effect of using a modified smearing operator [1,, =
N w(d)€m g with w(d,) = e 7 A/4,
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larger €. Thus, since hadrons are only of finite size, R, in
order that the peak of j,(kr) remain within r <R as ¢
increases, one must also increase the value of k. Thus, to
have considerable amplitude multiplying Y, and hence
large overlap onto high-spin mesons, as € increases one
must include eigenvectors of higher eigenvalue, k.

In summary, one is limited as to how few distillation
vectors can be used if one requires reliable extraction of
high-spin states. The results shown here suggest 48 distil-
lation vectors on a 16> lattice is the minimum, so 96
distillation vectors on a 20° lattice are likely to be required.

VIII. RESULTS

As outlined in Section II, our first results are obtained on
lattices with pion masses between 400 and 700 MeV. The
heaviest pion mass corresponds to the three-flavor sym-
metric point, while the lower masses have lower light-
quark masses but the same bare strange quark mass; these
are found to have only mild SU(3), breaking, as indicated
by mg/m, which reaches only 1.4 on the lightest lattice,
well below the physical value of 3.5. For each lattice
(except one), we compute correlators on two volumes,
16 X 128 and 20° X 128. More complete details of the
number of configurations, time sources and distillation
vectors used are given in Table L.

A. m_ ~ 700 MeV results (743)

This is an example of an exact SU(3)-flavor symmetric
calculation. Since we are computing only the connected
two-point correlators, we will obtain the mass spectrum of
degenerate octets (e.g., degenerate pions, kaons and 7g).
Results on 167 lattices have already been reported in
Ref. [8]. To obtain singlet states like the 7, which with
exact flavor symmetry cannot mix with the ng, we would
need disconnected two-point correlators.

Variational analysis as described in previous sections
leads to the irrep spectra from 163 lattices shown in
Fig. 10. The color-coding, tabulated in Table V, indicates
the continuum spin as determined by methods described in
Section VI. The A~ overlaps are shown in Figs. 3 and 4.
If the spin of a state is not unambiguously determined by
the methods of Section VI, it is represented by an orange
box. On the other hand, if a state is extracted in the varia-
tional analysis but its mass cannot be accurately deter-
mined from fits to the principal correlator, it is
represented by a grey box.

In Fig. 11, we show side-by-side the spectra obtained
from 16° and 20° lattices. We note that there is really no
change significantly outside statistical fluctuations be-
tween the two volumes. We also note in passing that the
128 distillation vectors used on the 20° lattices give a

*This analysis is somewhat oversimplified since in fact the size
of hadrons is likely to increase with increasing spin.
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FIG. 10 (color online).
lattices.

Extracted spectra by irrep from 743 163

smearing that is essentially equivalent to that obtained by
using 64 distillation vectors on the 163 lattices. In fact, we
observe that the independently extracted Z values between

the two volumes scale rather accurately as ‘[%.

Given the success of spin-identification we can summa-
rize the results in a spectrum labeled by continuum J*¢
quantum numbers, Fig. 12. Here we show only well-
determined low-lying states.

There are a number of notable features within this
spectrum. We will argue later that the pattern of states
and the lack of volume dependence appears to be incom-
patible with the presence of discrete meson-meson energy
levels and as such we are lead to interpret the spectrum in
terms of single-hadron states. Under that assumption, there
appears to be much of the n>$*!L; distribution of non-
exotic states predicted by the gg quark model (e.g., [39]).
The left-hand pane of Fig. 12 has candidates for a ground-
state S-wave pair (0~",177) and a radial excitation at
around m/mgq ~ 1.1. There is a complete (1,2,3)" ",
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FIG. 11 (color online).

27" D-wave set around m/mgq ~ 1.2. The region around
m/mgq ~ 1.6 appears to contain parts of a D-wave radial
excitation and a G-wave ((3,4,5)”~,4~%).* In the middle
pane of Fig. 12, there is a clear P-wave, ((0, 1,2)"*,177)
around m/mgq ~ 0.9 and a probable radial excitation near
m/mq ~ 1.3. At m/mgq ~ 1.4, there is a complete
F-wave, (2,3,4)"+, 37—,

In the right-hand pane of Fig. 12, we see clearly a set of
exotic JPC states, not accessible to a simple gg pair. Such
states can be described in terms of constituents if additional
degrees-of-freedom, either gluonic or extra gg pairs are
included. If the extra component is gluonic, the states are
known as hybrid mesons and within models of gluonic
excitation, such as the flux-tube model [40], there is usu-
ally a roughly degenerate set of 17, 0%, and 27~ states.
A hybrid nature for these states is suggested by the large
overlap onto operators with essential nontrivial gluonic
structure as described below. In this calculation, we ob-
serve a 1~ " lightest, with a pair of 0"~ and 27~ states
nearly degenerate a little higher in mass. A second 2¥~ is
then close to asecond 1~ *. States with exotic 0~ ~ and 3~
quantum numbers are found to be considerably heavier,
well above m/mq = 1.6.

There are also a number of nonexotic quantum num-
bered states which do not appear to fit into the g n>S*'L,
classification. The 0~ *, 1~ pair at m/mgq ~ 1.3 is proba-
bly too light to be the second radial excitation of the
S-wave (most likely the pair near m/mq ~ 1.55) and is
partnered with a totally unexpected 2~ * state. There may
be excess states too in the positive parity sector, but the
situation is not totally clear above m/mgq ~ 1.4. We note
that the mass scale of these first excess states is comparable

*We have no operators capable of producing a spin-5 meson in
the continuum.
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Extracted spectra by irrep from 743 16 and 203 lattices.

to that of the lowest-lying exotic states shown in the right-
hand pane of Fig. 12. Furthermore, these states have char-
acteristically different overlap behavior compared to most
other extracted states: they all overlap considerably onto
operators featuring the commutator of two derivatives, that
is the gluonic field-strength tensor.

Given the large overlap onto operators requiring a non-
trivial gluonic field distribution, we identify these states as
hybrid mesons with nonexotic quantum numbers. Such
nonexotic hybrids are predicted in models that assume
nontrivial gluonic field configurations like the flux-tube
model or constituent gluon models. In principle, such
states can mix strongly with regular quark-model ¢g states
leaving a spectrum which is not simple to interpret. In our
results such large mixing may be present for the “excess”
0~ " state which has a large overlap also onto operators like
rys; however, this mixing does not appear to be present
to the same degree for the 17~ state.

Detailed model-dependent interpretation of the spec-
trum, comparing the overlap values with the expectations
of a bound-state quark model (analogous to that done for
charmonium in [41]) and considering the degree of mixing
of nonexotic hybrids and quark-model states will follow in
a subsequent publication.

B. Quark-mass dependence

Here we move away from the SU(3) flavor point by
lowering the mass of two degenerate “light” flavors and
keeping one remaining strange flavor heavy. We have
access to isovector mesons from the connected correlators
with a light quark and a light antiquark, and kaons from the
connected correlators with a light quark and a strange
antiquark. It is also possible for us to compute the con-
nected part of correlators with both quark and antiquark
being strange, the so-called strangeonium. We recognize
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calculation.

that neglecting the disconnected contributions to these
diagrams leads to a nonunitary description of this particu-
lar element of our calculation. Of course it is also true that
strangeonium states are not necessarily QCD eigenstates
since being isoscalars they can mix with light-light iso-
scalars and pure-glue states through disconnected dia-
grams.” The classic extreme examples are the 7, 7’
system which is mixed almost as SU(3)p octet-singlet
and the , ¢ system which is mixed almost as €€, s3.

In the figures, we show extracted state masses as a

. 2
function of €o =3 EZ’ZIW which we use as a proxy for
1

the quark mass [29]. The state masses are presented via
mmglys. The ratio of the state mass (my) to the

a;mq
()-baryon mass computed on the same lattice removes
the explicit scale dependence and multiplying by the physi-
cal ()-baryon mass conveniently expresses the result in
MeV units. This is clearly not a unique scale-setting pre-
scription, but it serves to display the data in a relatively
straightforward way. We remind the reader that the data
between different volumes and quark masses are uncorre-
lated since they follow from computations on indepen-
dently generated dynamical gauge-fields.

1. Isovector mesons

Figures. 13—17 show the extracted spin-assigned spectra
for mesons of isospin-1 having a range of J©¢ quantum

>Work is ongoing within the Hadron Spectrum Collaboration
[20] to utilize distillation methods to efficiently compute dis-
connected two-point functions, allowing extraction of the true
QCD eigenstates.

numbers (the neutral members of the I = 1 triplet are
eigenstates of C, the charged members are eigenstates of
G-parity with G = —C). We use the Particle Data Group
(PDG) [42] nomenclature for meson states throughout. In
those cases where two states are almost degenerate, we
shift one in the horizontal direction by an amount € =
0.005 for clarity. In some cases, for comparison, we plot
the mass of the lightest meson-meson pair which in S-wave
would have the appropriate quantum numbers—the mass
follows from the simple sum of the extracted masses on
these lattices. This may involve a so far undetermined
isoscalar mass and in these cases we use the approxima-
tions m,, = m,, my, = m,, and the crudely estimated 7
mass from [29]. Occasionally, we extract a low-lying state
that is reasonably robust against the changes in analysis
detailed in Section VII, but whose principal correlator is
quite noisy leading to a relatively poorly determined
mass—we show these states with dashed symbols.

Not shown are results for 0~ isovectors, the p,, which
are exotic. The lightest such state we extract is at least
2 GeV heavier than the p at all our quark masses. The
exotic 3~ %, the 773, is found to be similarly heavy.

2. Kaons

In the kaon sector, we no longer have charge-
conjugation as a good quantum number, with only J”
remaining in the continuum which is then subduced into
AP on a cubic lattice. We compute a correlator matrix for a
given A’ using the concatenated list of all A*™ and AP~
operators.

Using a combination of experiment and models [43,44],
there are suggestions that resonant kaon states are mixtures
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of basis states of opposite C with a rather large mixing
angle. For example, the axial kaons, K;(1270), K,(1400),
are suggested to be mixtures of basis states K4(C = +),
K,3(C = —) with a mixing angle near 45°. Clearly this
mixing relies upon being far away (m2™*/mi>* = 3.5)
from the SU(3)p limit, since in that limit there is effec-
tively restoration of (a generalization of)) C-symmetry. All
the lattices presented in this paper can be considered to be
rather close to the SU(3) limit (1 = mg/m, < 1.39) and
we observe little or no mixing. This is suggested at the
correlator level (see Fig. 18 for the 840 163 correlator), and
verified in the Z values of the spectrum extraction [see
Fig. 19 for the 808 16° lattice (left) and the 840 16° lattice
(right)]. While the 840 lattice shows a greater degree of
opposite C mixing than the 808, indicating an increased
breaking of SU(3)r symmetry, the mixing is still very
small in absolute terms and states are approximate eigen-
states of C. The 840 kaon spectrum is shown in Fig. 20 with
the dominant C-eigenstate noted for each state.

The light-quark-mass dependence of kaon states is dis-
played in Figs. 21-23, where color-coding indicates the
dominance of C-eigenstates within the spectrum.
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for 808 163 (left) and 840 167 (right) lattices. Operators with
C = = are grouped to show clear separation. Normalization as
in Fig. 3.
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correlation  matrix

(C;;/{JC::C}j) on time slice 5 in the T} kaon irrep on 840 16°
lattice. Operators with C = — first, C = + second.

FIG. 20 (color online).  Spin-identified spectrum of kaons from
the 840 lattices. 16* (solid lines) and 20* (dashed lines) spectra
mostly agree well. The plus and minus symbols indicate the
dominance of a C = =* eigenstate in that state. Ellipses indicate
that there are heavier states with a given J”C but that they are not
well determined in this calculation. The rather dense spectrum of
axial kaons above m/mg ~ 1.3 is suppressed for clarity.
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3. Strangeonium

In Fig. 24, we show only a subset of possible strangeo-
nium JPC, those for which there is some phenomenological
evidence that the QCD eigenstates are in fact close to being
pure s5. We note that using this particular scale-setting
scheme we observe light-quark-mass dependencies that are
very flat.

IX. MULTIMESON STATES

In the previous section, we presented the extracted spec-
tra from calculations with four different light-quark masses
on two different lattice volumes. In each case, we were
able, using the operator overlaps, to match states across
irreps that we believe are subduced from the same contin-
uum spin state. This suggests an interpretation of the
spectrum in terms of single-hadron states, while in princi-
ple our correlators should receive contributions from all
eigenstates of finite-volume QCD having the appropriate
quantum numbers. This includes multimeson states which
in finite volume have a discrete spectrum. In fact, in a
theory of noninteracting mesons, the spectrum is rather
simple, being approximately6

®We are neglecting small discretization effects in the disper-
sion relation.
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mA(D)B(— )] = \Jm3 + 1B + yfm} + 5P (5

where only discrete values of the momentum p are allowed
by the boundary conditions: a,p = ZL—” (ny, ny, n;) (L is the
spatial lattice extent in lattice units, i.e., 16 or 20 for the
lattices we are using). Clearly this spectrum, with the
exception of the states with p = (0,0,0), will change
considerably under changes in volume. In essence, the
distribution of single-particle states across irreps is deter-
mined by discretization effects from the finite lattice spac-
ing which we find to be small. On the other hand, the
distribution of meson-meson states is determined by the
cubic symmetry of the lattice box boundary, and we would
only expect the distribution to resemble that of full rota-
tional symmetry in the limit of small LZ—Z compared to the

splitting between hadrons. We are not close to this limit on
these lattices where the minimum momentum unit is =
500 MeV.

Within QCD, mesons interact and this interaction has a
range of possible forms, for example: the repulsive inter-
action of two pions in the isospin 2 channel, the somewhat
attractive interaction of two pions in isospin O that gives
rise to the o enhancement, and the strong attraction in
isospin 1 that corresponds to the relatively narrow p reso-
nance. As shown by Liischer [27], taking account of hadron
interactions, the finite-volume energy spectrum will be
modified with respect to Eq. (5). The modification (at least
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FIG. 22 (color online).

in the elastic case) can be related to the hadron-hadron
scattering phase shift which encodes details of attractive or
repulsive interactions and even of resonant behavior.

A simple schematic framework in which to view the
finite-volume eigenstates is in terms of admixtures of
idealized noninteracting basis states. For example, at
low-energy in the 7, ~ channel, one might consider there
to be a space of noninteracting pion-pair states with the
various relative momenta allowed in a finite cubic box. In
addition, we can allow a space of single-hadron vector
bound states like the p, which we assume to be localized
to a region of space somewhat smaller than the size of the
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lattice box. The pion-pair state energies vary rapidly with
changing box-size while the “p” bound-states would be
essentially volume-independent for volumes larger than
the size of the bound-states. If one supplies a resonant
phase-shift (such as the p in 77 scattering), Liischer’s
formulas give rise to avoided level crossings as a function
of lattice size that resemble the behavior of approximate
eigenstates within time-independent quantum mechanical
perturbation theory. The finite-volume eigenstates can be
viewed then as admixtures of the ““p”” bound-states and the
pion-pair states where the degree of mixing is determined
by the phase-shift and the volume of the box.
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FIG. 24 (color online).
JPC =17"7,3"",2"",

Lightest “strangeonium” states with

In Figs. 25 and 26 we show the extracted 743 spectrum
superimposed with the positions of noninteracting meson-
meson states for 16% and 20° lattices. The distribution
across irreps is determined using the “in-flight” cubic
symmetry group theory tables from [45,46]. We show
only pairs of SU(3)y octet states (since we have not deter-
mined the masses of the singlets or any other possible
multiplets) and do not indicate the multiplicity of flavored
states for each level (which follows from the SU(3)
Clebsch-Gordan series for § ® 8 — 8).

What is clear from Figs. 25 and 26, is that the extracted
spectrum does not seem to be related in any obvious way to
the noninteracting two-particle spectrum. The distribution
of two-particle states across different irreps is determined
not by the cubic symmetry of our discretized lattice, but
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FIG. 25 (color online). 743 spectrum on 163 and 20 lattices.
Boxes show the extracted A~* spectrum. Lines are the non-
interacting two-meson state positions estimated from Eq. (5) and
the tables of [45,46] (solid lines at p = (000)), the small num-
bers indicate the multiplicity. Additional flavor multiplicity not
shown. Also shown is the position of the lowest three-meson
threshold.

rather by the spatial momenta allowed by the boundary
conditions on the cubic volume in which we are perform-
ing our calculations. We have seen that the observed spec-
trum split across the different irreducible representations
conforms to that expected for single-particle states, with
only negligible effects from cubic symmetry on the scale
a,. In contrast, the pattern across different irreps expected
for multiparticle states would be quite different. This leads
further credence to our assertion that two-particle states are
contributing little to the calculated correlators.

How can we explain the lack of two-meson states in the
spectrum we observe? Clearly, the basis set of operators
employed has a very small overlap with states that pre-
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FIG. 26 (color online). As Fig. 25 for A*+.
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dominantly resemble a composite of two mesons with
well-defined and opposite momentum. This small overlap
means the contribution to the correlation function coming
from the significant number of two-meson states is not
resolved within the statistical precision of our calculation.

This effect has been observed before in other dynamical-
quark Monte Carlo measurements [47,48] of the energies
of states that are above threshold, although perhaps not to
the dramatic degree seen in this study. One cause of this
suppression may come directly from confinement dynam-
ics of strongly interacting gluons. The interquark gluon
flux shows considerable reluctance to break in the regime
where it is energetically favorable to form two well-
separated color singlets. This has been seen [49,50] as a
very small overlap of an operator comprising a gluonic
string onto the ground state of this system.

The overlap of a localized quark-bilinear operator onto a
two-meson state will be suppressed by 1/+/V, where V is
the lattice volume, if the operator creates a resonance with
a finite width in the infinite volume limit. This falloff is
matched by a growth in the density of states with the
volume, and the resonant state thus maintains a finite width
as the mixing with each discrete state falls. The simulations
in this study are carried out in cubic volumes with side
lengths bigger than 2 fm, which might be sufficiently large
that the mixing between one of the low-lying—two-particle
states and a resonance is suppressed sufficiently for it to be
undetectable with the quark-bilinear operator basis.

Even if the mixing between localized single-hadron
states and two-meson states to form resonancelike finite-
volume eigenstates is not small, there still remains a prac-
tical difficulty associated with using only quark-bilinear
operators. In this case, the state can be produced at the
source time slice through its localized single-hadron com-
ponent, while the correlator time dependence obtained
from e~ " will indicate the mass of the resonant eigenstate.
Consider a hypothetical situation in which a single two-
meson state, denoted by |2), mixes arbitrarily strongly with
a single localized single-hadron state, |1), with all other
states being sufficiently distant in energy as to be negli-
gible. There will be two eigenstates

|a) = cos@|1) + sind|2) |b) = —sinf|1) + cosf|2),

with masses mgq, my. At the source (and sink), only the
localized single-hadron component of each state overlaps

with the operators in our basis and hence the overlaps,
Z?’b = (a, b|©,|0), will differ only by an overall multi-
plicative constant, Z§ = cosGZlD, zZh = - sinHZ!-D. As
such, the eigenvectors v?, v¥ point in the same direction
and cannot be made orthogonal. Thus, the time dependence
of both states will appear in the same principal correlator as

A(t) ~ Age =10 4 Ageml=r0) 4

Since m, and my most likely do not differ significantly
(on the scale of a; 1), it will prove very difficult to extract a
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clear signal of two-exponential behavior from the principal
correlator. This is precisely why the variational method’s
orthogonality condition on near degenerate states is SO
useful, but we see that it cannot work here and we are
left trying to extract two nearby states from a y? fit to time
dependence. Typically this is not possible and reasonable
looking fits to data are obtained with just one low-mass
exponential.

If this is what is occurring in parts of our extracted
spectrum, that we are extracting states which are admix-
tures of ‘“‘single-particle” and multimeson states, but that
we are not extracting the orthogonal mixtures, how should
we interpret the mass values we are extracting? One con-
servative approach would be to suggest that our mass
values are accurate only up to the hadronic width of the
state extracted, since this width is correlated with mixing
with multimeson states via the scattering phase shift.

We would like to explicitly observe resonant behavior of
states in our calculations and as such we must countenance
the inclusion in our operator basis of operators with larger
numbers of fermion fields in order to obtain healthy over-
lap with multihadron states. This can be done while re-
specting the lattice symmetries using the tables in [45,46].
By using single-meson operators subduced into the ‘“‘in
flight™ little-group irreps from operators of definite con-
tinuum helicity, it may prove possible to utilize something
similar to the spin identification carried out in this paper.
These constructions are underway, and distillation, with
the possible use of a stochastic estimator [38], affords an
efficient numerical means of implementing them [32].

X. SUMMARY

We have described in some detail our method for ex-
tracting a large number of excited states using dynamical
anisotropic lattices, distillation technology and a varia-
tional analysis with an extensive basis of carefully con-
structed operators. We have demonstrated the stability of
the spectra with respect to changing the specific set of
meson operators used, the number of distillation vectors
and the details of the variational analysis. Our method of
spin identification based on operator overlaps has enabled
us to confidently assign continuum spin to many states.

We have successfully applied these techniques for two
volumes on multiple mass sets: one with three degenerate
flavors of quark (743) and three with lighter u and d quarks
giving mild breaking of SU(3); and pion masses down to
~400 MeV. In all cases, we see mostly no significant
volume dependence. On all mass sets and volumes, we
are able to reliably extract a large number of excited states
with all PC combinations, states with high spin, up to and
including spin four (4**, 4~ and 4™ 7), and states with
exotic quantum numbers (0*~, 17" and 2% 7). The exotic
states are particularly interesting and their presence points
to the influence of explicit gluonic degrees-of-freedom. In
Fig. 27, we summarize our results on exotic states and
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FIG. 27 (color online). Summary of extracted isovector exotic
states. For comparison 1~ results from Refs. [21-26] are also
plotted.

compare with previous lattice QCD results from Refs. [21-
26].

The extracted spectra show features of the n?5*! L state
assignment of bound-state quark models, along with states
(both exotic and nonexotic) which do not seem to lie within
that classification. A detailed model-dependent interpreta-
tion of these spectra is called for, comparing overlaps with
quark-model expectations and determining the degree of
mixing of nonexotic hybrids and quark-model states. This
work is ongoing.

We have presented kaon spectra and observe little or no
mixing between the two charge-conjugation eigenstates
(C = + and C = —); the resulting spectrum largely cor-
responds to the superposition of the C = — and C = +
isovector spectra modulo the mass shift due to the light-
quark—strange-quark mass difference. In the SUQ3)p
limit, there can be no such mixing and on the mass sets
considered we are still rather close to this limit (1 =
myg/m, = 1.39), so it is therefore not surprising that the
mixing is small. Of particular interest at lighter quark
masses, closer to the physical mg/m_ = 3.5, will be the
mixing between the axial kaons, K,(1270) and K, (1400),
which, using a combination of experiment and models
[43,44], is expected to be large.

We have argued that we see little evidence for two-
particle states in our spectra and that to study such states
we need to construct operators with a larger number of
fermion fields. Such constructions are in progress and we
believe that the addition of these operators will lead to a
denser spectrum of states which can be interpreted in terms
of resonances via techniques like Liischer’s and its inelas-
tic extensions.

With the excited state spectra extracted herein, we argue
that it does not make sense to attempt chiral extrapolation
given that we cannot form a clear field-theoretic interpre-
tation of the extracted energy levels. Once we have a
handle on the two-meson levels, we can apply the tech-
niques mentioned above to extract something like a phase
shift, or more generally elements of the S-matrix, at dis-
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crete energy values. The phase shift may show resonant
behavior, which can be fitted with, in the simplest case, a
Breit-Wigner form. The mass and width parameters of this
Breit-Wigner are quantities which should be more amena-
ble to chiral extrapolation.

A further avenue of study is the computation of discon-
nected two-point correlators giving access to isoscalar
mesons; here we are interested in determining how QCD
decides to mix light and strange. In addition, methods
similar to those detailed in this paper are being applied in
the baryon sector where the lattice irrep spectrum suffers
from an even greater degree of degeneracy. An important
aim of the Hadron Spectrum Collaboration is the calcula-
tion of light meson photocouplings which are relevant for,
amongst other things, the GlueX experiment at the JLab
12 GeV upgrade where light mesons will be studied in
photoproduction, with particular interest in exotics.
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APPENDIX A: SUBDUCTION COEFFICIENTS

Here we give a derivation of the subduction coefficients
before listing their explicit values for all integer spins up to
J = 4. An alternative derivation using the group-theoretic
projection formula is also described.

The continuum spin J is reducible under the group of
lattice rotations (the octahedral group or equivalently the
cubic group). We use ‘“‘subduction” coefficients to project
the continuum based operators onto their suitable octahe-
dral group based versions via

V1 _ J.M 7y,
OA,A - ZSA,A@JM’

M

(AL)

where O’M are the continuum operators with some definite
total spin J and spin component M. For each J — A, there
is a matrix in the values of M and the rows of the irrep, A,
that performs this mapping, i.e., the subduction coeffi-
cients, Sf\ﬂ;’ .
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As shown in Table III, the J = 0 continuum spin sub-
duces only onto the one-dimensional A; irrep and so
trivially we have 59{,0,1 = 1. The simplest nontrivial sub-
duction is that of continuum J = 1 into the 7' irrep and this
is given by

(J=1)_’T1
A M E 0 1
| ) 0 0
2 0 1 0
3 0 0 ]

where the 7| is a faithful representation of J =1 (The
basis used here follows Ref. [2]).

The subduction coefficients for higher spins can be built
up using continuum and octahedral group Clebsch-Gordan

coefficients using
A A A,
SN =N c( )
, A%z mhzf'lz AN A
X SNSRIy, mys Ty, molJ, M), (A2)
Here (J;, M,;J,, M,|J, M) is the usual SO(3) Clebsch-
Gordan coefficient for J; ® J, — J and

A A A,
C(A A /\2)

is the octahedral group Clebsch-Gordan coefficient for
Ay ® A, — A. N is a normalization factor, fixed by the
requirement that the subduction coefficients form an or-
thogonal matrix, ZMSf\’KSkKT = S A0

This iteration formula can be constructed by noting that,
for appropriately normalized states, Siﬁ;{ = (A, AlJ, M)

and so

Sf\ﬂf‘ = NZ Z (A AA L A A, A)

Ay, Ay my,my
XAAY, Ay Ay, 1Ty, mys Ty, my)

X (Jy, mys Jy, mylJ, M). (A3)

Substituting for the continuum and octahedral group
Clebsch-Gordan  coefficients and (A, A3 Ay, Ayl
mysJy,my) = Ay, 417y, my XAy, A2|J2,m2>=3k;?;118kﬁ22
gives the result in Eq. (A2).

For J =2 to J = 4, the subduction coefficients are
shown below:

=2)—T,
AM ‘2 1 0 -1 -2
1 0 1 0 0 0
| o
2 83 0 0 0 NG
3 0 0 1 0
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(J=2—E
AM ‘2 1 0 -1 -2
1 ‘0 0 1 0 0
2 715 0 0 0 715
(J=3)—T
AM ‘3 2 1 0 -1 -2 -3
1 0 0 L o 0 0 Na
2 0 0o 0 -1 0 0 0
3 i oo 0 oo 0
(J=3)—T,
A3 o 10 -1 -2 -3
1 0 0 50 o0 0 -\
2 o —-L 0 0 —
No) 2
3 \/g 0 0 0 —f o0 0
(J=3)—A4,
A M |3 2 10 -1 -2 -3
_ 1
1 l o L0 0 0 L0
(J=4)— A
A M \4 32 1 0 -1 -2 -3 —4
Y - N
(J=4-T
AM |4 3 2 0 -1 -2 -3 —4
7 1
1 0 0 0 —ff 00 o -% o
2 L0 0 0 0 0. 0 0 -+
3 e £ 0 0 0 1 0o o 0
J=4)—>T,
AM 14 3 2 0 -1 -2 -3 -4
1 7
1 0 0 0 £ 0 0 0 J; 0
2 0 0 815 0 0 0 -5 0 0
7 _ 1
3 0 I 0 0 -k 0 0 0
(J=4)—E
AM 4 32 1 0 -1 -2 -3 —4
1 Z 0 0 0 —5 0 o o I
1 1
00 0 % 0 o0 0ok o0 0

An alternative method for constructing the subduction
coefficients is by using the group-theoretic projection for-
mula:

d /
(95(,])\ = g_A Z FQM(R)ZRMM’@J’M,
M/

G REG

(A4)

where G is the octahedral group, g; is the order of the
group G (i.e., 24), d is the dimension of octahedral group
irrep A, Ry is an element of G acting on O™ and
Fﬁ M(R) is the representation of R in A. Here the operators
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O’M" have definite spin and so Ry, = Dfé), w(R) (a
Wigner-D matrix). The Ff, M(R) are found, for example,
by considering a basis for the irreps in terms of spherical
harmonics [2] and then using the transformation properties
of spherical harmonics under rotations. Once all possible
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operators (O[AJ,]/\ have been found (considering all M and ),
the linearly independent combinations are constructed.
These combinations then give the subduction coefficients
which are identical, up to possible phases and choice of
basis, to those obtained using the method described above.
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