
Meson and baryon spectrum for QCD with two light dynamical quarks

Georg P. Engel,1 C. B. Lang,1 Markus Limmer,1 Daniel Mohler,1,2 and Andreas Schäfer3
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We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on

lattices of size 163 � 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of

322(5), 470(4), and 525(7) MeVand lattice spacings close to 0.15 fm are investigated. Results for ground

and excited states for several channels are given, including spin two mesons and hadrons with strange

valence quarks. The analysis of the states is done with the variational method, including two kinds of

Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial

excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular,

at small pion masses. We discuss the possible appearance of scattering states, considering masses and

eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state,

however, in most channels we cannot identify them. Where available, we compare our results to results of

quenched simulations using the same action.
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I. INTRODUCTION

The overwhelming majority of hadronic states in the
Particle Data Group’s collection are hadron excitations
[1]. QCD as the theory of strong interactions should give
the whole spectrum of hadrons, based on the few quark
mass parameters and a scale. So far, the lattice regularized
form of QCD provides the only known way to perform
abinitio calculations of these observables. Only recently
there have been lattice calculations with dynamical quark
masses close to their physical values; most calculations
still rely on extrapolations from unphysically heavy
quarks. A reliable determination of the excited states still
remains a hard challenge. The present calculation is an-
other step in this enterprise.

For decades a lattice realization of chiral symmetry has
been an obstacle; quite early it was observed [2] that a
solution might be Dirac operators obeying an nonlinear
relation, the so-called Ginsparg-Wilson (GW) condition,
overlooked for many years. Meanwhile we know several
Dirac operators obeying that condition. One of them, the
overlap operator [3,4], has an explicit construction based
on a domain-wall approach [5,6] in the limit of infinite
extent of a fifth dimension. Another formulation (perfect
fermions) is formally exact [7] but, like other approaches,
can be constructed only in an approximate version [8]. The
lattice version of chiral symmetry underlying the GW
relation has been given in [9]. GW-Dirac operators are
numerically expensive to construct but have nice properties
like protection from additive mass renormalization or au-
tomatic OðaÞ improvement.

Because of the construction method, which, e.g., in the
case of overlap fermion, involves computation of an op-
erator sign function, simulations with dynamical GW fer-
mions are very expensive, typically two orders of
magnitude more expensive than simulations with the sim-
ple, improvedWilson Dirac operator. A problem especially
apparent for GW fermions concerns tunneling between
different topological sectors. Because of the Atiyah-
Singer theorem we know that topological sectors of the
gauge configurations are related to the net number of exact
zero modes of the Dirac operator (counted according to
their chirality signature).
The so-called Chirally Improved (CI) Dirac operator is

an approximate solution of the Ginsparg-Wilson equation
[10,11]. Its construction is based on a formal parameteri-
zation of the Dirac operator inserted in the GW equation
and solved in truncated from. This fermion action has
already been used extensively in simulations by the BGR
Collaboration in the quenched approximation. It was found
that at least in quenched simulations the Oða2Þ corrections
for baryon masses are small [12] and that renormalization
constants behave similar to an exact chirally symmetric
action [13].
In this paper we present results of dynamical simulations

with two mass-degenerate light quarks using this action.
The parametrization, as well as details of the simulation
and some early results, are given in [14,15]. The small
discretization errors allow us to use rather coarse lattices in
order to save computational costs.
Here we discuss the results concerning several meson

and baryon masses derived on the gauge field configura-
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tions of [15]. We present results of ground states as well as
excited states, making use of the variational method
[16,17]. In addition to the light (dynamical and valence)
quarks we also consider another, heavier valence (strange)
quark and include the strange mesons and baryons in our
analysis. With the presently available data we neither
perform a continuum limit nor an infinite volume limit.
This may be justified considering the small discretization
errors and that our values for m�L should be large enough
to expect small finite volume effects due to the pion cloud.
However, in addition to pions ‘‘wrapping around the
Universe’’, finite volume effects can appear when consid-
ering large hadrons which may not ‘‘fit in the box’’. A
possible interpretation of our results involves such squeez-
ing effects in case of the excited baryons. Motivated em-
pirically, extrapolation to the physical pion mass is
performed naively, with a fit linear in the pion mass
squared. Preliminary results have been presented in [18].

Recent results on light and strange hadron spectroscopy
with focus on excited states following different approaches
can be found in [19–33].

This paper focuses on results for hadron masses from
dynamical CI simulation and is organized as follows: In
Sec. II we review the setup and parameters of the simula-
tion, followed by the discussion of the methods to extract
hadron masses in Sec. III. Extrapolation to physical quark
masses and sources for systematic errors are discussed in
Sec. IV. In Secs V and VI we then present our results on
hadron masses. We conclude in Sec. VII.

II. SIMULATION DETAILS

A. Fermion action and gauge action

All details of the simulation method and our checks for
equilibration and autocorrelation are given in [15]. For
completeness we summarize the essential features here.

We use the Chirally Improved Dirac (DCI) operator
[10,11]; this is an approximate solution to the Ginsparg-
Wilson equation. It is obtained by insertion of the most
general ansatz for a Dirac operator into the GW equation
and comparison of the coefficients. This leads to an alge-
braic set of coupled equations, which can be solved nu-
merically. The accuracy of the approximation depends on
the number of terms included after the truncation, in our
case considering paths to neighbors up to a maximum path
length of 4 lattice units. The paths and coefficients used are
found in the appendix of [15]. In principle, one could
optimize the coefficients in the parametrization for each
gauge coupling and quark mass value with respect to chiral
symmetry. However, defining the setup this way, the pre-
dictive power of the simulation is weakened, and, further-
more, comparison of different sets of gauge ensembles is
more complicated. We therefore decided to use the same
paths and coefficients in all our dynamical runs, and thus
the bare Dirac operator is the same in all discussed ensem-
bles. This leads to additive mass renormalization which is

corrected for by determining the partially conserved axial
current mass, also called axial Ward identity mass for each
ensemble.
We include one level of stout smearing [34] as part of the

definition of DCI in order to improve the fermion action
further. The parameters of stout smearing are adjusted such
that the value of the plaquette is maximized (� ¼ 0:165 in
the notation of Ref. [34]).
It was found that the combination of the DCI with the

tadpole-improved Lüscher-Weisz gauge action shows nice
properties [11]. We use this gauge action as discussed in
[15].

B. Algorithm

We generate the dynamical configurations with a Hybrid
Monte-Carlo algorithm [35], with the implementation for
DCI described in [14]. Performance improvement is ob-
tained by Hasenbusch mass preconditioning [36] with two
pseudofermions. Further improvement is achieved by the
use of a chronological inverter by minimal residue extrapo-
lation [37] and a mixed precision inverter [38]. A discus-
sion of the autocorrelation time, the eigenvalues of the
Dirac operator, and the topological sector of the generated
configurations is found in [15]. We choose to analyze every
fifth configuration and neglect any remaining weak corre-
lations. The distribution of the eigenvalues ofDCI indicates
that we may simulate small pion masses on relatively
coarse lattices. The algorithm was found to show frequent
tunneling through topological sectors.
The gauge configurations are determined on an SGI

ALTIX-4700 (a machine with a peak rate of
62.3 TeraFlop/s for 9728 processors) using for each con-
figuration (i.e., one unit of Hybrid Monte-Carlo time) a
total amount (summed over the processors used in parallel)
of Oð60Þ Central Processing Unit hours (CPUh) for set A
and up to Oð120Þ CPUh for set C. The quark propagators
for the analysis are computed with a multimass solver, and
thus the CPU time depends only on the smallest (the
dynamical) quark mass. Computing the quark propagators
for one configuration and 60 sources (five source types,
cf., Sec. III B and 12 Dirac-color sources each) takes
approximately the same amount of CPU time as for gen-
erating one gauge configuration. A recent comparison for
different actions can be found in Ref. [39].

C. Simulation parameters

We use lattices of size 163 � 32 at three different values
of the gauge coupling �LW and bare quark mass parameter
m0, see Table I. The lattice spacing is determined via the
static quark potential, using a Sommer parameter of
r0;exp ¼ 0:48 fm. The bare simulation parameters are

chosen such that the lattice spacing is of approximately
the same magnitude in all three ensembles. Hence their
physical volume is of the same size as well ( � 2:4 fm).
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Considering the chiral extrapolation, many calculations
make use of the so-called mass-independent scheme (cf.,
the discussion in [40]). In this scheme the lattice spacing is
determined (for fixed bare gauge coupling) in the chiral
limit and assigned to all ensembles with that gauge cou-
pling. Since so far we only have one mass value at each
gauge coupling, we make use of a mass-dependent scheme,
differing by OðaÞ corrections.

III. METHODS IN HADRON SPECTROSCOPY

A. Variational method

Excited state contributions are suppressed by Oðe��EÞ
in the hadron correlators. However, the so-called varia-
tional method [16,17] allows to extract excited states in
principle. This method has been used extensively by the
BGR Collaboration [15,41–45] and has gained popularity
in recent years.

A simple hadron interpolating field operator with the
right quantum numbers will have a correlation function
that asymptotically decays with e�Et, where E denotes the
ground state energy. However, at finite time distance there
will be contributions from excited states embedded in the
continuum of scattering states. On a lattice with finite
spatial extent the corresponding energy spectrum is dis-
crete. In case there are no dynamical quarks, the eigen-
states may be interpreted as bound states of the valence
quarks in the interpolator. In the fully dynamical situation
such a simple interpretation is not possible, since mixing
with all many-particle states with the same quantum num-
bers can occur. The eigenenergy levels are related to the
scattering phase shifts of the coupling channels [46–49]
and the space of lattice hadron interpolators has to be large
enough, in order to represent the possible intermediate
states with sufficient quality.

Given a set of N interpolators (with given quantum
numbers) in the variational method one constructs the
corresponding correlation matrix

CijðtÞ ¼ h0jOiðtÞOy
j j0i ¼

XN

k¼1

h0jOijkihkjOy
j j0ie�tEk : (1)

The idea is to offer a basis of convenient interpolators,

wherefrom the system chooses the linear combinations
closest to the physical eigenstates. Diagonalization of the
correlation matrix of the interpolators thus allows to dis-
entangle the physical states, if the state of interpolators is
sufficiently complete. The generalized eigenvalue equation

CðtÞ ~vk ¼ �kðt; t0ÞCðt0Þ ~vk;

�kðt; t0Þ / e�ðt�t0ÞEkð1þOðe�ðt�t0Þ�EkÞÞ
(2)

gives the energies of the eigenstates, where �Ek is the
distance of Ek to the closest state. In the interval t0 � t �
2t0 it would be determined by the distance to the first
neglected state ENþ1 [50]. However, we use small values
for t0 (1 or 2), since otherwise the quality of the diagonal-
ization decreases. We therefore determine the eigenvalues
in a larger window of t values.
The corresponding eigenvectors represent the linear

combinations of the given interpolators which are closest
to the considered physical states at each time slice. Hence
they may be used to derive some information on the
composition of the physical modes [51,52].
Obviously, the number of interpolators should be large

enough, they should be independent and have overlap
primarily with the low modes of the theory, in order to
reduce contamination from highly excited states. In actual
calculations, including more interpolators unfortunately
increases the statistical noise in the diagonalization.
Thus, the optimal choice is usually to use only those
interpolators, which show good overlap with the low physi-
cal modes.

B. Quark source smearing

Hadron correlation functions are built from quark propa-
gators D�1, which are computed by inverting the Dirac
operator on a given quark source. Extended sources im-
prove the signal and also allow for a larger operator basis in
the variational method. We use three different kinds of
sources: narrow (0.27 fm), wide (0.55 fm), and a (P wave
like) derivative source.
The sources are computed using Jacobi smearing

[53,54]: A pointlike source is smeared out by applying a
polynomial of the hopping term

S�;K ¼ XK

n¼0

�nHnS0; (3)

Hð ~n; ~mÞ ¼ X3

j¼1

ðUjð ~n; 0Þ�ð ~nþ ĵ; ~mÞ

þUjð ~n� ĵ; 0Þy�ð ~n� ĵ; ~mÞÞ; (4)

where S0 denotes the point source. The resulting source
shape is approximately Gaussian. The parameters � and K
are tuned (for each ensemble of configurations) such as to
ensure approximately the same source width in all ensem-

TABLE I. Bare parameters of the simulation: Three ensembles
(A,B,C), at different gauge coupling �LW and quark mass
parameter m0. The number of configurations, lattice spacing
from the static potential assuming a Sommer parameter of
0.48 fm, the pion mass, the (nonrenormalized) axial Ward
identity mass, and the dimensionless product of the pion mass
with the physical lattice size are given. For more details see [15].

set �LW m0 configs a [fm] m� [MeV] mAWI [MeV] m�L

A 4.70 �0:050 100 0.151(2) 525(7) 43.0(4) 6.4

B 4.65 �0:060 200 0.150(1) 470(4) 35.1(2) 5.7

C 4.58 �0:077 200 0.144(1) 322(5) 15.0(4) 3.7
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bles. Narrow (wide) sources will be denoted by quark
subscripts n (w) in the remainder of this paper.

The derivative sources S@i are obtained by applying the

covariant difference operators on the wide source Sw [45],

Pið ~x; ~yÞ ¼ Uið ~x; 0Þ�ð ~xþ î; ~yÞ �Uið ~x� î; 0Þy�ð ~x� î; ~yÞ;
S@i ¼ PiSw; (5)

where î is one of the spatial directions. The derivative
sources were found to be crucial for some states [55], as
will be confirmed in this paper as well. In the following,
derivative sources are indicated by the subscript @i of the
quark field.

C. Constructing the interpolators

As already mentioned, we construct several interpola-
tors in each channel in order to be able to extract excited
states using the variational method. All sources are located
in a single time slice and built on configurations which
have been hypercubic (HYP) smeared in the spatial direc-
tions three times [56]. The main motivation for link smear-
ing is suppression of UV fluctuations which manifest
themselves, e.g., in the distribution of the plaquette.
Thus, the parameters of the spatial HYP smearing have
been optimized by a trade off between a maximum average
plaquette and a maximum of the minimum plaquette,
partly following the arguments of [57,58]. We obtained
the parameters �1 ¼ 0:8 and �2 ¼ 0:4, where �1 is the
parameter in the last step of the smearing algorithm, where
the center link is smeared.

The center positions of the quark sources are shifted for
subsequent configurations in order to decrease statistical
correlation of the data. The interpolators at the sink are
projected to zero momentum; thus for sufficiently many
configurations the sum projects to propagators of zero
momentum hadrons due to translation invariance. Tables
of the interpolators are found in the Appendix.

There exists another approach for interpolator construc-
tion developed recently, called ‘‘distillation’’ [59], which
we do not follow here. Recent results on hadron spectros-
copy following this approach are found in [30,32].

1. Meson interpolators

We consider isovector mesons, thus there are no dis-
connected diagrams. Using spatially isotropic sources (n
and w), the quantum numbers of an interpolator are deter-
mined by the combinations of the spinor components
(Dirac content). This restricts the meson to just a few
(nonexotic) channels of spin � 1. A way to enlarge the
basis of interpolators and access higher spin states is given
by considering the direct group product of spinor and
spatial structure. The decomposition to the irreducible
representations then leads to interpolators with definite
quantum numbers [60–64]. We realize a nontrivial spatial

structure by using the derivative sources, which transform
according to the lattice spin irreducible representation T1.
Depending on the quark content and the implementation

of the derivative sources, symmetrization of the interpola-
tors is needed in order to have definite C parity. Hence,
light meson interpolators are symmetrized properly, while
symmetrization is omitted in the strange meson sector (see
Appendix). Our strange meson correlator calculation omits
cross correlation matrix elements corresponding to inter-
polators with different C-parity quantum numbers in the
limit of degenerate quark masses. Therefore, when analyz-
ing strange mesons, we have to restrict ourselves to subsets
of interpolators sharing the same JPC quantum numbers in
the limit of degenerate quark masses.

2. Baryon interpolators

For the construction of baryon interpolators we use only
Gaussian smeared quark sources ðn; wÞ. In case of the
nucleon � and � we use three different Dirac structures,
in case of the � and � only one. Since a baryon is built
from three valence quarks, there are 23 ¼ 8 possible
smearing combinations. If there is isospin symmetry,
some of the resulting 8 interpolators are very similar to
others, which we thus prune from the considered set of
interpolators. We end up with 18 interpolators in the nu-
cleon channel, 6 in the � and � channels and 24 in the �
and � channels (see Appendix). We project to definite
parity in each channel.

3. Energy levels

In full QCD calculations the single hadron states couple
to channels with two or more hadrons, like the even
number of pions in the � sector. Although the original
hadron is projected to its rest frame, the scattering states
have internal relative momenta. For finite spatial extension
the admissible values of the momenta depend on the spatial
size and the (Euclidean) discrete energy levels are related
to the phase shift of the scattering states. In the elastic
region this relationship has been discussed in [46–49].
Neglecting further interactions of the hadronic bound

states, the energy level EðA; BÞ for two free hadrons reads

EðAð ~pÞ; Bð� ~pÞÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ j ~pj2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ j ~pj2
q

Þ
� ð1þOðapÞÞ: (6)

The hadrons A and B have back-to-back momenta since the
whole state is projected to zero momentum. In the infinite
volume limit, there is a continuum of scattering states. In a
finite box, the momentum ~p can take only discrete values,
determined by the boundary conditions a ~p ¼
2�ðnx; ny; nzÞ=L, where L ¼ 16 in the present work. In

the S wave, the lowest 2-particle state level thus shows
vanishing relative momentum, while in the P wave, the
lowest 2-particle state level has a momentum of aj ~pj ¼
2�=L.
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The lowest energy levels of the fictitious two-free-
hadron state for each ensemble are indicated in the figures
using symbols � and þ; provided the energy levels are in
the range of our investigation and can be estimated from
our results. The corresponding noncorrelated statistical
uncertainty, neglecting the hadronic interaction and finite
volume effects, is of the magnitude of 5 to 60 MeV. For
clarity, these error bars are suppressed in the figures if the
error is smaller than 30 MeV, and, furthermore, we always
omit the error bar in case of continuous curves of many-
particle states in the figures.

In many of our hadron correlators, due to the parameters
of the simulation and the resulting pion masses, two-
particle intermediate states will have an energy larger
than the ground state energy. As an example, the � could
formally couple to two pions with relative momentum (to
build the P wave); but this is forbidden for kinematical
reasons in our case, even for the lightest pion mass of
ensemble C. There may be a slight shift of the lowest
energy level due to avoided level crossings, though.
However, the higher levels could well be due to two-
particle states. In the � sector one would expect such an
energy level between the ground state and a possible �0. In
most other cases the expected two-particle state levels are
at least close to other observed possible resonance state
levels. Except for partially quenched results in the light
scalar channel, we do not observe such scattering state
levels, or, if they are there, we cannot distinguish them
from single-particle states.

A possibility to shed some light on the nature of the state
is to monitor the eigenvectors ~vk of Eq. (5) of the state
when varying parameters of the simulation. Ideally, one
compares the eigenvectors for several dynamical simula-
tions, but also partially quenched data can yield some
information. Since effects from partial quenching can shift
the energy level, corresponding results may also allow to
extract further information about the state.

For example, in the light and strange scalar channels we
find that our partially quenched results are well described
by partially quenched formulae of 2-particle states [65].
However, at the dynamical point our data do not allow for a
unique interpretation. Both the resonance and the scatter-
ing state may be present and contribute to the measured
energy level.

In the case of the negative parity baryon channels,
positive parity baryons and pseudoscalars might form scat-
tering states whose energy levels are consistent with our
results. While the extracted masses slightly favor the scat-
tering states, the eigenvectors do not allow for an interpre-
tation in terms of a level crossing and thus do not confirm
the picture of a scattering state at small pion masses, either.

An explanation for missing scattering states would be
weak coupling to the interpolators considered. In case of
the S wave, there is a noteworthy amplitude already at
small momenta, while in case of the P wave higher mo-

menta are needed. This may explain why we see possibly a
2-particle signal in the S wave of a0 (J

PC ¼ 0þþ) but not,
e.g., an additional energy level between the ground state
and �0 in the P wave of � (1��). Consideration of explicit
two-hadron interpolators may help.
It is known that channels with two or more particles are

suppressed by factors Oð1=L3Þ [66,67]. This suppression
comes on top of the generic suppression of the excited
states. Even in kinematical situations, where already the
ground state couples to scattering states, it turned out that
one has to include both, one- and two-particle states, in the
set of interpolators in order to see clear signals [68]. For
such attempts, see [69–73]. Unfortunately, the computation
of cross correlations of one- and two-particle states in-
trinsically includes disconnected diagrams, which are tech-
nically demanding and thus not considered here.

IV. COMPARING TO EXPERIMENT

A. Chiral extrapolation

We simulate at pion masses larger than the physical one.
Therefore, we have to rely on some extrapolation towards
small quark masses, if we want to make predictions at the
physical point. The analytic form of the chiral extrapola-
tion depends on the path taken in the parameter space of,
e.g., the lattice spacing, the quark mass, the gauge cou-
pling, and the volume. In chiral perturbation theory (ChPT)
[74,75] the quark mass is the only varying parameter. The
lattice spacing and the volume are assumed to remain
constant. In the mass-independent scheme (cf., the discus-
sions in [40,76]) the scale (the physical value of the lattice
constant) is set by extrapolating the lattice spacing towards
the chiral limit along some path in parameter space (e.g.,
constant bare gauge coupling). The extrapolated value is
then used for all ensembles along that path.
Since we have only one ensemble at each value of the

coupling, we cannot use this mass-independent scheme.
Hence, our path of extrapolation in parameter space im-
plies a mass-dependent scheme and formulae of ChPT
would have to be adjusted. Nevertheless, we assume our
path to be close to the one in the mass-independent scheme
and expect that the analytic form of the chiral extrapolation
should be similar, although with different expansion coef-
ficients. Therefore, we perform chiral fits linear in the pion
mass squared for all results and discuss possible other fit
forms in certain cases. Note that the fits include only the
three dynamical points, the partially quenched points are
left out. In the figures, the solid black curve shows the
chiral extrapolation, the dashed lines delimit the region of
one standard deviation. The results of the chiral fits are
summarized in Fig. 29.

B. Systematic effects

We set the scale via the static potential and the Sommer
parameter (Sec. II C) with r0 ¼ 0:48 fm. In the literature
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also other values have been used. We have only one
dynamical quark mass for each value of the gauge coupling
and thus cannot extrapolate to the chiral limit in order to
define the scale in the mass-independent scheme. More
dynamical points would be desirable for a more reliable
chiral extrapolation and will be included in future
calculations.

The strange quark is considered as a valence quark only.
In view of results including full strange quark dynamics
(e.g., [77]) we find, at least for the ground states, no
noticeable difference in the mass range considered here.

Discretization effects have been discussed for baryons in
the quenched simulation, where, due to the improvement of
the used action, only small Oða2Þ corrections have been
identified [12]. In order to confirm this for the dynamical
simulation we would have to perform our study at several
lattice spacings and lattice volumes. This is a future task. In
the extrapolation to the physical quark masses, using the
mass-dependent scheme, we disregard discretization errors
and discuss finite volume effects only qualitatively.

The physical size of our spatial lattice volume is �
2:4 fm. Finite volume effects due to ‘‘pions wrapping
around the world’’ are expected to be small in ensemble
A and B (m�L > 4), however, they could be significant
in ensemble C (m�L � 3:7). Squeezing of large
hadrons, which do not fit in the box, may be an obstacle
in the case of excited baryons. Indeed, we seem to
observe such effects. Studies with a larger volume are
planned.

A subtle issue is the choice of interpolators for the
various hadron states. For sufficiently large and complete
sets and exhaustive statistics the variational method would
produce the eigenmodes sufficiently well. In our case we
are restricted to few interpolators and modest statistics. We
attempt to optimize this situation by choosing suitable
subsets of interpolators, as discussed, motivated by pla-
teaus in the eigenvector components and exponential decay
of the eigenvalues in some fit range. This brings in certain
systematic effects, which will be reduced only by enhanc-
ing both statistics and the set of interpolators. We discuss
our choice for all hadrons considered subsequently. Indeed,
in some cases we find sizeable dependence on the chosen
sets.

Another possible systematic influence comes from
choosing t0 in the variational method and the fit range for
the generalized eigenvalues. In principle, that impact can
be estimated by choosing several values of t0 and varying
the fit range. For the final fit one should then choose a
window where this impact is negligible. However, in prac-
tice the corresponding choices are restricted by the given
signal-to-noise ratio for coarse lattices and weak signals.
We use t0 ¼ 1 in most (and t0 ¼ 2 in a few) cases and
perform a fit in the maximum range possible, which is,
however, often limited to 3 or 4 points for noisy
observables.

V. RESULTS: LIGHT HADRONS

Following the idea of the variational method, a large
basis of interpolators should be optimal. In practice, one
finds that increasing the number of interpolators also im-
plies an increased statistical noise. One thus has to find an
optimal balance when choosing the basis for the variational
method.
In each channel we take the subset of interpolators,

which yields the optimum plateaus of effective masses.
In order to find this subset, we first look at the diagonal
elements of the correlation matrix, which represent the
autocorrelation of the interpolators used. From that data
one has a first hint which interpolators are candidates for
such an optimal subset. To be more concrete, we extract
information about the interpolators such as to which physi-
cal state they couple dominantly, how strongly they are
affected by contamination of excited states, and until
which time separation the signal of the corresponding
physical state is reliable.
Usually, the so obtained set of interpolators includes a

number of interpolators which are known to have rather
large overlap with each other, due to, e.g., their common
Dirac structure. This in turn means that they are far from
being orthogonal and thus not well suited to build a basis of
the variational method. Thus, we proceed by singling out
subsets, applying the criterion of maximum orthogonality,
i.e., least overlap. Doing so, we obtain a number of candi-
date subsets, all of which are analyzed with the variational
method. The fit range of the plateau is chosen from the first
point without contaminations from higher states until the
plateau breaks down or the noise gets too large. This
qualitative criterion is made more precise by choosing an
optimal �2 as quantitative criterion for the fit.
The actual values of the energy levels are then deter-

mined by an overall exponential, correlated fit to the
eigenvalues at all time slices in the fit range.
This range is validated by comparison with the corre-

sponding plateau of the eigenvectors. The variational
method simultaneously yields results for several states
using one set of interpolators. However, we find that in
many cases the signal can be improved by considering
different sets for different states. The extracted masses of
such different sets agree well within error bars, but the
noise is reduced. Theoretically, one would expect to find
improvement by joining both sets of interpolators, but in
practice this means an increase of the noise, which in most
cases is the stronger effect. We show a plot of the effective
mass of the � meson as one example for consistent results
for two sets (see Fig. 4).
We present results on three ensembles of gauge configu-

rations (cf., Table I). In all plots, filled symbols denote
dynamical results and open symbols denote partially
quenched results, where the valence quark mass is always
larger than the sea quark mass. The symbols � and þ
represent energy levels of free scattering states, neglecting
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hadronic interaction and finite volume effects. The scale of
the vertical axis is set by the lattice spacing, as discussed,
unless stated otherwise. The scale of the abscissa is set
using the results for the pion mass squared. The tables of
the corresponding interpolators are found in the Appendix.
The chosen subset of interpolators is stated in the caption
of the figures.

A. Mesons with light quarks

We simulate two mass-degenerate light quarks and thus
use the symmetrized meson interpolators found in the
Appendix.

1. The 0�þ channel: �

In Fig. 1 the mass of the pion ground state is shown as
function of M2

� to indicate the statistical errors. In the
variational method, the observation range of the excited
states in this channel is limited by the backwards-running
pion (see also the discussion in [15]). This leads to short
plateaus for small pion masses and weakens the signal in
our simulations. Nevertheless, we find a clear signal of the
first excited state, compatible with experimental data. The
signal weakens towards smaller quark masses, thus the fit
at the dynamical point is motivated by the plateau at
partially quenched points and the behavior of the eigen-
values (see Fig. 2). We find no indication of an intermedi-
ate three pion state signal; a �� signal would be expected
at even higher energy values. The excited state signal is

expected to improve when using a lattice with a larger time
extent, in particular, in the case of ensemble C. We do not
see a reliable and stable signal of the second excitation.
The quenched results using the same action [45] showed,
within the errors, similar behavior as set A.

2. The 1�� channel: �

We find an excellent plateau for the ground state and an
excited state signal compatible with experimental data (see
Fig. 3). Here, the excitation signal improved using t0 ¼ 2,
which may indicate more contamination from excited
states in this particular channel. We decided to extract
the ground state result from the set of interpolators (1,4),
which displays a better plateau than the combination used
for the excited state. The consistency of the ground state
from (1,4) and the sets chosen for the excitation are shown
in Fig. 4. In ensemble B we furthermore see a signal of the
second excitation compatible with the �ð1700Þ. The physi-
cal �meson is a resonance which can decay into two pions
with relative momentum. The energy of the corresponding
lowest scattering state is determined by the mass of the
pion and the minimum nonvanishing momentum, defined
by the finite spatial extent of the lattice. On the lattice, for
our ensemble parameters the energy of this scattering state
would be above the mass of the �meson. Hence the ground
state of the channel is dominated by the � meson, which
does not decay and is therefore called ‘‘stabilized’’. One
might expect, however, a two-pion intermediate state be-
tween the � ground state energy and the signal associated
to �0, but no such state is observed here. It is suggested that
the coupling of the used interpolators to two-particle states
is strongly suppressed in the P wave.
In principle, T1 interpolators may couple to spin 3 states

with energy levels close to �0. However, from the naive
continuum limit of our interpolators we expect such cou-
pling to be small.
Using only ‘‘Gaussian-type’’ interpolators (i.e., without

derivative sources), the energy levels of the first excitation
are found to deviate slightly from the results presented
here. A possible reason could be mixing with the nearby
higher excited states or an early breakdown of the plateau
which can complicate the identification of a correct fit
range. Moving the used fit range 3–6 to 2–5 the excitation
level increases.
Comparing with quenched results using the same action

[45], we find that the dynamical � ground state comes out
significantly lighter than its quenched counterpart, which,
however, is partially due to the different Sommer parame-
ter value used in the quenched analysis (r0 ¼ 0:5 fm).
Again, the first excitation of the quenched simulation is
compatible with set A of the dynamical case. The dynami-
cal points B and C indicate a steeper slope pointing towards
the experimental results.
The isospin singlet vector meson 	 has mainly s�s con-

tent, and disconnected parts are suppressed (‘‘Zweig for-
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FIG. 1 (color online). Mass plot for the 0�þ channel (pion),
ground state, and first excitation. Filled symbols denote dynami-
cal results, open symbols denote partially quenched results.
Parameters of the three ensembles A, B, and C are found in
Table I. The list of the interpolators is found in the Appendix.
Results for the pion ground state are used to set the scale on the
abscissa, here and in other figures as well. The ground state is
measured using interpolator (1), the excitation using interpola-
tors (3,5,9,10) in ensemble A, (1,6,9,10) in B, and (3,7,8,11) in
C.
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bidden’’, cf., the decay channels in the experiments). Thus
we extract the 	 meson mass considering partially
quenched results of the � correlator. This is discussed in
Sec. VIA.

3. The 0þþ channel: a0

The scalar channel is difficult as usual. The mass plateau
is short and varies depending on the chosen set of inter-
polators. The ground state mass of a0 is very close to the
lowest energy level of the (dynamical) two-particle state
�
2 (see Fig. 5), as discussed in [78,79].

We find large effects due to partial quenching close to
the dynamical point at small pion masses which are very
obvious in ensemble C (see Fig. 5). The partially quenched
data do not smoothly extrapolate to the dynamical point.
An explanation has been offered in [65]: The partially
quenched states may couple to pairs of pseudoscalars

(composed of valence and sea quarks), leading to unphys-
ical contributions that cancel only in the fully dynamical
case. We find that our partially quenched data are well
described by the partially quenched formulae of the scat-
tering state, and thus interpret the partially quenched data
as the 2-particle state�
2. We stress that our results do not
allow for a clear interpretation as 1- or 2-particle state at
the physical point. The question of the coupling of our
interpolators to the scattering states has already been dis-
cussed in Sec. III C 3. Note that the scattering state K �K
cannot appear in our simulations since it involves strange
quark loops.
In quenched simulations scattering states cannot con-

tribute to the signal when using 1-particle interpolators.
Also, in particular, in the light scalar channel, ghosts may
appear and complicate the spectroscopy. A strategy to
disentangle the contributions has been discussed in [42].
The ground state energy level in quenched simulations
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FIG. 2 (color online). Effective mass plots left-hand side (lhs) and normalized eigenvalues (right-hand side (rhs), logarithmic scale)
for the 0�þ channel (pion) at the dynamical point (bottom) and at a partially quenched point (top) of ensemble C, using interpolators
(3,7,8,11). Ground state and the first excitation data are shown. The corresponding valence quark mass parameter and the fictitious pion
mass are indicated in the figure. The eigenvalues suggest that the first excitation can be fitted from t ¼ 3 to t ¼ 7; at t ¼ 8 we find a
kink at partially quenched data and even a loss of the signal at the dynamical point. The effective masses are proportional to the
derivative of the logarithm of the eigenvalues, thus showing huge error bars and very bad plateaus in case the eigenvalues are tumbling.
The fit to the excitation at the dynamical point is motivated by the plateau at partially quenched points and the almost stable behavior
of the eigenvalues. We remark that the final fit is an overall exponential fit of the eigenvalues for all points in the chosen range
3 � t � 7.
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with the same action [43,45] was extracted only at larger
pion masses. There it was essentially compatible with our
dynamical data of set A, extrapolating to the a0ð1450Þ
rather than to a0ð980Þ. The spectroscopy of the light scalar
channel appears to benefit from sea quarks.

4. The 1þþ channel: a1

Considering the pseudo vectors, we encounter some
practical difficulties. Gaussian shaped interpolators do
not yield reliable signals and derivative interpolators are
needed. We obtain short plateaus even for the ground state
and there appears an uncertainty associated with different
choices of interpolators. We show results from two sets of
interpolators to illustrate this issue (see Fig. 6). In princi-
ple, such a situation is possible if the interpolators couple
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FIG. 5 (color online). Mass plot for the 0þþ channel.
Interpolator (8) is used throughout. Top: Ground state of a0
and chiral extrapolation relying on a 1-particle interpretation are
shown. Bottom: Estimate of the two-particle state �
2 for
various parameters shown. The blue, red, and black curve (online
version) show a prediction of the partially quenched (‘‘pq’’)
scattering state �
2 for mval � msea in ensemble A, B, and C,
respectively. The green curve (online version) shows an estimate
of the dynamical (‘‘dyn’’) scattering state �
2 (mval ¼ msea).
Interaction of the bound states and finite volume effects are
neglected in the energy level of the two-particle state. For clarity,
the corresponding statistical error is omitted in the figure. The
partially quenched data suggests an interpretation in terms of the
two-particle state �
2, while no clear statement about the
particle content can be made at the dynamical point.
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Interpolators (7,8,13,14) in ensemble A, (6,11,14) in B and C.
Bottom: Interpolators (1,4).
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FIG. 3 (color online). Mass plot for the 1�� channel (�),
ground state, and first excitation. The ground state is measured
using interpolators (1,4), the excitation using interpolators
(7,8,13,14) in ensemble A, (6,11,14) in B and C. The estimated
energy level of the Pwave scattering state �� lies below the first
excitation in all three ensembles. The scattering state is not
observed, the reason may be too weak coupling to the used
interpolators. The coupling may be especially weak in case of P
wave scattering states. The statistical error of the 2-particle state
(based on the errors of the particle masses involved) is of the
magnitude of 5–10 MeV and therefore not visible in the figure.
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to different physical states or show different discretization
effects. In the absence of such effects, the results from
different sets should agree within error bars and, indeed,
the error bars overlap. Note that the a1ð1260Þ is a very
broad resonance, hence scattering states may complicate
the spectroscopy. Based on experiments one could expect
an S wave �� energy level below the a1 level at least for
ensemble C, which we do not observe.

The energy levels of quenched simulations using the
same action [45] appear a bit high. However, they are
compatible with the results presented in this work if one
considers the uncertainty associated with different choices
of interpolators.

5. The 1þ� channel: b1

Here the situation is similar to the 1þþ channel. The
usage of derivative interpolators is mandatory, nevertheless
weak plateaus are obtained and one finds an uncertainty
which is even larger than in the a1 channel. Again, we
show results from two combinations of interpolators (see
Fig. 7). Using interpolators (4,5) one gets a result rather far
from the experimental b1ð1235Þ, while the result of inter-
polator (8) is compatible with experiment within a large
error bar. Both results are consistent within error bars. The
energy level of the Swave scattering state �! is estimated
using the approximation m! ¼ m�. However, this rough

estimate does not allow for any precise statement about the
particle content of the measured state.

6. The 2þþ channel: a2

In the spin 2 channels we encounter for the first time the
situation which has orthogonal irreducible representations
(irreps) on the lattice, which couple to the same spin state
in the continuum limit. Hence we are able to compare
results from these different irreps. Figure 8 shows the
mass of 2þþ in irrep T2 and E. In both representations
using only one interpolator does not yield a reliable signal
and employing the variational method is necessary. The
resulting mass of T2 agrees with the experimental a2ð1320Þ
within one �. The resulting mass of E, however, comes out
too high, where the reason seems to be a large mass of
ensemble C, leading to a negative slope of a linear fit.

7. The 2�� channel: �2

Unfortunately, in the irrep T2 we can extract a mass only
in two of the 3 ensembles (see Fig. 9). Enlarged statistics
will be necessary in ensemble A in order to observe a
reliable mass plateau. Also in the other ensembles and in
the irrep E the mass plateaus are short and the fit ranges are
partly motivated by the clearer plateaus of partially
quenched mass results. Nevertheless, the mass obtained
is consistent with the experimental �2ð1940Þ (see Fig. 9).
An estimate of the scattering states appearing in this chan-
nel is shown in the figure. It seems possible that the
measured state involves contributions from the S wave
scattering state �a2, however, the rough estimate does
not allow for any clear statement.
Note that in the continuum limit the irrep T2 couples also

to spin 3 and irrep E to spin 4 states. Hence a signal of
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ground state. Results using interpolators (9,10) are shown in
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�3ð1690Þ could be seen in T2 but not in E. However, the
interpolators used have naive continuum limit of spin 2,
which we consider to be the reason for the missing of a
signal of �3ð1690Þ. We stress that also in this channel
higher statistics are necessary for a reliable extrapolation
to the physical point.

8. The 2�þ channel: �2

Here we encounter rather large statistical errors and
additional uncertainty associated with different sets of
interpolators (see Fig. 10.) Nevertheless, all results are
consistent within 2�. Because of the large error bar, we

find the linear chiral extrapolation compatible with both,
the �2ð1670Þ and the �2ð1880Þ. As in the other spin 2
channels, the results would benefit from higher statistics.

9. Exotics

So-called exotic states have quantum numbers which
cannot be constructed using a naive quark model. Most
of the known exotic particles are found above 2 GeV, but
also some lower ones are known, e.g. �1ð1400Þ and
�1ð1600Þ in the 1�þ channel. We implemented interpola-
tors with exotic quantum numbers using derivative sources.
Unfortunately, the obtained data are very noisy, and we
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found it impossible to perform a fit of the effective masses.
Since we observe a very weak signal in the 1�þ channel,
we hope that a fit can be donewhen larger statistics become
available.

B. Baryons with light quarks

Our baryon interpolators are built fromGaussian sources
only (no derivative sources) and can be found in the
Appendix. All interpolators are projected to definite parity
in each channel.

1. Nucleon positive parity

The nucleon positive parity ground state can be ex-
tracted to good precision as usual (see Fig. 11). A conven-
tional fit linear in the pion mass squared yields a nucleon
mass a bit higher than the experimental value. In [80,81] it
was found that a simple fit linear in the pion mass of the
nucleon positive parity ground state agrees well with ex-
periment. Indeed such an extrapolation agrees well with
experiment also in our case. However, a reliable clear
distinction would only be possible using more data from
dynamical simulations and higher statistics. Therefore, we
stick to the expectation of the analytic behavior being close
to the pion mass squared as suggested from ChPT, and thus
we quote the corresponding fit linear in the pion mass
squared in the conclusions.

The first excitation would be compatible with the energy
level of the P wave scattering state �N. However, follow-
ing the arguments of Sec. III C 3, we believe we see an
almost pure 1-particle state.

The first nucleon excitation, the so-called Roper, comes
out several hundred MeV too high in dynamical simula-
tions [18,31,32]. There are several possible explanations
for this. On one hand, whereas the negative parity ground
state baryons are orbital excitations (according to the quark

model), the Roper is a radial excitation. Thus its size may
be substantially larger than that of the nucleon and affected
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FIG. 10 (color online). Mass plot for the 2�þ channel (�2), ground state. Lhs: Irrep T2, interpolator (1) is used throughout. Rhs: Irrep
E, interpolators (1,2) are used throughout.
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by squeezing due to the spatial volume size. Another
reason may be a strong influence from the �N channel,
which may not be properly represented by our set of
interpolators (cf., the discussion in Sec. III C 3). It may
be necessary to explicitly include such meson-nucleon
interpolators, which then, however, poses the technical
challenge of backtracking quark loops.

Comparing to the corresponding quenched simulations
[44], we do not observe a significant qualitative difference
of the results in the nucleon positive parity channel. Our
data are also in agreement with quenched and dynamical
results from other groups (e.g., [25,27,32]).

2. Nucleon negative parity

In general, the signal is rather noisy in negative parity
baryon channels. In the case of the nucleon, we also find
that the backwards-running positive parity nucleon (and
possibly also back-to-back scattering states [82]) limits the
fit window to the interval 3 � t � 7. However, we even
find a signal of the first excitation, which is close to the
ground state, both being compatible with experimental data
(see Fig. 12). We find that all our negative parity baryon
ground states come out somewhat too low.

In nature, the S wave state �N (assuming free particles)
is below the one-particle ground state in the nucleon nega-
tive parity channel. This may also be true at slightly larger
pion masses, e.g., in ensemble C. That would explain the

low results in C and thus the low chiral extrapolation as
well. At large pion masses, the scattering state becomes
heavier than the 1-particle ground state and one expects a
level crossing to take place in between. Indeed, our results
on masses in the three ensembles are compatible with such
a picture.
However, in contrast to the scalar channels, we can

extract useful information from the eigenvectors in the
nucleon and sigma negative parity channels. The reason
is that several interpolators are needed for a good signal
and that two states are observed. We find that in all three
ensembles the ground state is dominated by the second
Dirac structure (�2), while the first excitation is an almost
pure �1 state (see Fig. 13 and Table X). This property is
seen even more clearly for partially quenched points,
where the plateau is more stable. One may conclude that
no level crossing of the lowest two states is observed for
pion masses in the range of 320 to 520 MeV.
Another hint comes from the comparison with old

quenched results using the same action [44]. Using only
3-quark nucleon interpolators, no scattering states can
appear in quenched simulations. Hence, the eigenvectors
in the quenched simulations can clearly be identified with
1-particle states. We stress that in the quenched approxi-
mation ghosts appear at low pion masses; thus a reliable
comparison to dynamical simulation can be done only at
large pion masses. We assume the pions of ensemble A to
be heavy enough to allow for a comparison with quenched
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FIG. 12 (color online). Mass plot for the nucleon negative
parity channel, ground state and first excitation. The energy
level of the S wave scattering state �N is close to the first
excitation in A and close to the ground state in B and C. Naively,
this could be interpreted as a hint for a level crossing of the 1-
particle ground state and the scattering state. Also the low results
in case of ensemble C suggest such an interpretation. However,
the eigenvectors contradict this picture (see Fig. 13).
Interpolators (2,7,9) are used in ensemble A, (1,3,7,8,9) in B,
and (1,7,8,9) in C. For clarity, we display the scattering states
slightly shifted to the left and omit the chiral extrapolation in the
Figure.
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FIG. 13 (color online). Normalized eigenvectors of the nu-
cleon negative parity channel, ground state, and first excitation
at the dynamical point. To allow for a direct comparison, the
same set of interpolators (1,7,8,9) is used in all three ensembles
A, B, and C. The corresponding fits of the eigenvalues are
performed in the time range 4 � t � 7. In all three ensembles,
the ground state is dominated by the second Dirac structure (�2),
while the first excitation is an almost pure �1 state (see Table X).
One may conclude that no level crossing of the lowest two states
is observed for pion masses in the range between 320 and
520 MeV. Note that in order to extract masses, different sets
are used in A and B, which yield more stable plateaus.
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simulations. By subsequent comparison of dynamical
simulations at decreasing pion masses, in principle con-
clusions down to physical pion masses are possible.
Unfortunately, direct comparison of the quenched eigen-
vectors with our dynamical ones is impossible, since the
corresponding interpolators differ slightly (e.g., in the
width of the Gaussian source). However, qualitatively, we
find the same Dirac structure content of the two lowest
states. From that, one may conclude that both our lowest
two states are 1-particle states, which is also suggested
from the missing level crossing of the eigenvectors.

So, while the extracted mass values slightly favor the
interpretation of a scattering state in ensemble C, the
eigenvectors tell a different story. Since the line of argu-
ments based on the eigenvectors seems to be more reliable,
we believe we see almost pure 1-particle states and quote
the corresponding chiral extrapolation in the summary.

In the quenched simulation with the CI action [44],
nucleon negative parity masses have been extracted only
at larger pion masses. The bending down at low pion
masses observed in the present work can thus not be
compared directly.

Note that in order to extract masses, different sets are
used in A and B than the ones shown in Fig. 13. In
ensemble C, the fit range is motivated by tracing of pla-
teaus of partially quenched results.

3. � positive parity

In the � positive parity channel, we find the masses
being too high, in particular, the first excitation (see
Fig. 14), although they are lower than in the quenched
analysis [44]. Since the statistical error is fairly small,
systematic errors and finite volume effects seem to be

responsible. As will be discussed below, this channel—
for large values of the valence quark mass—is used to
identify the strange quark mass parameter. Analogous to
other P wave scattering states, �N seems to be missing in
our simulation.
Quenched results using the CI action [44] have shown a

similar systematic upwards shift of the masses. Our �
positive parity ground state is compatible with other groups
(e.g., [32]). However, there the first excitation is fairly
close to the ground state, which we do not observe here.
A possible reason could be the larger basis of interpolator
used in that work. Hence, we cannot exclude possible
systematic errors associated with the choice of interpola-
tors in this channel.

4. � negative parity

There is a clear signal found of the � negative parity
channel ground state (see Fig. 15). The energy level of the
S wave scattering state �N is below the ground state in all
three ensembles. The results seem to be in better agreement
with an interpretation in terms of a 1-particle state.
Quenched results of [44] have been extracted only at

rather large pion masses, making a comparison to present
results uninstructive.

VI. RESULTS: STRANGE HADRONS

We extract the strange quark mass parameter by identi-
fication of a partially quenched � (i.e., valence quark of
larger mass) with �ð1670Þ, as described in Sec. VIA. The
interpolators used for strange meson spectroscopy are
listed in the Appendix. Since C parity is an exact symmetry
for mesons only in the case of mass-degenerate quarks, we
consider interpolators without projection to definite C
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FIG. 14 (color online). Mass plot for the � positive parity
channel, ground state, and first excitation. The energy level of
the Pwave scattering state �N is close to the first excitation in A
and B but clearly separated from any measured state in C.
Interpolators (1,2,3) are used in ensemble A and C, (2,4,6) in B.
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parity for the strange mesons. This means that we do not
perform a symmetrization of the interpolators in the
strange meson sector. Our strange meson correlator calcu-
lation lacks cross correlations between interpolators of
different C-parity quantum numbers in the limit of degen-
erate quark masses. Therefore, when analyzing strange
mesons, we have to restrict ourselves to subsets of inter-
polators sharing the same JPC quantum numbers in the
limit of degenerate quark masses.

In all plots shown for strange hadrons, the full symbol
represents a hadron where the valence strange quark mass
is determined from the�ð1670Þ and the light quark has the
mass of the dynamical quarks. The open symbols denote
partially quenched data, where only the light valence quark
mass varies. We thus neglect the effect of a dynamical
strange quark, motivated by the dominance of light quark
loops over strange quark loops.

A quantum field theory, where the sea quark masses do
not agree with the valence quark masses, is ‘‘sick,’’ as can
be seen, e.g., by the appearance of ghosts which violate the
spin-statistic theorem. As discussed in [65], the correlators
are strongly affected by partial quenching if the valence
quarks are lighter than the sea quarks. In our simulations
we consider only valence quarks heavier than or equal to
the sea quarks.

Clearly, it would be desirable to include strange sea
quarks in the simulation.

A. Setting the strange quark mass

The �ð1670Þ consists of three strange valence quarks
and shows weak dependence on the light quark masses. �
and � share the same JP quantum numbers, they differ
only in their flavor content. Therefore, we use our partially
quenched results in the � positive parity channel to iden-
tify the strange quark mass parameter for our ensembles A,
B, and C (see Fig. 16). We decided to choose strange quark
mass parameters which fit the experimental � within our
error bars, allowing only for parameter values in discrete
steps of 0.05 additive to the sea quark mass. In case of
ensemble A the obtained mass parameter perfectly fits one
of the already available quark propagators. In case of
ensembles B and C, we decided to recompute the quark
propagator at the strange quark mass instead of interpolat-
ing between the two adjacent values.

Another possibility to extract the strange quark mass
parameter would be to apply the same recipe to a partially
quenched 	 in the 1�� channel. The decay channels of
	ð1020Þ suggest that it is dominated by its (s�s) flavor
content. We use 	 as a cross-check for the strange quark
mass obtained via �ð1670Þ. The result fits the experimen-
tal 	ð1020Þ very nicely (see Fig. 17), indicating that our
approach is consistent. The excited state of� is assumed to
suffer from finite size effects. The signal of the excitation
of 	 suffers from neglected disconnected diagrams and
poor statistics. Thus these two levels are not appropriate for

further checks of the strange quark mass. However, the
ground state levels of � and � positive parity may be
regarded as additional affirmative cross-checks, see
Figs. 25 and 27.
Even in the case of the �, one could expect finite size

effects, since they show up in the � positive parity channel
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for the excited � around 2400 MeV is expected to be too high
due to finite volume effects.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Mπ
2
 [GeV

2
]

0.0

0.5

1.0

1.5

2.0

2.5

m
as

s 
[G

eV
]

A
B
C
Exp

ρ  / φ
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for both, ground and excited state. However, using heavier
quarks, finite size effects are expected to become less and
less important in the ground state. The cross-check using	
verifies this expectation.

B. Mesons with strange quarks

1. The 0� channel: K

In the strange meson channel 0� we find a very accurate
determination of the K ground state and a fairly reliable
result of the first excitation which is compatible with
experiment (see Fig. 18). Comparing to the pion channel,
we find that the signal improves in case of a heavier
valence quark, as expected.

Comparing to the corresponding quenched simulations
[43], we do not observe a qualitative difference.

2. The 0þ channel: K�
0

The strange scalar channel is peculiar similar to the light
scalar channel. Furthermore, the lowest experimental state
in this channel, K�

0ð800Þ or �, is not established and is a

very broad resonance with a width of more than 80% of its
mass. It is thus not clear whether this state is expected to be
observed in our simulation. The lowest established reso-
nance listed by the Particle Data Group is K�

0ð1430Þ. At the
parameters we use, an appearance of a low-lying scattering
state �K is possible. The lowest momentum two-particle
state (assuming free particles) is indicated in the figure,
together with the result and the experimental K�

0ð800Þ and
K�

0ð1430Þ (see Fig. 19). The result is compatible with both

the resonance K�
0ð800Þ and the scattering state. Hence we

cannot definitely exclude either of the possibilities.
Comparison to the results of the light scalar channel 0þþ
(a0) may suggest that the scattering state contributes at
least at partially quenched points. Higher statistics and
another volume would be desirable in order for a more
clear distinction. If we use, e.g., interpolators (12,13), the
eigenvectors look very similar for different valence light
quark masses, which means that the state we extract re-
mains roughly the same over the range of partial quenching
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FIG. 18 (color online). Mass plot for the 0� channel (K),
ground state, and first excitation. Ground state measured using
interpolator (4), excitation measured using (4,8,11,14,17) in A,
(4,7,11,14,17) in B and C. Note that the strange meson inter-
polators are not symmetrized (see the Appendix). The P wave
scattering state �K� is assumed to be suppressed and therefore
not indicated, since at the used simulation parameters its energy
is comparable to the one of the first excitation.
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FIG. 19 (color online). Mass plot for the 0þ channel, measured
with interpolator 13. Since K�

0ð800Þ is a very broad resonance,

thus we show its experimental width only. Top: Ground state and
chiral extrapolation according to a 1-particle interpretation (K�

0)

are shown. Bottom: The crosses represent an estimate of the
dynamical S wave 2-particle state �K. The blue, red, and black
curve (online version) show a prediction of the corresponding pq
state �K for mval � msea in ensemble A, B, and C, respectively.
Since there are no strong effects from partial quenching in this
channel, the partially quenched prediction almost hits the dy-
namical one. Note that in the partially quenched case only the
light valence quark varies and the strange valence quark mass is
held fixed. Thus, considering the scattering state, the partially
quenched pion mass varies, while the K mass is constant along
the partial quenching. The results do not allow for a clear
statement about the particle content of the state.
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we investigate. This can be interpreted as an indication that
the level crossing of a scattering state and the resonance, if
it exists, is not located in the mass range of our
investigation.

3. The 1� channel: K�

We obtain an accurate result of the ground state K�ð892Þ
and a signal of an excited state (see Fig. 20). Interestingly,
the excitation fits the K�ð1680Þ way better than the
K�ð1410Þ. Compared to the light meson sector, mixing of
JPþ and JP� interpolators can appear in the strange meson
sector, which is expected to shift the energy levels. This
effect is due to the missing isospin symmetry when the
involved quarks are not mass-degenerate and thus it grows
when increasing the mass difference between the light and
the strange quark. However, 1�þ interpolators are exotic,
hence it is not clear how much they contribute to the final
state. It is possible that our interpolators do not show
overlap with the K�ð1410Þ because we restrict ourselves
to the nonsymmetrized interpolators corresponding to the
light meson channel 1��. Another possible reason would
be a tetraquark dominance of the K�ð1410Þ (which is
generally not expected) or just too small statistics.
However, quenched results using bilinear quark sources
have been compatible with the K�ð1410Þ [43].

We are planning to investigate this channel more thor-
oughly using a larger basis in the variational method and a
larger set of ensembles in the future. We do not observe the
P wave scattering state �K in our simulation.

4. The 1þ channel: K1

Similar to the strange 1� channel, we seem to miss the
ground state K1ð1270Þ in the strange 1þ channel (see

Fig. 21). Our result is in good agreement with the experi-
mental first excitation K1ð1400Þ. In this channel the situ-
ation is clearer, due to missing isospin symmetry, one
expects a mixing from the 1þþ and 1þ� interpolators. In
contrast to the latter case, these are both nonexotic. So far,
we cannot say how strong the mixing is in our simulations;
however, it was found that the mixing is weak down to pion
masses of 400 MeV [30]. Again, a more thorough inves-
tigation is hoped for to shed some light on this issue. The
results of ensemble C suggest that we do not observe the S
wave scattering state �K�.

5. The 2� channel: K2

As already discussed, there are two different orthogonal
lattice irreducible representations for spin 2 channels.
Again, we analyze the irreps independently and discuss
the results. Similar to the corresponding light meson chan-
nels, we encounter large error bars in the strange 2�
channel (see Fig. 22). The results are compatible with
both the experimental K2ð1770Þ and the K2ð1820Þ in both
representations, albeit with an error of slightly more than
one � in case of T2. The K2ð1580Þ is not completely
confirmed experimentally so far. The lowest possible scat-
tering state (�K� in P wave) is not observed in our simu-
lation. Like in the spin 1 channels, we hope that enlarging
the basis will improve the signal.

6. The 2þ channel: K�
2

In the 2þ channel the signal is somewhat better than in
the 2� channel. Here we find the result of irrep T2 closer to
the experimental K�

2ð1430Þ than the one of irrep E (see
Figs. 23 and 24). However, the negative slope of the chiral
extrapolation in irrep E is clearly an artifact of too small
statistics (remember that only the three dynamical points
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FIG. 20 (color online). Mass plot for the 1� channel (K�),
ground state, and excitation. Ground state measured using inter-
polators (1,5), excitation measured using (1,5,17,18,19). The
energy level of the P wave scattering state �K is well separated
from any observed state in all three ensembles.
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MESON AND BARYON SPECTRUM FOR QCD WITH TWO . . . PHYSICAL REVIEW D 82, 034505 (2010)

034505-17



enter the linear fit). A more complete basis and additional
ensembles are expected to improve the calculation in this
channel.

7. The 1�� channel: 	

The decay channels of	 suggest that it is an almost pure
s�s state. Therefore, in the partially quenched analysis we
can read off our results for 	 from the partially quenched
data in the 1�� (�) channel without any chiral extrapola-
tion (see Fig. 17). As already discussed, the ground state
reproduces 	ð1020Þ nicely, which can be seen as an affir-
mative cross-check for our method to set the strange quark
mass parameter. Reading off the excited state we find some
deviation from the experimental value, explicitly shown in

Fig. 29 in the summary. The origin of this discrepancy may
be due to neglected disconnected diagrams or just lie in the
weakness of the corresponding effective mass plateau.
Difficulties with excitations are found also in related chan-
nels. E.g., in the 1� channel we miss the first excitation of
K� and in the light 1�� channel the excitation of � is quite
noisy.

C. Baryons with strange quarks

1. � positive parity

The interpolators of � and � have the same Dirac
structure as the nucleon interpolator; they just differ by
the flavor content. Hence we use similar sets of interpola-
tors in the variational method. We obtain a ground state and
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two excited states in the � positive parity channel (see
Fig. 25). The ground state result is in satisfactory agree-
ment with experimental data. This is another affirmative
cross-check of the setting of the strange quark mass pa-
rameter. The excitations are too high, which may be due to
finite volume effects, as we have discussed already.
Analogously to previous channels, we do not believe we
see contributions from the P wave scattering state KN.

2. � negative parity

We find a ground state and two excitations in the �
negative parity channel (see Fig. 26). Similar to the nu-
cleon negative parity channel, the first excitation is very
close to the ground state, which is in qualitative agreement
with the experimental �ð1620Þ and �ð1750Þ. The ground
state mass agrees with experiment within error bars,
though being a bit low as in all other our negative parity
baryon channels. The second excitation could be compat-
ible with the observed �ð2000Þ, after correction of finite
volume effects. �ð1620Þ, �ð1750Þ, and �ð2000Þ are clas-
sified with 2, 3, and 1 stars, respectively, by the Particle
Data Group [1]. We can confirm the two lower ones
qualitatively and the existence of an excitation in the
vicinity of 2000 MeV.

In nature, the S wave scattering state KN, which is
lighter than the 1-particle ground state, appears in the �
negative parity channel. We analyze the eigenvectors anal-
ogously to the nucleon negative parity channel. Again, we
find that in all three ensembles the ground state is domi-
nated by the second Dirac structure (�2), while the first
excitation is an almost pure �1 state (see Table X). The

partially quenched points show the same behavior. One
may conclude that no level crossing of the lowest two
states is observed for pion masses in the range of 320 to
520 MeV. As in the nucleon negative parity channel, we
find that the low results for masses at small pion masses
may be explained by the presence of a scattering state, but
the eigenvectors do not confirm this picture. Since the
argumentation based on the eigenvectors seems to be
more reliable, we believe we see an almost pure 1-particle
state and quote the corresponding chiral extrapolation in
the summary.

3. � positive parity

In the� positive parity channel we obtain a ground state
with rather small error which is in very good agreement
with the experimental� ground state (see Fig. 27). We also
get a prediction for a first excited state with comparatively
small error bar in the range of 2200 to 2400 MeV, which
after correction of finite volume effects could be compat-
ible with the �ð2120Þ (1 stars) or the �ð2250Þ (2 stars),
where both states are listed by the particle data group
stating neither spin nor parity. Analogous to previous
cases, we do not believe we see measurable contributions
from the P wave scattering state K�.

4. � negative parity

In the negative parity channel there is not even one
established state listed by the Particle Data Group. We
observe a ground state and a close first excitation in the

0.0 0.2 0.4 0.6

Mπ
2
 [GeV

2
]

0.5

1.0

1.5

2.0

2.5

3.0

m
as

s 
[G

eV
]

A
B
C
Exp
A:(KN)
B:(KN)
C:(KN)

Σ(+)

FIG. 25 (color online). Mass plot for the � positive parity
channel, ground state, and two excitations. Ground state mea-
sured using interpolators (1,6,17,20), first excitation measured
using (1,6,20), second excitation measured using (3,4,8,9,13).
The energy level of the P wave scattering state NK is very close
to the first excitation in all three ensembles. For better identi-
fication, we display the scattering states slightly shifted to the
left.
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FIG. 26 (color online). Mass plot for the � negative parity
channel. Measured using interpolators (1,9,10,12). The energy
level of the S wave scattering state KN is very close to the
ground state in all three ensembles (also to the first excitation in
case of ensemble A). For better identification, we display the
scattering states slightly shifted to the left. The results would be
compatible with an interpretation in terms of a level crossing of
the 1- and 2-particle states. However, analogously to the nucleon
negative parity channel, the eigenvectors contradict this picture.
For clarity, the chiral extrapolation is omitted in the figure.
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range of 1550 to 1800 MeV (see Fig. 28, both with rela-
tively small error (similar to the quenched results [44]).
These states may match the �ð1620Þ (1 stars) and the
�ð1690Þ (3 stars). There is a signal of a second excitation
around 2400 MeV as well, albeit with rather large statisti-
cal uncertainty and suffering from finite volume effects.
We found it crucial to include all three baryon Dirac
structures in the variational method in order to obtain
both excitations.

Compared to quenched results of [44], we extracted an
additional excited state in the present work.

5. � positive parity

As already discussed, we use our result for �ð1672Þ to
set the strange quark mass parameter (see Fig. 16). Similar
to the case of 	, we read off results for � from partially
quenched data for � without any chiral extrapolation. In
addition to �ð1672Þ, we obtain a first excitation in the
positive parity channel (explicitly shown in Fig. 29 in the
summary). Since there is no extrapolation involved, its
statistical error is rather small, however, the true mass
value may be somewhat smaller due to finite volume
effects. The Particle Data Group lists �ð2250Þ (3 stars),
�ð2380Þ (2 stars), and �ð2470Þ (2 stars), stating neither
spin nor parity. Taking into account finite volume effects,
the result for the excitation may turn out to be compatible
with �ð2250Þ.

6. � negative parity

The Particle Data Group does not list any established
state in the � negative parity channel. We observe a
ground state in the range of 2050 to 2100 MeV (compare
Fig. 15, explicitly shown in Fig. 29 in the summary). Such
a state has also been observed in the quenched study [44]. It
does not fit to any state listed by the Particle Data Group.

VII. CONCLUSION

We have presented results of hadron spectroscopy using
the Chirally Improved Dirac operator on lattices of
size 163 � 32 with two mass-degenerate light sea quarks.
Three ensembles with pion masses of 322(5), 470(4), and
525(7) MeV and lattice spacings all close to 0.15 fm have
been investigated. This allows for a naive chiral extrapo-
lation in the mass-dependent scheme but neither for a
continuum nor a thermodynamic limit. We have discussed
possible systematic effects in Sec. IV. Systematic uncer-
tainty due to discretization effects is not explored explicitly
and may be non-negligible for some observables. Finite
volume effects are discussed only qualitatively where we
find some indications in case of excited baryons.
We have shown results for ground states and excited

states for several meson and baryon channels, including
spin 2 mesons constructed by the use of derivative sources.
The spectrum of strange hadrons was accessed by using
partially quenched strange quarks. Possible effects from
partial quenching have been discussed briefly; and they
seem to play no important role for most of our final results.
However, including strange sea quarks in the simulation
would be desirable in order to reduce possible sources of
systematic errors. The value of the strange quark mass
parameter was set by identification of the partially
quenched positive parity � with the �ð1672Þ.
The results are summarized in Fig. 29. Several of the

experimentally known ground states are reproduced with
fairly high precision (�, K0, K�, N, and � positive parity).
In addition, various radial excitations are found (�, �, K�,
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FIG. 28 (color online). Mass plot for the � negative parity
channel. Measured using interpolators (4,9,10,14,23) in A and B,
(3,7,9,10,14) in C. For clarity, the chiral extrapolation is omitted
in the figure.
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� positive parity, N, �, and� both parities). We discussed
the possible appearance of scattering states in various
channels. The coupling of our interpolators to many-
particle states seems to be weak and such states are barely,
if at all, identifiable. Only in the light scalar channel the
partially quenched data suggest a large contribution from
an S channel 2-particle state of pseudoscalars. However, at
the dynamical point no clear statement is possible. In the
negative parity nucleon and � channels, the eigenvectors
do not confirm the picture of the S wave 2-particle states
either, although such an admixture cannot be completely
excluded. A clear interpretation of the particle content of
the observed states is still missing.
Where possible, we discussed the influence of sea

quarks by comparison to quenched results obtained from
the same action. In particular the spectroscopy in the light
scalar channel seems to benefit from dynamical quarks,
nevertheless it remains a difficult channel. Also the results
in the light vector channel are in slightly better agreement
with experiment when sea quarks are included. However,
in most channels we did not observe a significant differ-
ence between quenched and dynamical simulations. We
stress that in most cases comparison is difficult since some
other details of the simulations differ as well. Also we have
to emphasize that in many observables the overall effect of
the sea quarks may approximately cancel (e.g., by includ-
ing their effect on the scale setting). In other words, differ-
ent dynamics may partly show similar phenomenology. A
similar mechanism possibly works in some of the strange
hadrons, where our results are in good agreement with
experiment, despite the partial quenching approximation
of the strange quark.
Several channels are expected to benefit from enlarged

statistics, especially radial and spin excitations, the pseu-
dovector mesons and negative parity baryon channels. In
the nucleon positive parity channel we observe excitations
which are definitely higher than the expected Roper reso-
nance. This problem may be due to finite size effects or the
lack of explicit 2-particle interpolators in the analysis. Our
data confirm the existence of some states of unclear status
and predict some states which are not listed by the Particle
Data Group so far, albeit with large statistical errors and
also non-negligible systematic errors in some cases.
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APPENDIX A: TABLES OF INTERPOLATORS

1. Meson interpolators

We list the used interpolators for each meson channel in
Tables II, III, IV, V, VI, VII, VIII, and IX. In case of the
light mesons, symmetrization is performed for definite C
parity. Our strange meson correlation calculation lacks
cross correlation matrix elements according to interpola-
tors with different C-parity quantum numbers in the limit
of degenerate quark masses. Therefore, when analyzing
strange mesons, we have to restrict ourselves to subsets of
interpolators sharing the same JPC quantum numbers in the
limit of degenerate quark masses.

The letters a and b denote light or strange quarks, n (w)
denotes a Gaussian shaped narrow (wide) source, and @i
denotes a derivative source in spatial direction i (see
Sec. III). �t is the gamma matrix in time direction, ijk is

the Levi-Civita symbol, Qijk are Clebsch-Gordon coeffi-

cients, where all elements are zero except Q111 ¼ 1ffiffi
2

p ,

Q122 ¼ � 1ffiffi
2

p , Q211 ¼ � 1ffiffi
6

p , Q222 ¼ � 1ffiffi
6

p , andQ233 ¼ 2ffiffi
6

p .

2. Baryon interpolators

The baryon interpolators are slightly more complicated,
the construction in each channel is given by

NðiÞ ¼ abc�
ðiÞ
1 uaðuTb�ðiÞ

2 dc � dTb�
ðiÞ
2 ucÞ (A1)

�ðiÞ ¼ abc�
ðiÞ
1 uaðuTb�ðiÞ

2 sc � sTb�
ðiÞ
2 ucÞ (A2)

TABLE III. Scalar interpolators from irrep A1. The unsymme-
trized interpolator, the corresponding number in the strange
meson channel 0þ, the number, and the symmetrization in terms
of the 0� interpolators are given for the light meson channel
0þþ.

Interpolator 0þ (K�
0) 0þþ (a0) Sym.

�anbn 10þ 10þþ ¼ 10þ

�anbw 20þ 20þþ ¼ 20þ þ 30þ

�awbn 30þ

�awbw 40þ 30þþ ¼ 40þ

�a@i�ibn 50þ 40þþ ¼ 50þ � 70þ

�a@i�ibw 60þ 50þþ ¼ 60þ � 80þ

�an�ib@i 70þ

�aw�ib@i 80þ

�a@i�i�tbn 90þ 60þþ ¼ 90þ � 110þ

�a@i�i�tbw 100þ 70þþ ¼ 100þ � 120þ

�an�i�tb@i 110þ

�aw�i�tb@i 120þ

�a@ib@i 130þ 80þþ ¼ 130þ

TABLE II. Pseudoscalar interpolators from irrep A1. The un-
symmetrized interpolator, the corresponding number in the
strange meson channel 0�, the number, and the symmetrization
in terms of the 0� interpolators are given for the light meson
channel 0�þ.

Interpolator 0� (K0) 0�þ (�) Symmetrized (Sym.)

�an�5bn 10� 10�þ ¼ 10�

�an�5bw 20� 20�þ ¼ 20� þ 30�

�aw�5bn 30�

�aw�5bw 40� 30�þ ¼ 40�

�an�t�5bn 50� 40�þ ¼ 50�

�an�t�5bw 60� 50�þ ¼ 60� þ 70�

�aw�t�5bn 70�

�aw�t�5bw 80� 60�þ ¼ 80�

�a@i�i�5bn 90� 70�þ ¼ 90� þ 110�

�a@i�i�5bw 100� 80�þ ¼ 100� þ 120�

�an�i�5b@i 110�

�aw�i�5b@i 120�

�a@i�i�t�5bn 130� 90�þ ¼ 130� � 150�

�a@i�i�t�5bw 140� 100�þ ¼ 140� � 160�

�an�i�t�5b@i 150�

�aw�i�t�5b@i 160�

�a@i�5b@i 170� 110�þ ¼ 170�

�a@i�t�5b@i 180� 120�þ ¼ 180�

TABLE IV. Vector interpolators from irrep T1. The unsymme-
trized interpolator, the corresponding number in the strange
meson channel 1�, the number and the symmetrization in terms
of the 1� interpolators are given for the light meson channel
1��.

Interpolator 1� (K�) 1�� (�) Sym.

�an�kbn 11� 11�� ¼ 11�

�an�kbw 21� 21�� ¼ 21� þ 31�

�aw�kbn 31�

�aw�kbw 41� 31�� ¼ 41�

�an�k�tbn 51� 41�� ¼ 51�

�an�k�tbw 61� 51�� ¼ 61� þ 71�

�aw�k�tbn 71�

�aw�k�tbw 81� 61�� ¼ 81�

�a@kbn 91� 71�� ¼ 91� � 111�

�a@kbw 101� 81�� ¼ 101� � 121�

�anb@k 111�

�awb@k 121�

�a@k�tbn 131� 91�� ¼ 131� þ 151�

�a@k�tbw 141� 101�� ¼ 141� þ 161�

�an�tb@k 151�

�aw�tb@k 161�

�a@i�kb@i 171� 111�� ¼ 171�

�a@i�k�tb@i 181� 121�� ¼ 181�

�a@kijk�j�5bn 191� 131�� ¼ 191� � 211�

�a@kijk�j�5bw 201� 141�� ¼ 201� � 221�

�anijk�j�5b@k 211�

�awijk�j�5b@k 221�
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�ðiÞ ¼ abc�
ðiÞ
1 saðsTb�ðiÞ

2 uc � uTb�
ðiÞ
2 scÞ (A3)

�� ¼ abcuaðuTbC��ucÞ (A4)

TABLE VIII. Tensor interpolators from irrep T2. The unsym-
metrized interpolator, the corresponding number in the strange
meson channel 2þT2

, the number, and the symmetrization in terms

of the 2þT2
interpolators are given for the light meson channel

2þþ
T2

.

Interpolator 2þT2
(K�

2) 2þþ
T2

(a2) Sym.

jijkj �a@k�jbn 12þT2
12þþ

T2
¼ 12þT2

� 32þT2jijkj �a@k�jbw 22þT2
22þþ

T2
¼ 22þT2

� 42þT2jijkj �an�jb@k 32þT2jijkj �aw�jb@k 42þT2jijkj �a@k�j�tbn 52þT2
32þþ

T2
¼ 52þT2

� 72þT2jijkj �a@k�j�tbw 62þT2
42þþ

T2
¼ 62þT2

� 82þT2jijkj �an�j�tb@k 72þT2jijkj �aw�j�tb@k 82þT2

TABLE VI. Pseudotensor interpolators from irrep T2. The
unsymmetrized interpolator, the corresponding number in the
strange meson channel 2�T2

, the number, and the symmetrization

in terms of the 2�T2
interpolators are given for the light meson

channels 2��
T2

and 2�þ
T2

.

Interpolator 2�T2
(K2) 2

��
T2

(�2) Sym. 2�þ
T2

(�2) Sym.

jijkj �a@k�j�5bn 12�T2
12��

T2
¼ 12�T2

� 32�T2jijkj �a@k�j�5bw 22�T2
22��

T2
¼ 22�T2

� 42�T2jijkj �an�j�5b@k 32�T2jijkj �aw�j�5b@k 42�T2jijkj �a@k�j�t�5bn 52�T2
12�þ

T2
¼ 52�T2

� 72�T2jijkj �a@k�j�t�5bw 62�T2
22�þ

T2
¼ 62�T2

� 82�T2jijkj �an�j�t�5b@k 72�T2jijkj �aw�j�t�5b@k 82�T2

TABLE IX. Tensor interpolators from irrep E. The unsymme-
trized interpolator, the corresponding number in the strange
meson channel 2þE , the number, and the symmetrization in terms
of the 2þE interpolators are given for the light meson channels

2þþ
E .

Interpolator 2þE (K�
2) 2þþ

E (a2) Sym

Qijk �a@k�jbn 12þE 12þþ
E

¼ 12þE � 32þE
Qijk �a@k�jbw 22þE 22þþ

E
¼ 22þE � 42þE

Qijk �an�jb@k 32þE
Qijk �aw�jb@k 42þE
Qijk �a@k�j�tbn 52þE 32þþ

E
¼ 52þE � 72þE

Qijk �a@k�j�tbw 62þE 42þþ
E

¼ 62þE � 82þE
Qijk �an�j�tb@k 72þE
Qijk �aw�j�tb@k 82þE
Qijk �a@jb@k 92þE 52þþ

E
¼ 92þE

TABLE VII. Pseudotensor interpolators from irrep E. The
unsymmetrized interpolator, the corresponding number in the
strange meson channel 2�E , the number, and the symmetrization

in terms of the 2�E interpolators are given for the light meson
channels 2��

E and 2�þ
E .

Interpolator 2�E (K2) 2
��
E (�2) Sym. 2�þ

E (�2) Sym.

Qijk �a@k�j�5bn 12�E 12��
E

¼ 12�E � 32�E
Qijk �a@k�j�t�5bn 22�E 22��

E
¼ 22�E � 42�E

Qijk �an�j�5b@k 32�E
Qijk �aw�j�5b@k 42�E
Qijk �a@k�j�t�5bn 52�E 12�þ

E
¼ 52�E � 72�E

Qijk �a@k�j�t�5bw 62�E 22�þ
E

¼ 62�E � 82�E
Qijk �an�j�t�5b@k 72�E
Qijk �aw�j�t�5b@k 82�E
Qijk �a@j�5b@k 92�E 32�þ

E
¼ 92�E

Qijk �a@j�t�5b@k 102�E 42�þ
E

¼ 102�E

TABLE V. Pseudovector interpolators from irrep T1. The un-
symmetrized interpolator, the corresponding number in the
strange meson channel 1þ, the number, and the symmetrization
in terms of the 1þ interpolators are given for the light meson
channels 1þþ and 1þ�.

Interpolator 1þ (K1) 1
þþ (a1) Sym. 1þ� (b1) Sym.

�an�k�5bn 11þ 11þþ ¼ 11þ

�an�k�5bw 21þ 21þþ ¼ 21þ þ 31þ

�aw�k�5bn 31þ

�aw�k�5bw 41þ 31þþ ¼ 41þ

�a@k�5bn 51þ 41þþ ¼ 51þ þ 71þ 41þ� ¼ 51þ � 71þ

�a@k�5bw 61þ 51þþ ¼ 61þ þ 81þ 51þ� ¼ 61þ � 81þ

�an�5b@k 71þ

�aw�5b@k 81þ

�a@k�t�5bn 91þ 61þþ ¼ 91þ þ 111þ 61þ� ¼ 91þ � 111þ

�a@k�t�5bw 101þ 71þþ ¼ 101þ þ 121þ 71þ� ¼ 101þ � 121þ

�an�t�5b@k 111þ

�aw�t�5b@k 121þ

�a@i�k�5b@i 131þ 81þþ ¼ 131þ

ijk �a@k�jbn 141þ 91þþ ¼ 141þ � 161þ

ijk �a@k�jbw 151þ 101þþ ¼ 151þ � 171þ

ijk �an�jb@k 161þ

ijk �aw�jb@k 171þ

ijk �a@k�j�tbn 181þ 111þþ ¼ 181þ � 201þ

ijk �a@k�j�tbw 191þ 121þþ ¼ 191þ � 211þ

ijk �an�j�tb@k 201þ

ijk �aw�j�tb@k 211þ

�an�k�t�5bn 221þ 11þ� ¼ 221þ

�an�k�t�5bw 231þ 21þ� ¼ 231þ þ 241þ

�aw�k�t�5bn 241þ

�aw�k�t�5bw 251þ 31þ� ¼ 251þ

�a@i�k�t�5b@i 261þ 81þ� ¼ 261þ
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�� ¼ abcsaðsTbC��scÞ: (A5)

Subsequent numbering of the interpolators with respect to
gamma and smearing structure is performed in each chan-
nel, leading to the interpolator numbers given in Tables X
and XI. Projection to definite parity is performed by the
projection operator P� ¼ ð1� �tÞ=2. C is the charge con-
jugation operator, in the chiral representation it can be
written as C ¼ i�2�4. The � and � interpolators are
projected to spin 3

2 and averaged over the three spatial

vector components [44].
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TABLE XI. Baryon interpolators for � and � channels. The
quark smearings and the corresponding interpolator numbers are
given. We prune interpolators which are very similar to others,
obtaining six interpolators.

Smearing �, �

nðnnÞ 1

nðnwÞ 2

wðnnÞ 3

nðwwÞ 4

wðnwÞ 5

wðwwÞ 6

TABLE X. Baryon interpolators for nucleon, � and � chan-
nels. The Dirac structures, the quark smearings, and the corre-
sponding interpolator numbers are given. �ðiÞ labels the Dirac
structure of the baryon interpolators. In the nucleon channel we
prune interpolators which are very similar to others, obtaining
six per Dirac structure, thus a total of 18 interpolators.

�ðiÞ �ðiÞ
1 �ðiÞ

2 Smearing N �, �

�ð1Þ 1 C�5 nðnnÞ 1 1

�ð1Þ 1 C�5 nðnwÞ 2 2

�ð1Þ 1 C�5 nðwnÞ 3

�ð1Þ 1 C�5 wðnnÞ 3 4

�ð1Þ 1 C�5 nðwwÞ 4 5

�ð1Þ 1 C�5 wðnwÞ 5 6

�ð1Þ 1 C�5 wðwnÞ 7

�ð1Þ 1 C�5 wðwwÞ 6 8

�ð2Þ �5 C nðnnÞ 7 9

�ð2Þ �5 C nðnwÞ 8 10

�ð2Þ �5 C nðwnÞ 11

�ð2Þ �5 C wðnnÞ 9 12

�ð2Þ �5 C nðwwÞ 10 13

�ð2Þ �5 C wðnwÞ 11 14

�ð2Þ �5 C wðwnÞ 15

�ð2Þ �5 C wðwwÞ 12 16

�ð3Þ i1 C�t�5 nðnnÞ 13 17

�ð3Þ i1 C�t�5 nðnwÞ 14 18

�ð3Þ i1 C�t�5 nðwnÞ 19

�ð3Þ i1 C�t�5 wðnnÞ 15 20

�ð3Þ i1 C�t�5 nðwwÞ 16 21

�ð3Þ i1 C�t�5 wðnwÞ 17 22

�ð3Þ i1 C�t�5 wðwnÞ 23

�ð3Þ i1 C�t�5 wðwwÞ 18 24

ENGEL et al. PHYSICAL REVIEW D 82, 034505 (2010)

034505-24

http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1016/S0370-2693(97)01368-3
http://dx.doi.org/10.1016/S0370-2693(98)00355-4
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://dx.doi.org/10.1016/0550-3213(94)90261-5
http://dx.doi.org/10.1016/0550-3213(94)90261-5
http://dx.doi.org/10.1103/PhysRevD.72.114508
http://dx.doi.org/10.1103/PhysRevD.72.114508
http://dx.doi.org/10.1016/S0370-2693(98)00423-7
http://dx.doi.org/10.1103/PhysRevD.63.114501
http://dx.doi.org/10.1016/S0550-3213(00)00717-3
http://dx.doi.org/10.1016/S0550-3213(00)00717-3
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.044
http://dx.doi.org/10.1103/PhysRevD.72.094510
http://dx.doi.org/10.1103/PhysRevD.72.094510
http://dx.doi.org/10.1103/PhysRevD.73.034507
http://dx.doi.org/10.1103/PhysRevD.73.034507
http://dx.doi.org/10.1103/PhysRevD.79.054501
http://dx.doi.org/10.1016/0550-3213(85)90297-4
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://arXiv.org/abs/0910.2802
http://arXiv.org/abs/0810.4448
http://arXiv.org/abs/0810.3982
http://dx.doi.org/10.1103/PhysRevD.79.114503
http://arXiv.org/abs/0911.2542
http://dx.doi.org/10.1103/PhysRevD.81.034505
http://dx.doi.org/10.1103/PhysRevD.81.034505


Phys. Rev. D 80, 074506 (2009).
[25] S. Cohen et al., arXiv:0911.3373.
[26] M. S. Mahbub et al., Phys. Rev. D 80, 054507 (2009).
[27] M. S. Mahbub et al., Proc. Sci., LAT2009 (2009) 118

[arXiv:0910.2789].
[28] M. S. Mahbub, A.O. Cais, W. Kamleh, D. B. Leinweber,

and A.G. Williams, arXiv:1004.5455.
[29] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,

and C. E. Thomas, Phys. Rev. Lett. 103, 262001 (2009).
[30] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,

and C. E. Thomas, arXiv:1004.4930.
[31] J.M. Bulava et al., Phys. Rev. D 79, 034505 (2009).
[32] J. Bulava et al., arXiv:1004.5072.
[33] C. Morningstar et al., arXiv:1002.0818.
[34] C. Morningstar and M. Peardon, Phys. Rev. D 69, 054501

(2004).
[35] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,

Phys. Lett. B 195, 216 (1987).
[36] M. Hasenbusch, Phys. Lett. B 519, 177 (2001).
[37] R. C. Brower, T. Ivanenko, A. R. Levi, and K.N. Orginos,

Nucl. Phys. B484, 353 (1997).
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