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We present the first 2þ 1 flavor spectrum measurements of glueball states using high statistics

simulations with improved staggered fermions. We find a spectrum consistent with quenched measure-

ments of scalar, pseudoscalar, and tensor glueball states. The measurements were made using 5000 con-

figurations at a lattice spacing of 0.123 fm and pion mass of 280 MeVand 3000 configurations at 0.092 fm

with a pion mass of 360 MeV. We see some evidence of coupling to 2� states. We compare our results

with the experimental glueball candidate spectrum as well as quenched glueball estimates.
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I. INTRODUCTION

During the last decade, a major first-principles calcula-
tion of the hadron spectrum has been carried out based on
the improved staggered fermion discretization formalism
[1,2]. Comparisons with experiment have in most cases
shown impressive agreement, typically within a few per-
cent accuracy. See for example [3] and references therein
and a recent review article by the MILC Collaboration [4].
Noticeably absent from this impressive list are some sin-
glet quantities such as those contributing to glueball states
and to the �=�0 system. Since the latter states are stable
under the strong interaction, they may be classified as
‘‘gold-plated’’ quantities [3] and so deserve urgent consid-
eration as a test of this otherwise highly successful formal-
ism. This is made all the more pressing in view of the
continuing controversy over the validity of the so-called
‘‘fourth-root trick’’ for dealing with the spurious taste
multiplicity. See [5] for a comprehensive review of this.
A major difficulty in simulating singlet quantities is the
need to make high quality stochastic estimates of discon-
nected correlators which are typically very noisy observ-
ables. In dynamical simulations the problem is particularly
severe due to the high simulation costs. An analysis of
these measurement problems and initial results using
MILC configurations [6] has recently been presented [7].
We have now completed significantly higher statistics
simulations at two lattice spacings primarily in order to
study the �=�0. (These results will be presented else-
where.) As a by-product, we have also made measurements

of scalar meson operators and glueball operators. The latter
form the basis of the present paper.
In the quenched approximation, comprehensive studies

of the glueball spectrum have been available for some time
[8–10]. In comparison, studies with dynamical quarks are
still at a preliminary stage [11–14]. This is mainly because
glue correlators are noisy and the masses relatively high so
that signal to noise is hard to control without large statis-
tics. The quenched studies typically used thousands of
configurations rather than the ‘‘few hundreds’’ configura-
tions usually available at a given lattice spacing and quark
mass. We therefore took the opportunity to make use of
several thousand configurations generated as part of the
main singlet simulation program. Preliminary results were
presented in [14].
Crede and Meyer [15] and Klempt and Zaitsev [16] have

recently reviewed the past and future experimental
searches for glueballs. It is particularly timely to study
the glueball spectrum using unquenched QCD, because
there are new experiments starting, or starting soon, that
are looking for glueballs. The BES-III experiment [17] has
begun running and can search for glueballs via radiative
J=c decays. It will study light mesons with 0�þ, 2þþ, and
0þþ quantum numbers, where glueball degrees of freedom
could contribute.
It will be particularly interesting to see if the existence of

fJð2220Þ as a state is confirmed by BES-III [17]. The
fJð2220Þ is a candidate 2þþ state that some speculate is
a glueball state because its mass is close to the mass of the
2þþ glueball, (2390)(30)(120) MeV, in the quenched esti-
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mates of Chen et al. [10]. The 120 MeV error is from
different ways of setting the lattice spacing in quenched
QCD, parametrized by uncertainty in r0. Recently the
HPQCD determined r0 to 0.8% accuracy from unquenched
lattice QCD [18]. Using HPQCD’s central value of 1=r0 ¼
423 MeV changes the mass of the 2þþ glueball to 2470
(30) MeV. This shift is within the errors of the quenched
estimate [10], but illustrates the need for unquenched
calculations.

The PANDA experiment at FAIR will look for glueballs
in the range 2.2 to 5.5 GeV [19,20] after 2015.

The general plan of the paper is as follows. In Sec. II we
describe the simulations, the ensembles, and the methods
used for extracting spectrum information. Section III con-
tains the results from these calculations. The paper ends
with a discussion of these results and some conclusions in
Sec. IV.

II. SIMULATION AND MEASUREMENTS

A. Configuration ensembles

Available resources allowed us to produce an initial two
ensembles corresponding to existing MILC ensembles, but
with significantly greater statistics and making use of an
exact algorithm, the RHMC [21,22] rather than the R
algorithm. The simulation parameters are summarized in
Table I.

We used an improved version of the RHMC algorithm
[22] which made use of such things as the ‘‘nth-root trick,’’
higher order integrators, and different types of mass pre-
conditioning. Additional parameters to be tuned included
gauge/fermion step sizes and the conjugate gradient toler-
ance used in different parts of the force calculation and
acceptance tests. Details of the tuning procedures and other
properties of the simulations are given in [23].

The lattice spacing was determined via the static poten-
tial using standard methods [24]. When required, the value
of r0 used to convert to physical scales was 0.467 fm.1

The ‘‘coarse’’ ensemble summarized in Table I repre-
sents some 8 times the statistics of the corresponding
203 � 64 MILC configuration studied in [7] while the
fine ensemble represents an increase of around 5 on a
typical MILC ensemble. We have studied the autocorrela-
tion time for simple operators. For technical reasons the
first simulations (coarse ensemble) which were conducted

on the UKQCD QCDOC machine [25] were interrupted at
various times resulting in noncontiguous RHMC trajecto-
ries. The ensemble was produced in two separate streams.
The fine lattice simulations however resulted in an unin-
terrupted Markov chain, so allowing investigation of some
autocorrelations. Table II shows the integrated autocorre-
lation times of some relevant observables which can be
meaningfully defined on a single configuration.
The effective masses (defined below) are those using

both local (L) and fuzzed (F) sources and sinks for the
�5 � �5 pion operator. The glue operators are defined in
the next section. The labels i ¼ 0, 1, 2 refer to the number
of Teper blocking levels as described below. As expected,
the pion shows a longer autocorrelation than a single time
plane operator. We have not detected any evidence of
autocorrelation in the glueball correlators and correspond-
ing effective masses which, as discussed below, are very
noisy. We have checked, by binning in selected cases, that
the statistical error estimates made using configurations
separated by 6 trajectories are reasonable.
The coarse ensemble has been successfully incorporated

by the MILC Collaboration into an analysis of the strange
quark content of the nucleon [26].

B. Glueball measurement methods

We used standard glue operators P Aþþ
1 built from spatial

plaquettes for the Oh irrep Aþþ
1 (coupling to 0þþ in the

continuum). Prior to measurement we use APE smearing
[27] (twice with smearing parameter c ¼ 2:5) and then
Teper blocking [28] performed n times where n ¼
0; 1; 2; . . . ; N � 1. Using all N blocking levels provides
an N-dimensional basis for the variational measurement
techniques as described below. The APE smearing smooths
out some of the ultraviolet noise while the different Teper
blocking levels provide a basis of operators with a range of
physical extents allowing different couplings to the ground
state and excited states in a given channel. This is impor-
tant when using variationally motivated techniques as out-

lined below. We also use these plaquette operators PR for
the Eþþ

1 and Tþþ
2 irreps (R) which couple to 2þþ states in

the continuum. For example, for Eþþ
1 we use both the

operators in (1) (standard) and (2) (alternative).

P
Eþþ
1

i ðtÞ ¼ tr
X
~x

ðPi
4;xyð ~x; tÞ � Pi

4;yzð ~x; tÞÞ (1)

and

TABLE I. Ensembles generated for flavor singlet studies.

Ensemble Nf � L3 � T aml=s r0=a a (fm) Ncfg Ntraj

Coarse 2þ 1 6.75 243 � 64 0:006=0:03 3.8122(74) 0.122 50(24) 5237 31 422

Fine 2þ 1 7.095 323 � 64 0:00775=0:031 5.059(10) 0.092 30(19) 2867 17 202

1A recent accurate determination by the HPQCD
Collaboration using MILC ensembles gave r0 ¼ 0:4661ð38Þ
[18].
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P
0Eþþ

1

i ðtÞ ¼ tr
X
~x

ðPi
4;xyð ~x; tÞ þ Pi

4;yz � 2Pi
4;zxð ~x; tÞÞ: (2)

For pseudoscalar operators (A�þ
1 ) we require something

nonplanar with some ‘‘handedness’’ [29]. In practice, see
(3), we use left- (L) and right- (R) handed versions of the
loop shown in Fig. 1.

H
A�þ
1

i ðtÞ ¼ tr
X
~x

ððHi
8;L;xyðtÞ þHi

8;L;yzðtÞ þHi
8;L;zxðtÞÞ

� ðHi
8;R;xyðtÞ þHi

8;R;yzðtÞ þHi
8;R;zxðtÞÞÞ:

(3)

We refer to operators HR based on these as ‘‘hand’’
operators in what follows.

We calculate correlators (vacuum subtracted where nec-
essary) between operators with definite momentum on time
planes separated by Euclidean time t

CR
ij ðtÞ ¼ hOR

i ð0ÞOR
j ðtÞi: (4)

Here R refers to the Oh irrep under consideration and i, j
refer to the operator basis being used, e.g., different Teper
blocking levels. These matrices of correlators form the
basis of subsequent analyses as described below.

(1) Effective masses.—These are defined generically by

ameff ¼ ln
CðtÞ

Cðtþ 1Þ ; (5)

whereCðtÞ isCR
ij ðtÞ for some choice ofR and i ¼ j.

Typically, a plateau in ameffðtÞ is observed at lower
values of t when i corresponds to higher levels of
blocking. Weighted averages over the plateau region
can then be used to estimate the ground state mass in
channel R. When using an improved gauge action
containing links over more than one time plane, as
here, one should be alert to possible positivity vio-
lations at small Euclidean time [30]. However, we
have not encountered any unusual behavior in this
regard.

(2) Variational methods.—In the basic variational
method [31–33] one finds eigenvalues of the N �
N matrix

MR
ij ðt; t0Þ �

XN
k¼1

½CRðt0Þ��1
ik CR

kj ðtÞ; (6)

where t0 is some initial Euclidean time at which the
correlator matrix is sufficiently well determined to
be invertible. It is straightforward to show (see, for
example, the factorizing fit parametrization given

below) that the eigenvalues ��ðt0; tÞ ofMRðt0; tÞ are
related to the transfer matrix and

��ðt0; tÞ ¼ e�m�ðt�t0Þ ð� ¼ 0; 1; . . . ; N � 1Þ:
(7)

One can then either
(a) use directly the masses am� obtained from (7) or
(b) form an effective mass, as in (5) above, from the

ground state (� ¼ 0) projection of CðtÞ.
For convenience, we refer to masses estimated via
(a) as ‘‘eigenvalue masses’’ and those estimated via
(b) as ‘‘variational effective masses.’’

(3) Factorizing fits.—Using the usual intermediate state
arguments, the correlator matrix (4) can be ex-
pressed as an infinite sum of exponential contribu-
tions and fitted in truncated form so as to extract
mass estimates:

CijðtÞ ¼
XM�1

�¼0

c�i c
�
j e

�m�t: (8)

Here we have suppressed the irrep label R and
restricted the sum to the M lowest-lying states.
Note that by choosing M ¼ N, the dimension of
the operator basis, one can simply recover the varia-
tional formula given above. The factorized coeffi-
cient c�i gives the overlap of state � with operator i.

Note that in this study we have included only glue-based
operator correlations in our factorizing fits and correspond-
ing variational analyses. In Sec. III we will comment
further on the prospects for studies of two meson operators
and decay studies in general.

FIG. 1. Schematic of the (left) hand operator H 0 which can
be used to study the pseudoscalar glueball.

TABLE II. Integrated autocorrelation times (in units of 6 tra-
jectories) for the effective mass of the pion (averaged over
Euclidean times 8–10) and for the plaquette based glue opera-
tors, defined below for a fixed time plane (t ¼ 0) and also
averaged over all time planes.

LL LF FF

m�
eff 2.28(33) 2.29(32) 1.99(21)

i ¼ 0 i ¼ 1 i ¼ 2
P

Aþþ
1

i ð0Þ 0.65(6) 0.89(21) 1.12(9)P
tP

Aþþ
1

i ðtÞ 1.13(15) 1.61(22) 2.59(26)
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III. RESULTS

A. Results for the scalar glueball—coarse ensemble

We first give some sample results of the above methods
applied to the coarse lattices. Figure 2 shows the basic
effective masses of the momentum 0 scalar state for each of
the blocking levels 0 to 3.

Despite the significantly larger statistics, compared with
previous dynamical simulations, it is clear that the ratio of
signal to noise is still a significant problem. Weighted
averages of the ‘‘plateau’’ values are shown for blocking
levels 2 and 3. Here the weighting is inversely proportional
to the statistical error. As with all other quantities in this
study, overall statistical errors were estimated via
bootstrap.

Figure 3 shows the variational effective masses, as de-
fined in Sec. II B (method 2b) deduced from a 3� 3
correlator matrix (blocking levels 0 to 2)

Similar effective mass estimates were made using mo-
mentum 1 operators. The latter require no vacuum
subtraction.

In Fig. 4 we show the lowest 3 masses (where obtain-
able) extracted from the variational matrix (method 2a).
The momentum 1 masses have been obtained from ener-
gies using the naive lattice dispersion relation.

There is a reasonable degree of consistency with respect
to the choice of t=t0 except at large t where there is a
suggestion that the lowest state projected out corresponds
to a�� system. Given that for these light quark masses, the
two � decay threshold is open, this is not unexpected.

Similar studies were made using the alternative hand
operators defined in Sec. II B. The results were statistically
consistent with those obtained from the standard operators.

Figure 5 shows a comparison of the lowest three states
using standard and alternative operators.
Finally in this section, we present results of the third

method: multichannel factorizing fits. We have carried out
3� 3 and 4� 4 fits with 2 and 3 exponentials. We have
studied both correlated and uncorrelated fits. We also in-
vestigated stability with respect to the fitted t range tmin �
t � tmax. For example, Fig. 6 shows the variation with tmin

of the lowest two states resulting from two- and three-
exponential fits to a 4� 4 matrix of correlators (blocking
levels 0–3).
These fits are fully correlated and the corresponding fit

details are listed in Table III.

420 6
t / a

0

0.5

1

1.5

2

am
ef

f(t
)

1/0
2/1
3/2
3/2 Weighted Average : t=2-4
2/1 Weighted Average : t=2-5

FIG. 3 (color online). Effective masses computed using the
variational correlator for different choices of t=t0. Weighted
averages are shown for the 2=1 and 3=2 projections (coarse
ensemble, standard scalar glue operators).

1/0 2/0 3/0 2/1 3/1 3/2
t / t

0

0

1

2

3

am
α

p.p=0
p.p=1
2amπ

2aEπ
p=1

FIG. 4 (color online). The masses extracted from the varia-
tional eigenvalues for different t=t0 using blocking levels 0, 2, 3
for momentum 0 and 1, 2, 3 for momentum 1. The energies
corresponding to a �� state with momentum 0 and 1 are drawn
for comparison (coarse ensemble, standard scalar glue opera-
tors).

420 6
t / a

0

0.5

1

1.5

2

am
ef

f(t
)

0x0
1x1
2x2
3x3
2x2 Weighted Average [t = 2 - 5 ]
3x3 Weighted Average [t = 2 - 5 ]

FIG. 2 (color online). The effective masses for the diagonal
entries (0, 0), (1, 1) etc. of a 4� 4 matrix of correlators formed
using the jpj ¼ 0 standard scalar operators with blocking levels
0 to 3 measured on the coarse ensemble. Weighted averages for
blocking levels 2 and 3 are shown, computed from t ¼ 2–5.
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The extent of consistency between the various methods
can be judged from Fig. 7.

The solid line, with dashed errors, represents a global
average of these determinations. This average was ob-
tained using the methods adopted by the Particle Data
Group [34] when combining results from independent
determinations. The errors used in the weighting are com-
bined systematic and statistical errors. Of course, the sta-
tistical errors in our case are not independent. For each type
of determination contributing to Fig. 7, represented by a
central value and error bar, we have used the same
weighted averaging procedure. The systematic errors
took into account the variation due to fit range. In fact,

the determinations contributing to the global average are a
selected subgroup of all the various estimates and fits
described above [23]. We have excluded fits which had
unacceptably high (or low) �2=d:o:f: and/or which had
very large errors, and also those which were found to
have high sensitivity to fit ranges and/or parameter choices.
Similar considerations were applied to the determination of
the first excited state in the scalar sector, also shown in
Fig. 7. We have only quoted fitted mass values for states
where at least one higher state has been included in the
determination. The global averages for the lowest two
states in the scalar channel are shown in Table IV, along
with the corresponding values for the fine lattices (de-
scribed in the next section).

0 1 2 3

t
min

 / a 

0

0.5

1

1.5

2

2.5

3

3.5

4

am

2 exp., p.p=0
2 exp., p.p=1
3 exp., p.p=0
3 exp., p.p=1

FIG. 6 (color online). Results from factorizing fits applied to
the 4� 4 basis of standard scalar glueball operators with block-
ing levels 0 to 3. Both two- and three-exponential fits are
presented for momentum 0 and 1 correlators, with tmax ¼ 6
and tmin allowed to vary (coarse ensemble).

TABLE III. Fitted mass parameters for two- and three-
exponential factorizing fits to a 4� 4 matrix of correlators using
blocking levels 0–3 (coarse ensemble). Where errors are quoted
as [ � � � ] indicates that the gradient in that direction of parameter
space was undetermined.

Nexp jpj tmin tmax am0 am1 am2 �2=d:o:f:

1 6 1.0336(29) 1.84(11) � � � 3.176

2 0 2 6 0.887(14) 1.332(47) � � � 0.635

3 6 0.62(13) 1.22(10) � � � 0.349

1 6 1.0770(60) 1.70(14) � � � 0.832

2 1 2 6 1.034(36) 1.42(22) � � � 0.301

3 6 1.19(15) 3.30[ � � � ] � � � 0.189

1 6 0.9409(43) 1.626(37) 18.04[ � � � ] 1.309

3 0 2 6 0.32(15) 0.9495(57) 1.77[ � � � ] 0.607

3 6 0.306(92) 1.016(17) 7.79[ � � � ] 0.327

3 1
1 6 1.0682(60) 1.623(75) 21.26[ � � � ] 0.329

2 6 1.046(31) 1.41(20) 3.53[ � � � ] 0.173

Effective Masses

Various bases
3x3 Standard Ops

Eigenvalue Masses

3x3 Alternative Ops

Eigenvalue Masses

4x4 Standard Ops

Fact. Fits 3x3 Alternative Ops

Fact. Fits

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

am

FIG. 7. The overall average for the scalar glueball ground state
and first excited state masses on the coarse ensemble, computed
as described in the text.

2/31/20/1

t / t
0

0

0.5

1

1.5

2

2.5

3

am
α

p.p=0 [ H
A1

++
 Ops ]

p.p=0 [ P
A1

++
  Ops ]

FIG. 5 (color online). The masses extracted from variational
eigenvalues for different t=t0 (coarse ensemble). These were
made using blocking levels 0, 1, 2 for standard plaquette (filled
circles) and alternative hand (empty circles) operators.
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We will return later to the physical interpretation of
these results.

B. Results for the scalar glueball—fine ensemble

Figure 8 (corresponding to Fig. 3 for the coarse en-
semble) shows variational effective scalar masses and
weighted averages on the fine ensemble.

In Fig. 9, we show the lowest 3 masses extracted from
the variational matrix as described in method 2a.

This is to be compared with Fig. 4 for the coarse en-
semble, but in this case we take the opportunity to display
results for both standard and alternative (hand) operators.
Both operator bases gave consistent results.

As examples of factorizing fits on the fine ensemble, we
present the tmax dependence at fixed tmin in Fig. 10. These
are 4� 4 fits using two and three exponentials.

We see excellent consistency for the ground states be-
tween the M ¼ 2 (both jpj ¼ 0 and 1) and the M ¼ 3,
jpj ¼ 1 fits. The corresponding fit quality can be judged
from Tables V and VI.

As with the coarse ensemble, we have selected the most
reliable determinations for each of the described methods
and assigned systematic errors to cover sensitivity to pa-
rameter and fit ranges. As an example, Fig. 11 shows
sample variational results (effective mass and eigenvalue
methods) for momentum zero and one. The relevant time

slices t=t0 are shown on the horizontal axis along with the t
range used for averaging the effective mass.
The final values selected for all methods are shown in

Fig. 12 along with the resulting global average using the
same weighting procedures described earlier in Sec. III A.

C. Scalar decay and mixing

Having observed signals in our fits which appear close to
the 2� threshold, we have attempted to check the strength
of mixing between the glueball and �� operators. Early
attempts to study the mixing directly have been made [35]

0 1 2 3 4 5 6 7

t / a

0

0.25

0.5

0.75

1

1.25

am
ef

f(t
)

1/0
2/1
3/1
2/1 Weighted Average [ t = 3 - 5 ]

3/1 Weighted Average [ t = 3 - 5 ]

FIG. 8 (color online). Variational effective masses for the
scalar glueball computed with different choices of t=t0, project-
ing from a 4� 4 matrix (blocking levels 0, 1, 2, 3) measured on
the fine lattices. Weighted averages are shown for the 2=1 and
3=1 projections.

1/0 2/0 3/0 2/1 3/1 4/1 3/2 4/2

 t / t
0

0

0.5

1

1.5

2

2.5

am
α

p.p=0 [ H
 A1

++
 Ops ]

p.p=0 [ P
 A1

++
 Ops ]

2amπ

2aEπ
p=1

FIG. 9 (color online). Scalar glueball masses extracted, for the
fine ensemble, from the variational eigenvalues using blocking
levels 0, 1, 2 for different t=t0. Results based on the standard and
alternative (hand) operators are compared. The energies corre-
sponding to a �� state with relative momenta jpj ¼ 0 and jpj ¼
1 are drawn for comparison (fine ensemble).

3 4 5 6 7 8 9

t
max

 / a

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

am

2 exp., p.p=0
2 exp., p.p=1
3 exp., p.p=0
3 exp., p.p=1

FIG. 10 (color online). Results from factorizing fits applied to
the 4� 4 basis of standard scalar glueball operators (blocking
levels 0, 1, 2, 3) measured on the fine lattices. Both two- and
three-exponential fits are presented for momentum 0, 1 correla-
tors, with tmin ¼ 1 and tmax allowed to vary.

TABLE IV. Global average values for scalar masses on coarse
and fine ensembles.

Ensemble a (fm) am am�

Coarse 0.122 50(24) 1.0468(75) 1.875(87)

Fine 0.092 30(19) 0.8332(59) 1.368(17)
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but were performed at pion masses such that 2m� was just
below mG. One might naively expect that glueball decay
would be flavor blind, decaying into ��, K �K, and �� final
states with equal rates. Of course, since we are now ob-
serving the state (or states) to which the gluonic operators
couple most strongly, then mixing effects are likely to
violate flavor blindness. If the ‘‘glueball’’ mixes strongly
with a mainly u �uþ d �d state then the �� decay channel is
preferred over the Okubo-Zweig-Iizuka (OZI) suppressed
K �K channel, and vice versa if the coupling is strongest to
an s�s state. There are chiral suppression arguments [36]
that suggest that K �K could dominate the two meson decay
channel in a glueball state in this mass range.

One can in principle study decay matrix elements di-
rectly on the lattice following the procedure of Lellouch
and Lüscher [37]. However this requires very accurate
determinations on different lattice sizes and is a difficult
technique to apply even for states which are much less
subject to noise than those in the glueball sector. Initial
attempts to study resonant states with open decay channels
have been made—for example the PACS-CS Collaboration
[38] has studied the isovector P-wave phase shift in ��
scattering in order to estimate the width of the � meson.
Additional complications and extra diagrams introduced in
the case of staggered fermions have been detailed, for
example, in [39] where I ¼ 2 phase shifts were studied.
In the isoscalar channel there are of course the further

TABLE VI. Fitted mass parameters for three-exponential fully
correlated factorizing fits to a 4� 4 matrix of correlators using
blocking levels 0, 1, 2, 3 with jpj ¼ 0 and 1 for varying tmax with
tmin fixed at t ¼ 1 (fine ensemble).

Nexp jpj tmin tmax am0 am1 am2 �2=d:o:f:

1 3 0.7695(31) 1.493(17) 1.62[–] 1.549

1 4 0.51[ � � � ] 1.09[ � � � ] 1.48[ � � � ] 1.450

1 5 0.7284(22) 1.466(16) 20.29[ � � � ] 1.987

3 0 1 6 0.3622(96) 0.9863(45) 1.468(26) 1.126

1 7 0.6518(30) 1.3337(66) 16.65[ � � � ] 2.495

1 8 0.5726(43) 1.1827(37) 19.78[ � � � ] 2.648

1 9 0.4679(51) 1.04[ � � � ] 1.47[ � � � ] 1.866

1 3 0.8551(21) 1.322(14) 2.67(12) 0.144

1 4 0.8420(21) 1.360(14) 2.73(20) 0.431

1 5 0.84[ � � � ] 1.352(13) 22.23[ � � � ] 0.378

3 1 1 6 0.8317(22) 1.371(14) 2.57[ � � � ] 0.542

1 7 0.8319(20) 1.366(13) 18.17[ � � � ] 0.642

1 8 0.8319(20) 1.368(13) 21.12[ � � � ] 0.585

1 9 0.8274(23) 1.379(14) 2.40[ � � � ] 0.540

TABLE V. Fitted mass parameters for two-exponential fully
correlated factorizing fits to a 4� 4 matrix of correlators using
blocking levels 0, 1, 2, 3 with jpj ¼ 0 and 1 for varying tmax with
tmin fixed at t ¼ 1 (fine ensemble). Where errors are quoted as
[ � � � ] indicates that the gradient in that direction of parameter
space could not be determined.

Nexp jpj tmin tmax am0 am1 am2 �2=d:o:f:

1 3 0.841 39(97) 19.84[ � � � ] � � � 7.233

1 4 0.823 7(17) 1.681(71) � � � 5.098

1 5 0.82[ � � � ] 1.73[ � � � ] � � � 5.255

2 0 1 6 0.849 37(76) 692[ � � � ] � � � 31.42

1 7 0.817 05(91) 19.16[ � � � ] � � � 6.747

1 8 0.816 57(92) 19.06[ � � � ] � � � 6.515

1 9 0.808 34(81) 1.77[ � � � ] � � � 5.182

1 3 0.852 1(15) 19.56[ � � � ] � � � 8.185

1 4 0.852 8(13) 1.53[ � � � ] � � � 3.604

1 5 0.851 7(12) 1.53[ � � � ] � � � 2.885

2 1 1 6 0.898 5(14) 692[ � � � ] � � � 37.12

1 7 0.844 6(13) 19.00[ � � � ] � � � 3.838

1 8 0.844 6(13) 18.93[ � � � ] � � � 3.368

1 9 0.848 0(11) 1.54[ � � � ] � � � 1.933

4x4,p.p=0

2/1, t=3-5 4x4,p.p=1

2/0, t=3-5 3x3,p.p=0

2/1, t=3-5 3x3,p.p=0

2/1
3x3,p.p=0

3/0
3x3,p.p=1

2/1
3x3,p.p=1

2/1

0.6
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1

1.2

1.4

1.6

am

Variational ameff [ P
A1

++
 Ops ]

Variational ameff [ H
A1

++
 Ops ]

Eigenvalue Mass [ P
A1

++
 Ops ]

Eigenvalue Mass [ H
A1

++
 Ops ]

FIG. 11. Comparison of mass estimates obtained for the scalar
glueball using different methods (variational effective masses
and variational eigenvalues) for the fine ensemble. The points are
described briefly on the axis and in the text.
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FIG. 12. The overall average for the scalar glueball ground
state mass on the fine ensemble, evaluated as described in the
text.
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complications arising from disconnected contributions.
The possible types of correlators required for a mixing
study of glueball, f0, and �� are indicated in Fig. 13.

Unquenched studies of mixing in the isoscalar 0þþ
system were carried out by Hart et al. [13] using two
flavors of Wilson fermions. The ratio of (i) to (h) (see
Fig. 13) was estimated using all-to-all techniques with
100 configurations. Unfortunately the errors were too large
to provide useful information within the statistics of that
study.

It has become clear that techniques for studying lattice
decays will best be developed first in simpler and less noisy
systems than isoscalar channels such as the present one.

So, for a preliminary study with improved staggered
fermions, we choose instead to follow a simplified version
of the method of [40] and form the mixing matrix

MabðtÞ ¼ MGGðtÞ M�GðtÞ
MG�ðtÞ M��ðtÞ

� �

¼ hP Aþþ
1

i ð0ÞP Aþþ
1

i ðtÞi hC�ð0ÞP Aþþ
1

i ðtÞi
hP Aþþ

1

i ðtÞC�ð0Þi hC�ðtÞC�ðtÞi

0
@

1
A; (9)

where P
Aþþ
1

i ð0Þ and P Aþþ
1

i ðtÞ are the j ~pj ¼ 0 standard scalar
glueball operators at time slices 0 and t, respectively, and
C�ð0Þ and C�ðtÞ are the single pion correlators on time
slice 0 and t, respectively. The C�ð0Þ correlator allows us
to study a �� state localized in time and, because of the
way we have computed the connected correlator, we are
restricted to using C�ð0Þ which reduces our statistics for
the 2� operators by a factor of nt ¼ 64.

We form the ratio [40]

xG�ðtÞ ¼ MG�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MGGðtÞM��ðtÞ

p ; (10)

where the MabðtÞ are the elements of (9) on time slice t.
This gives a measure of the off-diagonal mixing matrix
elements, normalized by the diagonal entries. We remind
the reader that this captures only some of the possible
contractions contributing in a full treatment of the mixing
as indicated in Fig. 13. In this study, the factorizing fits
involved diagrams of type (a) only and the estimated
strength of mixing to�� involved an approximation to (c).
We have computed these ratios for the coarse and fine

lattices, using the glueball operator with three levels of

Teper blocking (i.e. P
Aþþ
1

3 ) which we found shows similar

behavior to the lower blocking levels but with less noise.
We used the pion correlators with both local source and
local sink, and fuzzed source and fuzzed sink. Our results
are presented in Fig. 14.
For the coarse ratios we see that at small t they appear

consistent with zero, turning negative for t� 5, although
with large error. We note that the fine mixing ratio shows a
similar downturn for t� 3–4. While these ratios give only
a guide to the mixing of the glueball operators and a ��
state, the small size of xG� at low t indicates that, provided
we choose tmin small enough, we should obtain a good
overlap with the ‘‘stable’’ glueball and conversely, that by
choosing tmin large, we may obtain a significant overlap
with the �� state. This is consistent with the earlier
observations of the effective masses and factorizing fits
at small and large t.

FIG. 13. Schematic mixing diagrams for the full glue, meson, and two meson mixing problem in the I ¼ 0 scalar channel. The
dashed rectangles represent the glue operators P Aþþ

1 and the solid lines represent quark propagators. Euclidean time runs horizontally.
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D. Comparison with other scalar determinations

This study of scalar states in the glueball sector is
characterized by relatively high statistics in comparison
with previous studies using dynamical fermions. It also
uses a vacuum with 2þ 1 flavors. However, it is limited in
that it makes use of only two lattice spacings (roughly 0.12

and 0.09 fm) and a single light quark mass for each

ensemble. The pion mass in lattice units is 0.1740(6)
(coarse ensemble) and 0.1672(14) (fine). These correspond
to around 280 and 360 MeV, respectively, so the quark
masses are not particularly light. The strange quark mass is
close to the physical one. Any attempt to extract a contin-

(a) Coarse: LL Pion (b) Coarse: FF Pion

(c)Fine: LL Pion (d)Fine: FF Pion

FIG. 14. The measure of glueball-�� mixing defined in (10) for, clockwise from top left: the local-local (LL) pion correlators with
the three-times Teper blocked glueball operators on the coarse ensemble; the fuzzed-fuzzed (FF) pion correlators with the three-times
blocked glueball operators on the coarse ensemble; the fuzzed-fuzzed (FF) pion correlators with the three-times blocked glueball
operators on the fine ensemble; and the local-local (LL) pion correlators with the three-times blocked glueball operators on the fine
ensemble.
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uum limit (without a chiral limit of course) needs to be
treated with due caution. In Table VII we summarize the
scalar sector results in lattice units and in dimensionless
form using the Sommer r0 parameter from Table I.

In Fig. 15 we present our results along with those from a
recent UKQCD study of scalar glueballs using staggered
fermions (MILC configurations) [41], a UKQCD study
using OðaÞ nonperturbatively improved Wilson fermions
(Nf ¼ 2) [11], and the continuum limit result from a

quenched anisotropic study of the glueball spectrum [9].
We perform a simple continuum extrapolation using the
form

r0mðaÞ ¼ r0mG þ bðr0=aÞ4; (11)

where r0mG and b are the parameters to be determined. In
[9], this was found to work well for all glueball states
except for the Aþþ

1 where this was thought to be due to
strong lattice spacing dependence caused by proximity to
the nonphysical phase transition in the Wilson
fundamental-adjoint plane for the anisotropic lattice action
used. However, the alternative form employed in [9] has
four free parameters which we are unable to use with just
two data points. As noted above, it is ambitious to attempt
any kind of continuum extrapolation using two data points
only and we emphasize that the fit with (11) has been
performed as a guide only. Nevertheless, we note that
good consistency between our continuum value for r0mG

is obtained, 4.32(6), and the quenched value r0mG ¼
4:21ð11Þð4Þ [9]. Our extrapolated value corresponds to a
physical value of 1.83 GeV approximately.

Our masses seem to show rather weak dependence on
a—certainly weaker than that observed in [11] and of a
similar strength to that observed in [9].

In Fig. 16 we present our results plotted against the pion
mass, shown with the same comparisons from the literature
as in Fig. 15. One might tentatively claim that the glueball
mass increases as one decreases the pion mass, hinting at
some underlying mixing dynamics. However the UKQCD
measurements on the coarse MILC Asqtad ensembles are
rather spread out and if, as is suspected, theOðaÞ improved
Wilson measurements are suppressed by the phase struc-
ture of the action used [11], then they should probably be
discounted and there remains very little trend to study.

E. Tensor and pseudoscalar glueball results

Similar procedures were used to obtain estimates of the
ground state and first excited state in the pseudoscalar and
tensor glueball channels. For the former we used blocked
operators (3) based on theH operators while for the latter
we used those based on P—see (1) and (2). Sample
eigenvalue masses are shown in Figs. 17 and 18 for the
pseudoscalar and tensor states, respectively.
The global averages are given in Table VIII.
For technical reasons, we were unable to complete mea-

surements of the tensor state on the fine ensemble. For
comparison, the quenched continuum limit estimates of
r0m from [9] are 6.33(13) and 5.85(8) for pseudoscalar

TABLE VII. Scalar glueball masses (ground and first excited
states) from the coarse and fine lattices converted into units of
the Sommer parameter r0.

Result amðAþþ
1 Þ r0mðAþþ

1 Þ
Coarse—ground 1.0468(75) 3.991(36)

Fine—ground 0.8332(59) 4.215(38)

Coarse—excited 1.875(87) 7.15(35)

Fine—excited 1.368(17) 6.92(10)

0 0.03 0.06 0.09 0.12

(a / r
0
)
2

2.8

3.2

3.6

4

4.4

r 0m
G

This Work (Coarse)
This Work (Fine)
UKQCD Clover
UKQCD
MILC Asqtad (Coarse)
UKQCD
MILC Asqtad (Fine)
Extrapolation
This Work
 (extrapolated value)
Morningstar-Peardon
Quenched Continuum Limit

FIG. 15 (color online). Our measurements of the scalar glue-
ball mass shown with previous quenched (Morningstar and
Peardon [9]) and dynamical (UKQCD on MILC Asqtad [41]
and UKQCD Clover [11]) determinations with the continuum
extrapolation performed as in [9].

0 1 2 3 4 5 6 7 8

(r
0
mπ)

2

2

2.5

3

3.5

4

4.5

5

r 0m
G

UKQCD Clover
This Work (Coarse)
This Work (Fine)
UKQCD
MILC Asqtad (Coarse)
UKQCD
MILC Asqtad (Fine)
2π Threshold
Quenched (Continuum)

FIG. 16 (color online). Our measurements of the scalar glue-
ball mass shown with previous dynamical (UKQCD on MILC
Asqtad [41] and UKQCD Clover [11]) determinations. The ��
threshold is shown (dash-dotted line) for convenience.
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and tensor glueballs, respectively. So, just as for the scalar
channel, there is little evidence of strong unquenching
effects.

We have conducted a separate study of the �=�0 system
using connected and disconnected meson operators which
will be presented elsewhere. Just for orientation, we note
that the continuum (experimental) values of r0m would be
1.32 (2.27) for the � (�0), respectively. It is clear that there
should be little mixing between the pseudoscalar glueball
and the �0. However, further excited states in this singlet
channel may mix.

There have been claims that the pseudoscalar �ð1405Þ
meson [42,43] contains significant mixtures of the pseu-
doscalar glueball. This requires that there is a significant
shift of the mass of the pseudoscalar glueball between
quenched and unquenched QCD, which we do not find in
this calculation. However, note the qualifications accom-
panying our conclusions below.

IV. DISCUSSION AND CONCLUSIONS

We have presented the first high statistics study of the
low-lying glueball sector in 2þ 1 flavor QCD. We ana-
lyzed some 5000 configurations of a 243 � 64 lattice with
spacing 0.12 fm and 3000 configurations of a 323 � 64
lattice with spacing 0.09 fm using improved staggered
(Asqtad) dynamical fermions. In contrast with earlier glue-
ball analyses using improved Wilson fermions, we find no
evidence of strong unquenching effects. For the 0þþ, 0�þ,
and 2þþ states we obtain mass estimates quite close to the
continuum limit masses obtained in the quenched approxi-

1/0 2/0 3/0 2/1 3/1

t / t
0

0.8

1

1.2

1.4

1.6

1.8

2

am
0

P
E1

++

P’
E1

++

FIG. 18 (color online). The masses extracted from the ground
state variational eigenvalues for different t=t0 projections per-
formed on 4� 4 matrices of correlators formed using bases of
momentum zero tensor glueball operators P Eþþ

1 (circles) and
P 0Eþþ

1 (squares) for blocking levels 0, 1, 2, and 3 in each case
(coarse ensemble).

TABLE VIII. Pseudoscalar and tensor glueball masses (ground
and first excited states) from the coarse and fine ensembles
converted into units of the Sommer parameter r0. Pseudoscalar
measurements were made on 3506=1998 configurations of the
coarse/fine ensembles, respectively. Tensor measurements were
made on 2627 configurations of the coarse ensemble only.

Result amðA�þ
1 Þ r0mðA�þ

1 Þ amðEþþ
1 Þ r0mðEþþ

1 Þ
Coarse—ground 1.560(67) 5.95(12) 1.510(13) 5.756(61)

Fine—ground 1.265(17) 6.399(99) � � � � � �
Coarse—excited 1.956(65) 7.46(26) 1.98(26) 7:55	 1:01
Fine—excited 1.984(77) 10.04(41) � � � � � �

1/0 2/0 3/0 2/1 3/1 3/2

t / t
0
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am
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FIG. 17. The masses extracted from the ground state varia-
tional eigenvalues using different t=t0 projections performed on
a 3� 3 matrix of correlators formed from the basis of momen-

tum zero pseudoscalar glueball operators fH A�þ
1

0 ;H
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2 g on the fine ensemble.
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FIG. 19 (color online). Comparison of our unquenched glue-
sector predictions with experimental states listed in the Particle
Data Group listings [34] and with the quenched continuum limit
predictions of Morningstar and Peardon [9]. The mass range
expected to be investigated in a forthcoming experiment [19] is
also indicated.
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mation [9]. In Fig. 19 we show a compilation of 0þþ, 0�þ,
and 2þþ glueball candidate states [34] together with
quenched continuum limit predictions [9] and our un-
quenched results at fixed lattice spacing and fixed quark
mass.

Despite the larger statistics available to us, we still had
difficulty obtaining unambiguous estimates of even the
low-lying states. This was due to at least two main fac-
tors—the inherently noisy correlators and the presence of
open decay channels, particularly ��. In order to reduce
the noise, we used a variety of smearing and blocking
techniques giving access to a range of basis states. We
also used a number of different methods based on varia-
tional techniques: effective masses, transfer matrix eigen-
values, and multichannel factorizing fits. The effects of the
open decay channels were exposed at larger Euclidean
time via the choice of fit ranges and also via direct evalu-
ation of a subset of mixing matrix elements.

Our overall conclusions are as follows:

(i) there is little evidence of large unquenching effects
on the predicted low-lying glueball spectrum;

(ii) accurate determination of masses requires even
larger numbers of configurations in comparison
with quenched glueball analyses;

(iii) a fuller account must be taken of two meson state
contributions at large Euclidean time;

(iv) we encountered no problems that could be identified
as resulting from the use of improved staggered
fermions—in particular, the lattice spacing depen-
dence was weak.
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