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Rare semileptonic decays of B and B, mesons in the relativistic quark model
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Rare semileptonic decays of B and B, mesons are investigated in the framework of the QCD-motivated
relativistic quark model based on the quasipotential approach. Form factors parametrizing the matrix
elements of the weak transitions between corresponding meson states are calculated with the complete
account of the relativistic effects including contributions of intermediate negative energy states and
relativistic transformations of the meson wave functions. The momentum transfer dependence of the form
factors is reliably determined in the whole accessible kinematical range. On this basis the total and
differential branching fractions of the B — K™/~ (v%) and B, — DY I I (vi), B, — DY~ (vD)
decays as well as the longitudinal polarization fractions F; of the final vector meson and the muon
forward-backward asymmetries Agg are calculated. Good agreement of the obtained results with the
recent detailed experimental data on the B— K®u*u~ decays from Belle and CDF is found.

Predictions for the rare semileptonic decays of the B, mesons are given.
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L. INTRODUCTION

The investigation of the rare weak B and B, meson
decays represents a very interesting and important prob-
lem. Such decays are governed by the flavor-changing
neutral currents, which are forbidden at tree level in the
standard model (SM) and first appear at one-loop.
Therefore, such decays are very sensitive to the contribu-
tions of new intermediate particles and interactions, pre-
dicted in numerous extensions of the SM (see e.g. [1,2] and
references therein). Notwithstanding the fact that such
decays have very small branching ratios, comparison of
existing theoretical and experimental results for the rare
semileptonic and radiative B — K decays already pro-
vides one of the most rigid constraints on different new
physics scenarios [3].

The theoretical analysis of the rare weak B decays is
based on the electroweak effective Hamiltonian, which is
obtained by integrating out the heavy degrees of freedom
(electroweak bosons and top quark) [3]. The QCD correc-
tions to these processes due to hard gluon exchanges turn
out to be important and require to resum large logarithms,
which is done with the help of renormalization group
methods. The operator product expansion allows to sepa-
rate the short-distance part in the B meson decay ampli-
tudes, which is described by the Wilson coefficients and
can be calculated perturbatively, from the long-distance
part contained in the operator matrix elements between
initial and final meson states. For the investigation of the
exclusive decay rates one needs to apply nonperturbative
methods to calculate these hadronic matrix elements which
are usually parametrized in terms of covariant form factors.
Clearly, such calculation is model dependent. In order to
reduce model dependence, methods, based on the heavy
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quark and large energy expansions, have been developed.
They employ the new symmetries which arise in heavy
quark and large energy limits and permit us to significantly
reduce the number of independent form factors [4]. Such
methods allow a perturbative calculation of QCD correc-
tions to the factorization approximation and thus are now
popular in the literature [5]. However, the important
Aqcp/my, corrections cannot be systematically taken into
account in such an approach.

Rare B — K transitions are the most studied ones both
theoretically and experimentally [3]. Recently, detailed
experimental data on differential branching fractions, an-
gular distributions and asymmetries in the rare B —
K™ " ™ decays became available both from B factories
and the Tevatron [6-9]. The measured values are at present
consistent with the predictions of the SM within experi-
mental and theoretical uncertainties. Significantly better
statistics on the rare B decays is expected from LHC
experiments (especially from LHCb) which will allow
precision tests of the SM and can probably reveal signals
of new physics [10]. It is expected that the B, mesons will
be copiously produced at the LHC, making possible the
experimental study of their weak rare decays. Such decays
received significantly less attention in the literature. The
B, — D171 and B. — D™I*I~ were previously inves-
tigated using the relativistic constituent quark model [11],
light-front quark model [12,13] and three-point QCD sum
rules [14].

In this paper we study the rare weak B and B, decays in
the framework of the QCD-motivated relativistic quark
model. Our model was previously successfully applied
for the investigation of various electroweak properties of
heavy and light hadrons. Semileptonic decay rates of the B
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[15] and B, [16,17] mesons as well as rare radiative decays
of the B [18] were calculated in agreement with available
experimental data. For this purpose, effective methods of
the calculation of electroweak matrix elements between
meson states with a consistent account of relativistic ef-
fects were developed. They allow to reliably determine the
form factor dependence on the momentum transfer in the
whole accessible kinematical range. The form factors are
expressed as overlap integrals of the meson wave func-
tions, which were obtained in the corresponding calcula-
tions of the mass spectra [19,20]. It is important to note that
we specially checked [21,22] the fulfillment of the model-
independent symmetry relations among form factors aris-
ing in the heavy quark and large energy limits. Here we
apply these methods to the calculation of the form factors
of the rare B — K® and B, — D'”(D™) transitions and
on this basis determine branching fractions and differential
distributions of these decays.

The paper is organized as follows. The relevant effective
weak Hamiltonian for the rare B and B, decays is briefly
discussed in Sec. II. In Sec. III we give an outline of our
relativistic quark model. Then in Sec. IV we discuss the
relativistic calculation of the hadronic matrix element of
the weak current between meson states in the quasipoten-
tial approach. Special attention is devoted to the contribu-
tions of negative-energy states and the relativistic
transformation of the wave functions from the rest to the
moving reference frame. Form factors of the rare semi-
leptonic B — K™ and B, — DY(D™) decays are calcu-
lated in Sec. V. These form factors are used in Sec. VI for
the calculation of the total and differential rare decay
branching fractions. First we give the necessary formulas
and then present our numerical results. These are then
confronted with available experimental data and predic-
tions of other approaches. Finally, Sec. VII contains our
conclusions. Expressions for the tensor form factors of the
rare B and B, meson decays in terms of the overlap
integrals of meson wave functions are given in the
Appendix.
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II. EFFECTIVE HAMILTONIAN FOR THE RARE B
AND B, MESON DECAYS

The usual approach to the description of rare B decays is
based on the low-energy effective Hamiltonian, obtained
by integrating out the heavy degrees of freedom (the top
quark and W bosons) of the SM. The operator product
expansion separates the short-distance contributions,
which are contained in the Wilson coefficients and can
be calculated perturbatively, from the long-distance con-
tributions contained in the matrix elements of the local
operators. The calculation of such matrix elements requires
the application of nonperturbative methods.

The effective Hamiltonians for b — fI71~ and b —
fvp transitions (f = s or d), renormalized at a scale u =
my,, are given by [23]
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where Gp is the Fermi constant, V,; are Cabibbo-
Kobayashi-Maskawa matrix elements, C; are the Wilson
coefficients and O; are the standard model operator basis
which can be found e.g. in [24]. The most important

operators for the b — fI*1~ transitions are the following:

g{gf? =

0; = ﬁmb(ﬁﬂw(l + ys)b)FF,

2 -_ _
0, = %(fm(l = y5)b)Iy*D), @
O = 35— 2(fn(l ¥s)b)(Iy*ysl),

with F,,, being the electromagnetic field strength tensor,
and for the b — f v transitions we have
07 =

(f?’M(l ¥s)b)(@yH(1 — ys)v).  (3)

322

The resulting structure of the free quark decay amplitude
has the form:

VZerh[CSff(fm(l — ys)b)Iy*1) + Cio(fy, (1 — ys5)b)(Iy*ysl)

M C(For, g (1 + Vs)b)(lv“l)] “)

M(b— fvv) = \/- g Z VLV Ch(Fya(l — y9)b)(Ey (1 — ¥5)v),

where « is the fine structure constant.

The effective Wilson coefficient CEt is given [25] by
C¢" = C; — C5/3 — Cg, while CST accounts for both per-
turbative and certain long- dlstance contributions from the

|

matrix elements of four-quark operators O; _¢. The long-
distance (nonperturbative) effects arise from the c¢ reso-
nance contributions from J/, ... and are usually as-
sumed to have a phenomenological Breit-Wigner structure.
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Therefore CST reads as follows [11,25,26]:
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Cgff = C9 + ypen(qz) + wa(qz)- (5)

Here the perturbative part is given by

2 1 2
Vpen(?) = h(”:—;,%)@cl +Cy 4+ 3Cs + Cy +3Cs + Cg) — Eh(l,%)@@ +4C, + 3Cs + C)

b
1
2

and the cc¢ resonance part reads
F(Vl g l+l_)MV’_
M%/,» —q - l'Mv,Fv,’

Viwl) =2 3 )

Vi=J/ gy’

and g? is the four-momentum squared of the lepton pair,
and my, . are the masses of the b and ¢ quarks. The explicit
form of the function h(m,/my, g*>/m?) [27] and the values
of Wilson coefficients C o are given in Refs. [11,25].

For the application of the above expressions to the
description of the exclusive rare semileptonic decays of
the B and B, mesons it is necessary to calculate the matrix
elements of the operators fy#(l — vs)b and fa'w,q”(l -
v5)b between initial and final hadron states. Such calcu-
lation requires the application of nonperturbative ap-
proaches. In this paper we use the relativistic quark
model based on the quasipotential approach for these
investigations.

III. RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described as a
bound quark-antiquark state with a wave function satisfy-
ing the quasipotential equation of the Schrodinger type

(@_ p’ )wM(m - 9y, q: MYV @),

2up 2pg (277)3
)]
where the relativistic reduced mass is
E\E M* — (m? — m3)?
PR = = e ©)
E, +E, 4M

and E,, E, are the center of mass energies on mass shell
given by
2_ 2 2 2 _ 2 2
E1=M mj5 + mj E2=M my + mj; (10)
2M ’ 2M

Here M = E, + E, is the meson mass, m, , are the quark
masses, and p is their relative momentum. In the center of
mass system the relative momentum squared on mass shell
reads

[M2 — (m; + ’”2)2][1‘/[2 = (m; — mz)z]
4M? '

b*(M) = 1D

b

2
2
- —h(O, ‘1—2>(C3 +3C)) +5(3Cy + €y +3C5 + Cy), 6)
U

|

The kernel V(p, q; M) in Eq. (8) is the quasipotential
operator of the quark-antiquark interaction. It is con-
structed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states.
Constructing the quasipotential of the quark-antiquark in-
teraction, we have assumed that the effective interaction is
the sum of the usual one-gluon exchange term with the
mixture of long-range vector and scalar linear confining
potentials, where the vector confining potential contains
the Pauli interaction. The quasipotential is then defined by

[19]

V(p, q;: M) = ity (p)ity(— p) V(p, q; M)u, (q)ur(—q),
(12)

with
4
Vpq;M) = gasD,w(k)y’f“’yz” + Vo (KT,
+ Vgonf(k)’

where a; is the QCD coupling constant, D ,,, is the gluon
propagator in the Coulomb gauge

dar
. da (i k'k/
Df(k)=—?<61— 2 ) (13)
DOi — DiO =0,

and k = p — q. Here vy, and u(p) are the Dirac matrices
and spinors

ep)+ml o
2e(p) \e(p) +m

uM(p) = )x% (14)

where o and y* are Pauli matrices and spinors and €(p) =

J/p?> + m?. The effective long-range vector vertex is given
by
iK
F,u,(k) = yu + %O-/LV
where « is the Pauli interaction constant characterizing
the long-range anomalous chromomagnetic moment of
quarks. Vector and scalar confining potentials in the non-

k”, (15)
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relativistic limit reduce to

Vy(r) = (1 — &)(Ar + B), Vi(r) = e(Ar + B),

(16)
reproducing
Vconf(r) = VS(r) + VV(r) = Ar + B, (17)

where ¢ is the mixing coefficient.

The expression for the quasipotential of the heavy quar-
konia, expanded in v?/c?, can be found in Ref. [19]. The
quasipotential for the heavy quark interaction with a light
antiquark without employing the nonrelativistic (v/c) ex-
pansion for the light quark is given in Ref. [20]. All the
parameters of our model like quark masses, parameters of
the linear confining potential A and B, mixing coefficient &
and anomalous chromomagnetic quark moment « are fixed
from the analysis of heavy quarkonium masses and radia-
tive decays. The quark masses m;, = 4.88 GeV, m, =
1.55 GeV, m; = 0.5 GeV, m, 4 = 0.33 GeV and the pa-
rameters of the linear potential A = 0.18 GeV? and B =
—0.30 GeV have the values inherent for quark models. The
value of the mixing coefficient of vector and scalar con-
fining potentials € = —1 has been determined from the
consideration of the heavy quark expansion for the semi-
leptonic B — D decays [21] and charmonium radiative
decays [19]. Finally, the universal Pauli interaction con-
stant k = —1 has been fixed from the analysis of the fine
splitting of heavy quarkonia *P - states [19] and the heavy
quark expansion for semileptonic decays of heavy mesons
[21] and baryons [28]. Note that the long-range magnetic
contribution to the potential in our model is proportional to
(1 + k) and thus vanishes for the chosen value of Kk = —1
in accordance with the flux tube model.

IV. MATRIX ELEMENTS OF THE EFFECTIVE
WEAK CURRENT OPERATORS FOR b — s, d
TRANSITIONS

In order to calculate the exclusive rare semileptonic
decay rate of the B (B,) meson, it is necessary to determine
the corresponding hadronic matrix element of the weak
operators (2) and (3) between meson states. In the quasi-
potential approach, the matrix element of the hadronic
weak current operator JZLV, between a B (B,.) meson with
mass Mp and four-momentum pp and a final meson F
(F=K® or D! and D") with mass My and four-
momentum p, takes the form [29]
dpdiq -

o Vrer @I OV, (@)
(18)

where I',(p, q) is the two-particle vertex function and
Wp,, are the meson (M = B, F) wave functions projected
onto the positive energy states of quarks and boosted to the
moving reference frame with three-momentum p,,.

(F(pp)lJ}/1B(pp)) =
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FIG. 1. Lowest-order vertex function I'") contributing to the
current matrix element (18).
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FIG. 2. Vertex function I'® taking the quark interaction into
account. Dashed lines correspond to the effective potential V in
(12). Bold lines denote the negative-energy part of the quark
propagator.

The contributions to I' come from Figs. 1 and 2. The
leading-order vertex function I')) corresponds to the im-
pulse approximation, while the vertex function I'® ac-
counts for contributions of the negative-energy states.
Note that the form of the relativistic corrections resulting
from the vertex function I'® is explicitly dependent on the
Lorentz structure of the quark-antiquark interaction. In the
leading order of the heavy quark (m, . — o0) and large
energy expansions for B — F transitions, only I'™ con-
tributes, while I'® contributes already at the subleading
order. The vertex functions are determined by

'Y, q) = i,(p,)Guu(q,) 238, — q,),  (19)
and

AL
(20, 0) = 1,8, () 610 — iy ey

XV, —q,)+ Vip, —q,)
A.(f_)(k/)

WY?QM}%(%)%(%), (20)

where G, = v, (1 — ys) for the (axial) vector weak cur-
rent and G, = 0,,4"(1 + ys) for the (pseudo) tensor
current; the subscripts f and ¢ denote the final active s, d
and the spectator u, d, ¢ quarks, respectively; the super-
scripts ““(1)”” and ““(2)” correspond to Figs. I and 2, k =
pr— Ak =q, + A; A =pp —ps;

— 0 0
ACp) = e(p) (n;:(l:)r 7 (vp)
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Here [29]

Prq = €5, q(P) * Z nD(pp)p’,

PE LN i
Thq = €045 = D (P,
B =1

and n') are three four-vectors given by

p'p’ }
M(E + M)

P <y

It is important to note that the wave functions entering
the weak current matrix element (18) are not in the rest
frame in general. For example, in the B meson rest frame
(pg = 0), the final meson is moving with the recoil mo-
mentum A. The wave function of the moving meson W,
is connected with the wave function in the rest frame
V9 = Vp by the transformation [29]

n¥(p) = {M’ 9 +

Vea(@) = DY (RY DS (RY ) Wro(p). (21

where RY is the Wigner rotation, L, is the Lorentz boost
from the meson rest frame to a moving one, and the
rotation matrix D'/2(R) in spinor representation is given by

(o 1)PIHRE) =570, )S@ISE). (22

where

_ |elp) +m( ap
Sp) = 2m \1 * e(p) + m)

is the usual Lorentz transformation matrix of the four-
spinor.

V. FORM FACTORS OF RARE SEMILEPTONIC
DECAYS

The matrix elements of the weak current for rare B
decays (B denotes either B or B,.) to pseudoscalar mesons
(P =K, Dy, D) can be parametrized by three invariant
form factors,

(P(pp)lgy*b|B(pg))
M2 _ M2
= f+(q2)[p§ + P~ qupq"]

2
+ fo(qz)q—MC]“, (23)

(P(pp)lgo*”q,b|B(pp))

lfT(CI )

= M2)g™], 24
M, + M, plgtl  (24)

Pk pE) — (M —
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where f,(0) = fo(0), ¢ = pp — pr, and Mpp are the
masses of the B meson and pseudoscalar P meson,
respectively.

The corresponding matrix elements for the rare B decays
to vector mesons (V = K*, D}, D*) are parametrized by
seven form factors,

i} 2V()  upo
(V(pp)lgy*bl|B(pp)) = MG# P €, DBpPF o
(25)
<V(pp)|517“75b|B(pB)>
— My ?) L g + (Mg + M)A )
>< (6*:“ — € .zqqlu’)
q
2\q My + M, Pp T PF 7 q |

<V(PF)|qu'MVqu|B(PB)> = 2Tl (qZ)equceﬂ;prme
27)

(V(pp)lgio*”ysq,b|B(pg))

= T, (P[(M3 — M3)e™r — (€ - q)(ply + pi)]

qZ

+ T5(¢%)(e" - Q)I:Q’L - m(lﬁg + P?)] (28)
B Vv

where 2MyAy0) = (Mg + M)A, (0) — (Mg —
My)A;(0), T,(0) = T,(0); My and €, are the mass and
polarization vector of the final vector meson.

We  previously  studied the form  factors
(f+, fo, V, Ag, Ay, A;) parametrizing the matrix elements
of vector and axial vector charged weak currents for B —
m(p) [15] and B.— n.(J/4), B.— DY [16], B.—
Bg*)(B(*)) [17] transitions in the framework of our model.
The necessary formulas for these form factors can be found
in the Appendix of Ref. [16]. Now we apply them to the
calculation of the form factors, parametrizing neutral cur-
rent matrix elements for the B — K™ and B, — Dg*) ,
B, — D% transitions. For the remaining tensor form fac-
tors we use the same approach described in detail in
Refs. [15-17]. Namely, we calculate exactly the contribu-
tion of the leading vertex function '™ (19) to the transition
matrix element of the weak current (18) using the
o-function. For the evaluation of the subleading contribu-
tion I'® we use expansions in inverse powers of the heavy
b-quark mass from the initial B meson and of the large
recoil energy of the final heavy-light meson. Note that the
latter contributions turn out to be rather small numerically.
Therefore we obtain reliable expressions for the form
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factors in the whole accessible kinematical range. It is
important to emphasize that doing these calculations we
consistently take into account all relativistic corrections
including boosts of the meson wave functions from the rest
frame to the moving one, given by Eq. (21). The obtained
expressions for the tensor form factors fr, Ty, T,, T5 are
presented in the Appendix (to simplify these expressions
the long-range anomalous chromomagnetic quark moment
was explicitly set as k = —1). In the limits of the infinitely
heavy quark mass and large energy of the final meson, the
form factors in our model satisfy all model-independent
symmetry relations [4,22].

For numerical calculations of the form factors we use the
quasipotential wave functions of the B, B, K*, D, and D
mesons obtained in their mass spectra calculations [19,20].
Our results for the masses of these mesons are in good
agreement with experimental data [30], which we use in
our calculations.

We find that the rare semileptonic B — K®*]~ and
B, — D (D)1~ decay form factors can be approxi-
mated with good accuracy by the following expressions
[15,31]:

PHYSICAL REVIEW D 82, 034032 (2010)
(@) F(¢*) =1{f+(q*), fr(g>. V(g*), Ay(¢?), Ti(¢*)}

F(0)
F(qz) = qz qg q4 ’
By By

(29)

(b) F(g*) ={fo(g?)., Ai(g%). Ax(q?). T2(g%), T5(¢*)}

F(0)
F(g?) = - IS
(1 - o-lM_Z + O'ZM—4)
By BS

(30)

where M = M g, for Ay and M=M p: for all other form
factors (for B, — D[~ decays MBYF) should be re-
placed by Myw). The values F(0) and o, are given in
Tables I, II, and III. The difference of fitted form factors
from the calculated ones does not exceed 1%. We plot
these form factors in Figs. 3 and 4.

TABLE I.  Form factors of the rare semileptonic decays B — K®)[* [~ calculated in our model.
Form factors f,(q%), fr(g?), V(¢?), Ao(¢?), T\(g*) are fitted by Eq. (29), and form factors
fo(q), A1(q%), Ay(g%), Ta(q?), T5(g?) are fitted by Eq. (30).

B— K B— K*
f+ fo Sr 14 Ag Ay Ay T, T, T
F(0) 0.242 0.242 0.258 0375 0.297 0.321 0.345 0.291 0.291 0.080
oy 0.480 0.445 1.198 1.019 0.695 0.374 1.422 0.275 0.855 1.982
o, —0.537 —0476 2.168 0.229 0.322 —-0.138 0.548 —0.339 —0.256 1.198

TABLE II. Form factors of the rare semileptonic decays B, — DIt~ calculated in our
model. Form factors £, (q%), fr(g%). V(g?), Ay(q?), T,(¢?) are fitted by Eq. (29), and form
factors fo(q%), A1(q%). A2(g?). T2(¢?), T5(¢?) are fitted by Eq. (30).

B, — D, B, — D*
f+ fO fT 14 AO Al AZ Tl T2 T?
FO) 0129 0129 0098 0182 0070 0089 0110 0085 0085 0.051
oy 2096 2331 1412 2133 1561 2479 2833 1540 2577 2783
oy 1147 1666 0048 1.183 0192 1.686 2167 0248 1.859 2170

TABLE III. Form factors of the rare semileptonic decays B, — D[+~

calculated in our

model. Form factors £, (q%), fr(g%). V(g?), Ay(q?), T,(¢?) are fitted by Eq. (29), and form
factors fo(q%), A;(¢%), Ay(¢?), To(q?), T5(q?) are fitted by Eq. (30).

B,— D B, — D
[+ fo fr 14 Ag Ay Ay T, T, T;
F(O) 0081 0081 0061 0125 0035 0054 0071 0055 0055 0034
oy 2167 2455 1363 2247 1511 2595 2800 1.520 2633 2801
o, 1203 1729 0026 1346 0175 1784 2073 0207 1.886 2.108
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FIG. 3 (color online). Form factors of the B — K® decays.

¢ (GeV?)

7 (GeV?)

FIG. 4 (color online). Form factors of the B, — pY decays.
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VI. RESULTS AND DISCUSSION

Now we use the obtained form factors for the numerical
calculation of decay rates and other important observables
of the rare semileptonic B decays and confront their values
with available experimental data.

A.B— PI*l” and B — VIl decays

The matrix element of the b — fIT]~ (f = s or d)
decay amplitude (4) between meson states can be written
[11,25] in the following form:

Gra
M(B— PIT]) = —L
( )= 2\/— Vol
X [T(“(lv“l) + T (Iy*ysD)],
MB — VI*I) = (3D

\/-I Vi|

x [t T Iy D) + e T (TyrysD),

where T are expressed through the form factors and the
Wilson coefficients. Then these amplitudes can be written
in the helicity basis £#(m) as (see [11])

(a) B — P transition:

(b)

PHYSICAL REVIEW D 82, 034032 (2010)

where
HY =0,
H(l) _ Al I:Cefff+(q2) eff fT(qz):I
0 Jq— My + M
/\1/2
H(()z) = —2C10f+(6]2),
Vi (33)
M — M3
H;l) P Cefff (qz)
Va
M2 — M3
ng) ?Pclofo(qz)
q
Here A= AM2, M3, g% = My + My + g* —

2AMiM% + M%q> + M%q?) and the subscripts *,
0, # denote transverse, longitudinal and time helicity
components, respectively.

B — V transition:

HY = etr(m)etrTl), (34)

where €” is the polarization vector of the vector V

Hl(v? = STM(’”)TU)’ (32) meson and
H — —(M2 — MZ)[Ceff Ai(g*) 2mb CsT (qz)] -+ /\I/ZI:Ceff Vig*) 2mb =b et ( 2)]
- B v 0 MB - MV MB + MV
HY = Clo[—(MB + M)A, (g2) = AV/2 M]}
- Mp + My,
1
(1 _ ff 2 2 2 2 2
) = [ eson - w3 = 015+ M) - 5 )
2Myq? Mg + My
A
+ 2mbcgff{(M%; +3M5 — ¢*)Ta(q%) — mﬂ((f)”,
B % (35)
2 _ 2 2 2 2 2
HY =~ Cu| (M}~ M}~ )My + MOAG) = 3 Aala) |
0 Mv\/_ 10 v B v)A] My + M, 2
AV
H = - —csfon(cf),
Vi
)11/2
2 _ 2
H” = ——=CpA¢(q"),
V7

here A = A(M3, M3, ¢?) = M} + M}, + ¢* — 2(M3M3,
The differential decay rate then reads [11]
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dr(B— PW)I*I") _ Gt (""fovt“)2 ARl ‘W%[H<1>H+(1><1 + 4’"12) + H(Z)H’r(2)(1 - 4’"12)
dq? Qm)? 2 48M3 q° q* 7

2m?
T2 O ) ] (36)
q
where m; is the lepton mass and
HOHTO = P10 + gOgto + g gto, (37)
The forward-backward asymmetry is given by
3 4m?2 R H(I)HT(Z) —R H(I)HT(Z)
T ol #: ") — RelH-HT) (38)
4 7 gOgtog + ) + HOHO)(1 - 4'"l) + 2 3H(2)H“2>
The longitudinal fraction of the V polarization has the form
H(I)HT(I)(l + 1) + H(z)Hﬂz)(l 1) + 2ml 3H(2)H1'(2)
39
 HOHTO( + ) + HOHTO(1 - ') + 2 3H(2)H“2) )

These two observables are the most popular quantities for
B — K*(— Km)ut u~ decays, since they are convenient
for the experimental measurements. They enter the decay
differential distributions in cosfg

1dTB—-K'utu™) 3
=~ Fcos’fk
r dcosfg o Leos

+ %(1 — F)(1 — cos?6g), (40)

and in cosf,,

1dTB—-K'utu™) 3
= =-F; (1 — cos?
r dcosf,, 4 L(1 = cos’,,)

3
+ §(1 — Fp)(1 + cos?6,,)
+ Agg cosf,, 41)

where 6 is the angle between the kaon direction and the
direction opposite to the B meson in the K* rest frame, and
6, is the angle between the u™ and the opposite of the B
direction in the dilepton rest frame. Therefore they can be
determined experimentally using the angular analysis.

B. B — Pvv and B — Vvv decays

The differential decay rate for the B — P(V)v¥ is given
by

dl'(B — P(V)vD) 3 G2 ( I tbl)
dq? Qm)3 27
/\1
X H<V>HT<V> 42)
24M3,

|
where the factor of 3 originates from the sum over neutrino
flavors,

HYHY = HYHTY + g0 + P

and the helicity amplitudes HS,;’ ) read as follows
(a) B — P transition:

/\1/2
(v _
H() Y

Ve

HY =0, Clfdd).  (43)

(b) B — V transition:

174 2
HY = i~y + Moy ) = 2 V]

Mg+ My]

1

HY = —7C”|:(M2 - M} - ¢?)
0 2MVJq_2 L B \%4

X (M + M)A, (¢?) - Al |

(44)

Mg+ My,

Here C} = —X(x,)/sin’0y, with x, = m?/m3,, Oy, is the
Weinberg angle, and the function X(x,) at the leading-order
in QCD has the form
3x — 6 )
Inx |,

2+ x
xe) =5 (55 +

while the next-to-leading-order expressions are given in
Ref. [32].
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Substituting the current experimental values for the top
(m,) and W-boson (my,) masses one gets [2]

C] = —6.38 £ 0.06, (45)

where the error is dominated by the top quark mass uncer-
tainty. In the following calculations we use the central
value of Cj.

The differential longitudinal polarization fraction F; of
the V meson is defined similar to Eq. (39)

PHYSICAL REVIEW D 82, 034032 (2010)

g

- gwgte” (46)

L

C. Numerical results

Now we substitute the above calculated form factors in
the expressions for decay rates, asymmetries and polariza-
tion fractions and perform numerical calculations.

First we compare the predictions of our model for the
B— KI*l” and B— K*I"]~ decays with available ex-

TABLE IV. Comparison of our predictions for the rare semileptonic B — K decay nonresonant branching fractions with

experimental data (in 1077).

Decay our BABAR [6,33] Belle [7,34] CDF [8] CDF [9] HFAG [35]
B—Ku*p~ 4.19 34+07*02 4810303 59+ 1504 3.8+05*03 4.5+ 0.4
B— K171 1.17

B— Kvi 26.1 <140

B—Kutu~ 9.25 78719 = 1.1 10.74}5 = 0.9 8.1£30=1.0 10.6 = 1.4 = 0.9 10.8%17
B— Kt 7~ 1.03

B— K'vp 63.2 <800

dBr/dg*(1077/GeV?)

12— T T
[ 1 1
t w4 , Y
t -
Lof K- p ! !
[ I
‘ | N
08 1 :|
: ! lI T
[ ! ! |
0.6 : I:F 1 4
[ R
SN A
0.4 F | ! A 1
: -t -
[ L,.’_//jf’
0.2: - ll_’__——’ i
[ I ===
0.0
[ L
F —e—
02 L N N N N Il N N N N Il N N N N f N
0 5 10 15

¢ (GeV?)

FIG. 5 (color online).

dBr/dg*(1077/GeV?)
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[ \ ]
q L ! 1
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[ , | ' W ]
02 Iy | :' ! ]
=02 | 4 | | ! 1! ]
[ | |: |:
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044 | N N Il P LTI 1 Il
0 5 10 15

Comparison of theoretical predictions for the differential branching fractions dBr/dg?, the K* longitudinal

polarization F; and muon forward-backward asymmetry Apg for B — K decays with available experimental data. Nonresonant and
resonant results are plotted by solid and dashed lines, respectively. Belle data are given by dots with solid error bars, while CDF data

are presented by filled circles with dashed error bars.
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perimental data. The calculated values for the branching
fractions of the rare semileptonic decays B — K®)[T[~
and B — K™ v and available experimental data are given
in Table IV. We find good agreement of our results for the
B— Ku"u and B— K*u™ u~ decays with experimen-
tal data. A more stringent test of our predictions can be
achieved by comparison with new data on differential
decay distributions. This is done in Fig. 5 where we con-
front our predictions for differential decay rates, the lon-
gitudinal polarization fraction F; of the K* and the muon
forward-backward asymmetry Agg with detailed experi-
mental data from Belle [7] and CDF [9]. In this figure we
plot our results both for the nonresonant (solid line) quan-
tities and quantities including the J/ ¢ and ¢’ resonance
contributions (dashed line). Note that the resonance re-
gions are vetoed in the experimental analysis. Reasonable
agreement of our predictions with experimental data is
found. The current experimental data on Agg are not pre-
cise enough to give a definite conclusion whether this
asymmetry has a zero or not. Our model predicts the zero

0.25 —

010

dBr/dq*(1077/GeV?)

000F 0 v
12 14 16 18 20 22 24

7 (GeV?)

PHYSICAL REVIEW D 82, 034032 (2010)

of Agg at g3 = 2.74 GeV? which is in agreement with the
value g3 = 2.88703¢ GeV? given in [25]. It is expected
that the accuracy of experimental data will increase sig-
nificantly in the near future.

In Fig. 6 we plot our results for the differential branching
fractions of the B— K777~ and B — K*7%7~ decays.
The calculated values for these decay branching fractions
are presented in Table I'V. There we also give our results for
the B— Kvv and B — K*vp branching fractions. None of
these modes have been measured yet. Only experimental
upper bounds have been recently set on branching fractions
for the B— K*vv decay by BABAR [33] and for the B —
Kvv decay by Belle [34]. These bounds are about an order
of magnitude higher than our model predictions. In Fig. 7
we show our predictions for the differential branching
fraction and the K* longitudinal polarization fraction F
for the B— K*vv decay. As it is noted in Ref. [2], the
value F; (0) = 1isimposed by helicity conservation, while
F;(g%a) = 1/3 follows from the absence of a preferential
direction at the point g2, = (My — Mg+)?> where both K*

03sf
030f
025
020f

0.15F

dBr/dg*(1077/GeV?)

0.10f

0.05

0.00 !,

7* (GeV?)

FIG. 6 (color online). Predictions for the differential branching fractions of B — K®)7% 7~ decays. Nonresonant and resonant results

are plotted by solid and dashed lines, respectively.

B->K*vy

dBr/dg*(107%/GeV?)

0ty L L L L 1 L L L L 1 s s s s 1

0 5 10 15 ‘
¢* (GeV?)

FIG. 7 (color online).
B — K*vp decay.

00 '1 " " " " 1 " " " " 1 " " " " 1 "
0 5 10 15

7> (GeV?)

Predictions for the differential branching fractions and the K* longitudinal polarization fraction F; for the
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TABLE V. Comparison of theoretical predictions for the nonresonant branching fractions of
the rare semileptonic B. — D\ and B, — D% decays (in 1079).

Decay our [11] [12] [14] [13]
B, — Dt 11.6 9.7 13.6 6.1+ L5 54
B, — D7 3.3 2.2 34 23+0.5 1.4
B. — D,vp 65 73 92 49 + 12 39
B, —Diptu 21.2 17.6 409 29.9 +5.0

B, — Dittr 35 2.2 5.1 2.05 + 0.76

B, — D'vi 135 142 312

B, — Dutp” 0.37 0.44 041 0.31 + 0.06 0.18
B,— D11 0.15 0.11 0.13 0.13 + 0.03 0.08
B, — Dvp 2.16 3.28 2.77 3.48 +0.71 1.31
B,—D'utu" 0.81 0.71 1.01 1.58 +0.20

B, — D17 0.19 0.11 0.18 0.08 — 0.11

B, — D*vi 5.12 5.78 7.64

and B are at rest. The differential branching fraction of the
B — K*v decay as well as its integrated value are close to
the ones (Br(B— K*vi) = (6.871) X 107°) given in
Ref. [2], while the shape of F; is slightly different. We
also get the value for the ¢ integrated longitudinal polar-
ization fraction (F;) =~ 0.31, which is significantly lower
than the one of Ref. [2] (F;) = 0.54 * 0.01. Note that our
results for the branching fractions of the B — K®) v de-
cay, though consistent with the ones from [2], are some-
what lower than the predictions from [23,26].

Next we present our results for the rare semileptonic B,
decays. In Table V we compare available theoretical pre-
dictions for the branching fractions of the rare semileptonic
B.— D and B, — D% decays. The investigations [11—
13] are based on the relativistic constituent quark model
and light-front quark models, while the authors of Ref. [14]
use three-point QCD sum rules. Although the results of
these approaches are consistent in the order of magnitude
of the branching fractions, they differ by more than a factor
of 2 for some decay modes. We find the best overall

0.20 T

B, > Dyu" u”

0.10

T
I
1
1
1
1
I
I
I
1
1
1
1
I
I
1
1
1
'

dBr/dg*(1077/GeV?)

0.05

0.00

¢ (GeV?)

FIG. 8 (color online).
plotted by solid and dashed lines, respectively.

agreement of our predictions for the branching fractions
with the results of the relativistic quark model [11]. The
differential branching fractions, the longitudinal polariza-
tion F; of the final vector meson and the muon forward-
backward asymmetry Agg for the B, — D, and B, — Dj
transitions in our model are plotted in Figs. 8 and 9. Similar
curves have been obtained for B, — D™ transitions and
are not shown here. We predict the following values of the
position of the zero of the forward-backward asymmetry
Agg: g3 = 2.41 GeV? for the B. — Dipn" ™~ decay and
g3 = 2.46 GeV? for the B. — D*u* u~ decay.

VII. CONCLUSIONS

In this paper we obtained the form factors of rare semi-
leptonic decays of the B and B, mesons in the framework
of the QCD-motivated relativistic quark model based on
the quasipotential approach. The consideration is done
with a systematic account of all relativistic effects, which
are very important for such transitions. Particular attention
was devoted to the inclusion of negative-energy contribu-

0.10 T

dBr/dq*(1077/GeV?)

¢* (GeV?)

Predictions for the differential B, — D, decay branching fractions. Nonresonant and resonant results are
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Predictions for the differential branching fractions dBr/dg?, the longitudinal polarization F; and muon

forward-backward asymmetry Agg for B. — Dj decays. Nonresonant and resonant results are plotted by solid and dashed lines,

respectively.

tions and to the relativistic transformation of the meson
wave function from the rest to the moving reference frame.
As a result, the g> dependence of these form factors was
explicitly determined in the whole accessible kinematical
range without using any ad hoc assumptions and extrap-
olations. It is important to point out that the obtained form
factors satisfy all heavy quark and large energy symmetry
relations in the corresponding limits [22]. Note that the
resulting decay form factors are expressed through the
overlap integrals of the initial and final meson wave func-
tions. The relativistic wave functions, obtained previously
in the investigations of the meson mass spectra, were used
for the numerical calculations. This significantly improves
the reliability of the calculated form factors. On the basis
of these form factors branching fractions and different
differential decay distributions were obtained.

First we tested our model by confronting its results for
the B— Ku"u~ and B— K*utu~ decays with the
available detailed experimental data. It was found that
the total and differential branching fractions, the K* meson
longitudinal polarization fraction F; and the muon
forward-backward asymmetry Agg agree well with data.

Second, we presented detailed predictions for the rare
semileptonic decays of the B, meson which can be inves-

tigated in the LHCb experiment at CERN, where the B,
mesons are expected to be copiously produced. Finally, we
compare our results on these decays with the ones previ-
ously available in the literature in Table V. The predictions
for the differential branching fractions, the vector meson
longitudinal polarization fraction F; and muon forward-
backward asymmetry Agg are also given in Figs. 8 and 9.
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APPENDIX: TENSOR FORM FACTORS OF RARE B
AND B, DECAYS

(@) B— P (B— K, B. — D, and B, — D) transitions
(see Eq. (24))
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Fr(@® = P + 32 + (1 — o) 1P (g2, (A1)

) B Ep a3 p - € ef(p +A)+ my e,(p) + my
fr(@) =0y + M”’\/;B o e 255 AN 20 5 A 2t

(pA) 1 B 1
x {ef(p +A) + my - A? (ef(p +A)+mp €,(p) + mb)

2 p 1 1 1 1
3Ep+ Mp (Gf(P +A)+mp o e,p)+ mq><€f(p +A) +my " €,(p) + mh)}‘l’g(p), (A2)

5(2) _ EP d3p — 2€ Ef(p + A) + mf
(@) = ~(Mp + M”)\F Jer ¥+ 525 N 250+ 0
y (1 o0~ my o)
2e(p + A)(ef(p +A) + my) 2m,, A?

2€ 2€
X - +—2 _A)- +—1
[M” i <p Ep + My A) 6"<” Ep + My A)]
(pA) [MB +M; — €,(p) — €,(p) — €;(p + —EfijPA) —€,(p+ Ezfjw A)

Mg — Mp — €,(p) — €,(p) + €4(p + ﬁA) + €,(p + %A)
[RZE

+ A3
2my(ey(p + A) + my) (A3)
V), oy Epr [ &p = 2¢, e/(p + A) + mg(pA)
Jrla) = My + MP)\/I\;[(%TP Ep + Mp A) 2¢/(p+A) A2
{ Mg — €,(p) — €,(p) L( 1 B €p+A)—my )
B 2€q _ 2€q
X [Mp 6f<P + MA) €q<P + E, M, A)]}‘I’B(P), (A4)

where the superscripts “(1)”” and ““(2)” correspond to Figs. 1 and 2, ¢ is the mixing coefficient in the confinement potential
indicated in Eq. (16) and

Mg+ Mp —q
|A|—\/( e Yowp E-mra

eo(p +al) = \/mZQ + (p + aA)? (Q=b,c¢, 5 ud).

Here B stands for the B or B, meson, P = K, D, D is the final pseudoscalar meson, f = s, d is the final active quark and
q = u, d, ¢ denotes the corresponding spectator quark.
(b) B— V (B— K*, B, — D} and B, — D) transitions (see Egs. (27) and (28))

Ty(q®) = T)(¢®) + e (g?) + (1 — )T/ P (¢?), (A5)
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T(l)( 2) = EV dap N7 2e, A) e/lp +A)+my |e(p) + my,
(2 )3 EV + My 2¢4(p +4) 2¢,(p)

{1 N p2/3 + (pA) N p°A’
(e/(p T A) + m)en(p) + my) 3By + My)e,(p) T+ my)les(p + &) + mey(p) + my)
(M~ EV)[ef(p n IA) T, (ZAz) (Ef(p T 1A) T, eb(p)l-i- mb)
- 3(Evp‘i My) (eq<p)l+ e (i om e+ I mf) ! (ef<p>2+ mf>2)]}%(p)’ (A6)
e = i [ g o N
A Prrrsy e e (1 - M‘mev o) (ARDT (RS vy

y <MB + My — €,(p) — €,(p) — &(p + Eﬁvm —e,(p + 55 A)
2my(e,(p + A) + my,)

My =My — &)~ €(p) + &p + 5 A) ey (p + Z—Mm)}w )
2e,(p + A)e(p + A) + my) 5P

V(2)( 2) EV d’;p — 2Eq A) Ef(p + A) + mf
MV (2 )? EV+MV 2€f(p+A)

€f(p + A) - mf < MB - EV (pA))( ( 26q )
X : + - +——A

(AT)

2¢, (pA) (My — €4(p + EV+MV A) —elpt Evzf?wv A)

~afp+ Ey + My 2)) + o = £ TS 2my(es(p + B) + mp)
Mp — €,(p) — €,(p) o

26,0+ Ae,(p T A) + mf>)} 5(P).

(A8)

T5(?) = T () + eT5P(2) + (1 — &)Ty P(g?), (A9)

O 2J1T d3p . 2e e(p+A)+my ,Eb(p) +my,
T'q") = / 2m)? ( Ey +qMVA)\l 2¢,(p + A) 2€,(p)

B p’/3 + (pA)
X {(MB EV)[l i (es(p + A) + my)(ey(p) + my)

p2A2
T 3Ey + My e, (p) + my)e,(p + D)+ m)ep(p) + mb)]
+ AZ[ ! + (pA)( ! + ! )

eptA)+my A2 \ep+A)+mp  elp)+my,

. p i 1 1 2
3(Ey + My) (eq(p) + m, (eb(p) +my, efp+A)+ mf) * (e/(p) + mf)z)jl}\PB(p)’ (ALD)
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759(g2) = 2\/Ev fd‘p . ( 2¢, A)\Jef(p+A)+mf

2 )3 EV+MV 2€f(p+A)
eflp+A)—my ( (pA))( ( 2¢, )
X Mg — Ey +—2 (M, — + "1 A
{2ef(p + ) e p+ A +mo\ B TV T o, NV TN T B g,

(v 2, )~ A)<MB + My — e(p) = € (p) = e(p + 55 ) — €, (p + 5ok A)
P E v My P 2my(ey(p + A) + my)

+

e 2€,
My — My — €,(p) — €,(p) + €4(p + 4 A) + €,(p + 4 A)
58— My — €(p) — €,(p) + e(p + 511 o\P T Emy )}‘I’B(P) (A1)

2e/(p + A)es(p + A) + my)

277)3 EV + MV 2€f(p + A)

e(p+A)—my N (pA) B 2e
% {2Ef(p + A)(es(p + A) + my) (MB Ev+ 2my, )(MV 6f<p " Ey +qMV A)

T;/(z)( 2\/EV [(d3p _ < 2¢, A)\jef(p +A) + my

2€e Mv_ff(P+E+MvA)_€q(P+%A)
“elr g ) e 2y ey + B) + )
Mg — €,(p) — €,(p)
2e,(p + A)e(p + A) + mf))}%(p)

(A12)

T3(?) = T () + eT5P() + (1 — &)TY P (g?), (A13)

) Ey, d3p - 2¢, ex(p+A)+my |e,(p) +my
@)= \/7 o E AN e a0
y {_(1 N p2/3 —(pA) 2p*A° )
(er(p+ A) +myp)ey(p) +my)  3(Ey + My)(er(p + A)+mp)*(ey(p) +my)

N MgEy, + M3, [ 1 (pA)( 1 N 1 N 2(Mg — Ey) )
Mp e/(p+A)+my eflp+A)+mp €(p)+m (ep+A)+ms)e(p)+my)

B p’ ( 1 ( 1 B 1 )+ 2
3(Ey + My)\e,(p) + my\e&,(p) + my, €;(p+A)+mg) (er(p)+my)

Mp—Ey 2 1
(ef(p +A) + my)(e(p) + mb)<€f(p +A) +my eq(p) + mq))]}\PB(p)’ (Al4)

5(2)( 2) EV d3p — 261] A) Gf(p + A) + mf
MB (2 )’; EV+MV 2€f(p+A)

2€ Qe
XMy — SE— ] - + q A))
( Y 6f<p EV + MV ) Eq(p EV + MV
_MBE\/"_M%/ (pA)(MB+MV_€b(p) q(p)_ff(p+E+MvA)—E

MB AZ Zmb(eb(p + A) + mb)

26[/ 26,1

MB - MV - eh(p) - fq(l’) + Gf(p + Ey+M, A) + € (P + Ey+M, A))}\If ( )
2e,(p + M)es(p + A) + my) 5P

_I_

(A15)
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1)

V(2)( 2) EVf 264
My, ) (2 )3 EV—i—MV

2¢/(p + 4)
er(p+ A) —my (MBEV + M3 (pA) )( ( 2e, )
-1 )\My — +———A
{2€f(p + A)(Ef(p + A) + mf) 2Mme A2 v Gf p EV + MV
( L2 A)) MgEy + M?, (pA)( —e(p gt A) — €4(p + i A)
— €
gl p EV + MV MB A2 2mb(6b(p + A) + mb)

Mg — €,(p) — €,(p)
(BT e e ey L)

where V = K*, D;, D* and
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