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We analyze upper limits on a possible gluon mass,mg. We first discuss various ways to modify quantum

chromodynamics to include mg � 0, including a bare mass, a Higgs mechanism, and dynamical breaking

of color SUð3Þc. From an examination of experimental data, we infer an upper limit mg < Oð1Þ MeV. As

part of our analysis, we show that a claim, hitherto unrefuted in the literature, of a much stronger upper

limit on mg, is invalid. We discuss subtleties in interpreting gluon mass limits in view of the fact that at

scales below �QCD, quantum chromodynamics is strongly coupled, perturbation theory is not reliable, and

the physics is not accurately described in terms of the Lagrangian degrees of freedom, including gluons.

We also point out a fundamental difference in the behavior of quantum chromodynamics with a nonzero

gluon mass and a weakly coupled gauge theory with a gauge boson mass.
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I. INTRODUCTION

In quantum chromodynamics (QCD), a mass term for
the gluon in the Lagrangian is forbidden by the color
SUð3Þc gauge invariance. Experimental data are consistent
with the inference that the gluon mass mg is zero. But it is

of fundamental importance to inquire how stringent the
experimental upper limits are on a gluon mass and what
the physical consequences of such a mass would be.
Considerable theoretical interest in this question was gen-
erated, starting in the late 1970s [1–8], by a report of
evidence for free quarks, but later experiments did not
confirm this report (some reviews are [9,10]). The litera-
ture on gluon mass limits is unsettled; published upper
bounds on mg range over 10 orders of magnitude, from

values of a fewMeV [10] to a claim by Yndurain thatmg <

2� 10�10 MeV [11]. It is obviously important to clarify
this question, and we address it here. From our analysis, we
infer an upper bound mg < Oð1Þ MeV and thereby resolve

this controversy in the literature. In particular, we show (in
Sec. III) that the claim by Yndurain [11] is invalid because
it is based on the use of a nonrelativistic potential in an
ultrarelativistic situation and because it assumes that in a
reaction producing a quark-antiquark pair, there is no
breaking of the chromoelectric flux tube extending be-
tween the quark and antiquark (i.e., no string breaking)
out to distances of order m�1

g , many orders of magnitude

beyond the actual distance of�1 fm, where the string does
break with the formation of color-singlet hadrons. As will
be evident from our discussion, the question of an upper
bound on mg is interesting partly because it touches on

some deeper conceptual issues, such as (i) how one can
try to construct a modification of QCD with a gluon mass
small compared with the confinement scale of �ð1 fmÞ�1;
(ii) the question of the extent to which one can get
information on the Lagrangian fields in a confining or

quasiconfining theory; and (iii) the related quantum
mechanical issue pertaining to the accuracy with which
one can measure properties of spatially confined particles.

II. TYPES OF MODIFICATIONS OF QCD
TO INCLUDE A GLUON MASS

A. Bare mass

It is first necessary to specify which type of modified
QCD with nonzero gluon mass or masses one considers.
There are several possible approaches to this. First, one can
consider a modification of QCD in which the Lagrangian
LQCD contains a bare gluon mass term

L QCD;mg
¼ �m2

g

2

X
a

Aa
�A

a�; (2.1)

where a is the color index. Here, mg is a hard mass [12],

which is present for the arbitrarily weak QCD running
coupling, �sð�Þ � gsð�Þ2=ð4�Þ. (The scale � will often
be left implicit in the notation.) The mass term (2.1)
explicitly breaks the SUð3Þc gauge invariance to a global
SUð3Þc symmetry. One could also consider a more general
bare gluon mass term �ð1=2ÞPam

2
g;aA

a
�A

a�, but the term

in Eq. (2.1) will be sufficient for our purposes here.
Formally, the inclusion of the gluon mass (2.1) in QCD

renders the theory perturbatively nonrenormalizable. Thus,
for example, if perturbative methods were applicable and
one were to compute amplitudes for longitudinally polar-
ized gluon-gluon scattering to multigluon final states,
these would have partial wave amplitudes that would in-
volve powers of s=m2

g and hencewould violate perturbative

unitarity when
ffiffiffi
s

p
exceeds a value of order mg. However,

as discussed below, experimental data constrain mg to be

less than a few MeV, considerably less than the scale,
�QCD ’ 300 MeV at which �s grows to O(1) and QCD
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exhibits the property of confinement or quasiconfinement.
Here, we use the term ‘‘quasiconfinement’’ to mean that
free color-nonsinglet states have masses much larger than
�QCD and hence are integrated out of the modified QCD,

defined as a low-energy effective field theory. An important
point is that in the mass region well below �QCD, one

cannot use perturbation theory. One consequence of this
is that one cannot draw firm conclusions from the apparent
violation of perturbative unitarity in the above-mentioned
partial wave amplitudes for

ffiffiffi
s

p
* mg. Another is that

although one can formally insert a nonzero value of mg

in LQCD;mg
, the physical meaning of this is not completely

clear, because one does not perform actual physical mea-
surements that are sensitive to this value if it is much less
than �QCD.

B. Higgs mechanism

A second approach to modifying QCD to produce a
gluon mass is to try to use a Higgs mechanism, with a
Higgs potential arranged so as to produce a vacuum ex-
pectation value (VEV) of one or more color-nonsinglet
Higgs fields, spontaneously breaking SUð3Þc. A scheme
with three color triplets of Higgs fields coupled in a manner
such as to break the SUð3Þc gauge symmetry to global
SU(3) was studied in Ref. [1]. A second Higgs scheme is
based on the observation that the structure of the baryon
wave function can be retained if the breaking preserves an
SO(3) subgroup of SUð3Þc, such that the quarks transform
as the vector representation, ~q, of this SO(3); this involves
the equivalence of the wave function �abcq

aq0bq00c in
SUð3Þc form with ~q � ð ~q0 � ~q00Þ in SO(3) form [6,13]. In
this scheme the five gluons in the coset space
SUð3Þc=SOð3Þ gain masses, while the three gluons corre-
sponding to the generators of SO(3) remain massless.
These three massless gluons, ~g, would also naturally
form SO(3)-singlet bound states, ~g � ~g. For this scheme,
one must thus use a Higgs field that contains a component
transforming as a singlet under the SO(3) subgroup of
SUð3Þc. The lowest-dimensional representation that has
this property is the 27-dimensional representation of
SUð3Þc [6,14]. A third type of Higgs model is simpler in
that it only uses two Higgs fields, both transforming as
fundamental representations of SUð3Þc. This breaks SUð3Þc
in two stages, first to an SU(2) subgroup, and then com-
pletely, leading to two different scales of masses for
gluons, which may be comparable.

A Higgs mechanism for breaking SUð3Þc and giving
gluons masses has the appeal that it preserves the renor-
malizability of the theory. If one could analyze the model
perturbatively, the gluon mass(es) would be�gsjvj, where
v denotes a generic VEVof the colored Higgs field(s). To
illustrate this, we may consider a very simple case with just
one electroweak-singlet Higgs field � transforming as a
fundamental representation of SUð3Þc, with potential

V ¼ �2�y�þ �ð�y�Þ2; (2.2)

where �2 < 0. If one were able to use perturbation theory
reliably here, then the minimization of the potential

V would lead to a nonzero VEV for � given by v /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2=�
p

. If, indeed, one were able to do this, then, without
loss of generality, one could choose the basis for SUð3Þc
generators such that h�i0 ¼ ð0; 0; vÞT . This would break
SUð3Þc to the SUð2Þc subgroup generated by Ta, a ¼ 1, 2,
3. The five gluons in the coset SUcð3Þ=SUcð2Þ correspond-
ing to the generators Ta, a ¼ 4; . . . ; 8, would pick up
masses mg � gsjvj.
However, there is an important difference between the

attempt to use a Higgs mechanism to break SUð3Þc and the
use of this type of mechanism to break electroweak sym-
metry in the standard model (SM). Given that, as discussed
further below, mg must be smaller than a few MeV, con-

siderably below �QCD, the color-nonsinglet Higgs fields

interact strongly, and one cannot use perturbation theory to
analyze their behavior. In particular, one cannot reliably
conclude that setting �2 to a negative value of magnitude
small compared with �2

QCD would actually lead to a non-

zero VEV for � [3]. This problem, by itself, is sufficiently
severe to motivate one to consider a different renormaliz-
able mechanism for giving gluons a mass.
Secondly, although one cannot use perturbation theory

reliably to calculate the masses of residual Higgs fields,
and hence they might be larger than the perturbative ex-

pressions mH � ffiffiffiffi
�

p jvj, they could well be sufficiently
light as to be excluded by experimental limits. To obtain
properties of strongly coupled systems of gauge, Higgs,
and fermion fields requires a fully nonperturbative calcula-
tional method, and a lattice field theory formulation can
provide this. For a lattice theory with a Higgs field trans-
forming according to the fundamental representation of the
gauge group the confinement and Higgs phases are analyti-
cally connected in the absence of fermions [15], but are
separated by a phase boundary when fermions are included
[16]. Since the lattice formulation maintains exact local
gauge invariance, a Higgs VEV as conventionally defined
in the continuum vanishes identically; instead, one mea-
sures various gauge-invariant quantities, such as the bi-
linear fermion condensate and fermion and Higgs masses
[17]. One of the issues that these nonperturbative lattice
studies confronted was the question of where to take the
continuum limit in the space of relevant lattice parameters
and the fact that some portions of lattice phase boundaries
were first order, with finite correlation lengths, instead
of second-order transitions, with the infinite correlation
length that is necessary to construct a continuum limit
free of lattice artifacts. Notwithstanding this complication,
however, these lattice studies tended to find ratios of Higgs
to gauge boson masses which did not differ strongly from
unity. One could thus use the results from fully nonpertur-
bative studies to support the concern that in a Higgs picture
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the spectrum would contain bound states involving the
Higgs fields (with themselves or quarks) that are not seen
experimentally, disfavoring the Higgs approach to trying to
produce nonzero gluon masses.

There are also several other problems with a color-
nonsinglet Higgs mechanism. The addition of such Higgs
fields to QCD reduces the renormalization-group running
of �sð�Þ as a function of energy scale �. The increase of
�sð�Þ as the energy scale decreases from� ¼ mZ down to
the scale of b �b quarkonium states is consistent with Nf ¼
5 dynamical quarks, and the further evolution down to the
scale of c �c quarkonium states is consistent with Nf ¼ 4

dynamical quarks [10,18]. This agreement would be upset
if one added too many additional light color-nonsinglet
Higgs to the theory. Equally if not more problematic is the
fact that the quartic Higgs coupling is not asymptotically
free and hence grows as the energy scale increases, under-
mining the asymptotic freedom of QCD and leading to a
possible Landau singularity. Furthermore, the parameter
�2 is quadratically sensitive to ultraviolet physics; i.e.,
there is a hierarchy problem. Because of all of these prob-
lems, it is not clear whether one could, in fact, use a Higgs
mechanism to break the SUð3Þc gauge symmetry (either
completely or to a nontrivial subgroup gauge symmetry)
and obtain the values of gluon masses of a few MeV. This
motivates one to consider alternatives.

C. Dynamical breaking of SUð3Þc and
generation of gluon mass

There is a third way that one might try to break color
SUð3Þc which, to our knowledge, has not received much
attention in the literature, namely, via the formation of a
color-nonsinglet bilinear fermion condensate produced by
another strongly coupled gauge interaction. We will inves-
tigate this possibility here using a simple model but will
show that this model also has problems. Let us consider an
extension of the standard model gauge group GSM ¼
SUð3Þc � SUð2ÞL � Uð1ÞY (where Y is the weak hyper-
charge) in which we adjoin another gauge group
SUð2Þmc, where mc stands for metacolor (not to be con-
fused with technicolor). Thus, the full gauge group that is
operative at scales above a few GeV is taken to be

GSM0 ¼ SUð2Þmc �GSM: (2.3)

In addition to the usual SM fermions, we add left- and
right-handed electroweak-singlet chiral fermions (indi-
cated with L, R) transforming as

�a�L : ð2; 3; 1Þ0; (2.4)

��
L: ð2; 1; 1Þ0; (2.5)

and

	a
p;R: 2ð1; 3; 1Þ0 for p ¼ 1; 2; (2.6)

where a and � denote SUð3Þc and SUð2Þmc gauge indices,
respectively, the numbers in parentheses denote the dimen-
sionalities of the representations of SUð2Þmc � SUð3Þc �
SUð2ÞL, the subscript is the value of Y, and the set includes
two copies of the ð1; 3; 1Þ0 field labeled with a copy number
p ¼ 1, 2.
By analogy with quarks, we assign baryon number B ¼

1=Nc ¼ 1=3 to the color-triplet fermions �a�L and 	a
p;R. In

the Lagrangian describing the high-scale physics, these
fermions are taken to have mass terms whose coefficients
are zero or at least negligibly small compared with �QCD.

The color-singlet fermion ��
L is included so that there are

an even number of left-handed SUð2Þmc doublets, as is
required to avoid a global Witten anomaly associated
with the homotopy group �4ðSUð2ÞÞ ¼ Z2. The SUð2Þmc

gauge sector thus contains four left-handed chiral fermi-
ons, or equivalently, two Dirac fermions, transforming as
metacolor doublets. The resultant theory, consisting of
these fermions plus those of the standard model, is free
of anomalies in all gauged currents. The SUð3Þc interaction
remains vectorial and asymptotically free. Since this model
involves the introduction of two additional light flavors of
color-triplet Dirac fermions to QCD, it reduces the agree-
ment with Nf ¼ 5 quarks that characterizes the measured

dependence of �sð�Þ on the scale � between � ¼ mZ and
� ’ 10 GeV, the scale characterizing the b �b � states. But
we will show next that the model has even more serious
problems.
Since the SUð2Þmc gauge interaction is asymptotically

free, as the reference energy scale � decreases from large
values, its coupling �mcð�Þ � gmcð�Þ2=ð4�Þ increases.
Let us first consider the case where the value of �mcð�Þ
is sufficiently large at a high scale � � �QCD so that this

coupling grows to values of order unity at a scale �mc >
�QCD. (The reason for this assumption will be explained

below.) Both general arguments and a study of the Dyson-
Schwinger equation for the fermion propagator in an
asymptotically free vectorial SUðNÞ gauge theory (at zero
temperature) with Nf copies of massless fermions trans-

forming according to the fundamental representation of
this gauge group suggest that if Nf < Nf;cr, then as the

theory evolves into the infrared, it produces a bilinear
fermion condensate that spontaneously breaks the global
chiral symmetry, whereas if Nf < Nf;cr, such a condensate

is not formed and instead the chiral symmetry remains
exact, where Nf;cr is a certain critical number [19]. For

the case N ¼ 2 relevant here, a solution of the Dyson-
Schwinger equation in the one-gluon exchange approxi-
mation yields the value Nf;cr ’ 8. Since this is well above

the number Nf ¼ 2 that we have in the SUð2Þmc model,

we can confidently infer, given our assumption that, as the
scale� decreases, the metacolor coupling gets large before
the color coupling does, that the SUð2Þmc interaction pro-
duces bilinear fermion condensates. The most attractive
channel for these is 2� 2 ! 1, where the numbers refer to
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the dimensionalities of fermion SUð2Þmc representations.

These include a condensate h��
�a�L TC�b
L i, where ��

is the antisymmetric tensor density for SUð2Þmc. This is
automatically antisymmetrized in the color indices a, b
and hence is proportional to

h�abc��
�a�L TC�b
L i; (2.7)

where �abc is the antisymmetric tensor density for SUð3Þc.
The condensate (2.7) transforms as a color �3 and hence
dynamically breaks SUð3Þc to an SU(2) subgroup. A sec-
ond condensate formed by the SUð2Þmc interaction is

h��
�a�L TC�

Li: (2.8)

This transforms as a 3 under SUð3Þc and hence also breaks
it to an SU(2) subgroup. One can use vacuum alignment
arguments to infer that these SU(2) subgroups are identi-
cal. Then, without loss of generality, one may choose the
index c ¼ 3 in the condensate (2.7) and a ¼ 3 in the
condensate (2.8), so that the residual SU(2) subgroup of
SUð3Þc preserved by these condensates, which we will
denote as SUð2Þc, is the one for which the corresponding
Lie algebra is generated by Ta with a ¼ 1, 2, 3. The five
gluons in the coset SUð3Þc=SUð2Þc, i.e., those correspond-
ing to Ta, 4 � a � 8, gain masses of order

mg � gsð�mcÞ�mc ��mc: (2.9)

The fermions involved in these condensates, �a�L with a ¼
1, 2, 3 and ��

L for � ¼ 1, 2, also gain dynamical masses of
order �mc,

This, then, is a renormalizable, dynamical way to break
SUð3Þc [to SUð2Þc]. In contrast to a Higgs mechanism, it is
technically natural and does not suffer from any hierarchy
problem. This model shows that the property that a gauge
symmetry is vectorial is not sufficient, in itself, to ensure
that it remains unbroken. Indeed, since the weak isospin
SUð2ÞL gauge interaction is asymptotically free, if it
had not been broken at the electroweak scale but instead
had been able to grow in strength to a sufficient level, it
would have broken SUð3Þc to SUð2Þc in a somewhat analo-
gous manner [20]. One could presumably add additional
fields and/or interactions to this metacolor model so that
SUð3Þc would be broken completely. However, although
this dynamical approach avoids some of the problems with
the other approaches to breaking SUð3Þc that we have
described above, the gluon masses that it produces, given
in Eq. (2.9), are too large to be allowed by experiment. This
is clear from an example. Consider, say, the value �mc ¼
10 GeV. Experimental data determine�sð10 GeVÞ ¼ 0:18
(see, e.g., Fig. 6 of Ref. [18]), i.e., gsð10 GeVÞ ¼ 1:5. Then
from Eq. (2.9), we would obtain mg � 15 GeV, which is

much too large to agree with experiment. A second illus-
trative choice is �mc ¼ 1 GeV. For this choice, one has
�sð1 GeVÞ ’ 0:5 [18]; from Eq. (2.9) one obtains mg �
2:5 GeV, which is again much too large. One cannot

improve this situation by selecting initial conditions for
�mcð�Þ at a high scale� so that�mc is smaller than�QCD,

because if the SUð3Þc interaction becomes strongly
coupled, with �s � Oð1Þ, at a scale where the SUð2Þmc

interaction is still weakly coupled, then among the bilinear
fermion condensates produced by the QCD interaction, in
addition to h �qLqRi þ H:c: for q ¼ u, d, s, there would be

h ��a;�;L	a
p;Ri; p ¼ 1; 2; (2.10)

which would break SUð2Þmc. This is analogous to the fact
that the QCD quark condensates h �qLqRi þ H:c: break
SUð2ÞL (which, however, is already broken at the much
higher scale 250 GeV). Since the SUð2Þmc symmetry would
not be active in the low-energy effective theory applicable
at energy scales below �QCD, its coupling �mc would

be frozen at this scale and hence would not become large
enough to break color. Thus, although this model for
dynamically breaking SUð3Þc is renormalizable and does
not have a hierarchy problem, it is excluded by the fact that
it would yield excessively large values for the gluon
masses. It also would have the problem that it would
predict new hadronic states at experimentally accessible
masses, and these have not been observed.
One could also consider other mechanisms such as

attempting to formulate QCD in five or more dimensions
and choosing boundary conditions in the higher-
dimensional space that break SUð3Þc and give rise to a
gluon mass in the usual (3þ 1)-dimensional Minkowski
space. The fact that the higher-dimensional theory is not
renormalizable leads to a number of complications, and we
do not pursue this direction here.
Our analysis of various approaches to producing a gluon

mass that is small compared with�QCD has thus shown the

difficulties that one encounters with each of these ap-
proaches. Although our analysis is not exhaustive, it does
show how challenging it is to construct a self-consistent
calculable model that could explain a gluon mass that is
small compared with the scale where QCD becomes
strongly coupled and confines. It is also worth noting that
the property mg ¼ 0 is protected by the color gauge in-

variance, and once this condition is removed, i.e., once one
considers mg � 0, breaking SUð3Þc gauge invariance, then
there is no obvious symmetry that could naturally keep mg

small compared with other relevant scales, in particular,
�QCD.

III. AN UPPER BOUND ON mg FROM
EXPERIMENTAL DATA

Here we step back from the construction of a model that
could account naturally for a small gluon mass and, in a
more phenomenological framework, analyze how large a
value of mg might be allowed by experimental data. To

the extent that we need a theoretical framework, we will
use that given by the hard bare mass term in Eq. (2.1),
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recognizing that it would require an ultraviolet completion
to answer the question of the origin of the gluon mass.
There are many pieces of experimental evidence showing
that mg must be considerably smaller than �QCD; the

question is how much smaller.
By standard Bohr-Oppenheimer and effective field the-

ory arguments, if a particle has a mass m, then it does not
play a dynamical role in the low-energy effective theory
that is operative at scales well below m. It follows quite
generally that mg must be smaller than �QCD because if it

were not, then as the reference energy scale � decreased,
gluons would be integrated out before � decreased to
�QCD, and hence �sð�Þ would never grow to values of

O(1). Aweakly coupled QCDwith a nonzeromg would not

confine, so that there would be color-nonsinglet physical
states in nature. (This would be analogous to the fact that
since weak-isospin SUð2ÞL is a broken gauge symmetry, it
does not confine neutrinos or charged leptons.) But, in fact,
there are no confirmed observations of such states, in
particular, free quarks, and there are quite stringent upper
limits on them, both from searches in matter and in collider
experiments [9,10]. Furthermore, analyses of the Dyson-
Schwinger equation for the quark propagator [21,22] have
shown that if one starts with a zero-mass quark, then, if
C2ðRÞ�s is greater than roughly unity [where C2ðRÞ is the
quadratic Casimir invariant for the representation R, equal
to 4=3 for the fundamental representation of SUð3Þc], this
equation yields a solution with a nonzero value of the quark
mass. This constitutes dynamical generation of a constitu-
ent quark mass, the result of spontaneous chiral symmetry
breaking in QCD. That this is associated with confinement
can be understood by a simply physical argument [23]: as a
quark is headed outward from the center of a hadron and is
reflected back inward at the boundary, there is a flip of
chirality, which amounts to the presence of a �qq term in
the effective Lagrangian. Since this dynamical mass is the
coefficient of �qq in the effective QCD Lagrangian, one
may also associate this with the dynamical generation of a
condensate h �qqi. This spontaneous chiral symmetry break-
ing gives rise to the approximate Nambu-Goldstone bosons
of QCD, the �, K, and � mesons [24,25]. However, if the
gluons were integrated out of the theory so that �s never
grew to values of O(1), then this spontaneous chiral sym-
metry breaking would not occur.

In the presence of a nonzero gluon mass, even one much
smaller than �QCD, the SUð3Þc color gauge invariance is

broken. A consequence of this is that color is, in fact, not
completely confined. This is obvious in the conventional
Higgs picture, given the inferred nonzero VEVof the color-
nonsinglet Higgs. It also holds in the model presented
above in which there is dynamical breaking of SUð3Þc.
Consequently, an isolated quark or gluon does not have
infinite energy, and the Wilson-Polyakov line for such
a particle does not vanish identically. If the limit
mg=�QCD ! 0 is smooth, one expects that the mass of a

free quark or gluon would diverge. Thus, in a low-energy
effective theory, these color-nonsinglet states would dis-
appear from the spectrum as mg ! 0, and the resultant

theory would exhibit the property of being quasiconfining,
in the sense that we defined above. Thus, for mg � �QCD,

QCD, considered as a low-energy effective theory, is
quasiconfining.
It is worth noting that this expectation for the depen-

dence of the mass of a free quark or gluon on mg is borne

out by a specific calculation within the context of the
Massachusetts Institute of Technology (MIT) bag model.
Let us denote these states, dressed with their cloud of glue,
as qdr and gdr. The MIT bag model yields the masses [1]

mqdr ¼
�

mg

½1þOððmg=
ffiffiffiffi
�

p Þ1=3Þ	 ¼ 0:18 GeV2

mg

; (3.1)

and

mgdr ¼ 3
2mqdr ; (3.2)

where

� ¼ 1

2��0 ¼ ð420 MeVÞ2 ¼ 0:90 GeV=fm (3.3)

is the QCD string tension and �0 ¼ 0:9 GeV�2 is the
Regge slope. Because the string tension � / �2

QCD, these

masses can also be written in the form

mqdr ¼
2

3
mgdr ¼ const

�2
QCD

mg

½1þOððmg=
ffiffiffiffi
�

p Þ1=3Þ	:
(3.4)

These estimates show how the limit mg=�QCD ! 0 can be

smooth, in the sense of low-energy effective field theory,
since as mg ! 0, the masses of a free quark or gluon

diverge and they are integrated out of the low-energy
theory. The physical, finite-mass states in this low-energy
theory are color singlets.
Searches for free quarks in collider experiments depend

on assumptions about their electroweak transformation
properties and decays [10,26]; current lower limits from
collider searches on a quark of charge 2=3 or �1=3 vary
between about 200 and 340 GeV. Taking the lower bound
of 300 GeV as a representative illustrative value and in-
serting this into Eq. (3.4), one obtains the nominal upper
bound mg & 0:5 MeV. Since there are model-dependent

aspects to the MIT bag model estimates of the masses of
a free quark or gluon, it is appropriate to allow a factor of a
few to represent the theoretical uncertainty, and also a
similar factor to represent the effect of model-dependent
assumptions in the limits obtained from experimental
searches. Including these, we infer that a reasonable upper
bound on a possible gluon mass is

mg < Oð1Þ MeV: (3.5)
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It is also useful to estimate the dependence of the size
of the qdr and gdr states on mg for mg � �QCD; one sets

the masses in Eq. (3.4) equal to the approximate volume
ð4�=3Þr3 times the energy density, set by�4

QCD, and hence

obtains

r�
�

1

mg�
2
QCD

�
1=3

;

� 1

�QCD

�
�QCD

mg

�
1=3

; (3.6)

i.e., r� 1 fmð�QCD=mgÞ1=3. Hence, for mg small com-

pared with �QCD, the sizes of deconfined, dressed quarks

and gluons would be substantially larger than the typical
1 fm size of a usual hadron.

Another approach to the question of an upper limit on a
gluon mass is to study the effects of a nonzero mg on the

static quark potential between a very heavy quark Q and
antiquark �Q. The short-distance part of this potential for
r � ��1

QCD has the Coulombic form

VQ �Q;sdðrÞ ¼
ð4=3Þ�sðrÞ

r
; (3.7)

and because short distances are equivalent to large �, a
nonzero mg that is small compared with �QCD would not

affect this significantly. In regular QCD,

VQ �Q ¼ �r for r * ��1
QCD � 1 fm: (3.8)

This linear growth in VQ �Q corresponds to the property that

a chromoelectric flux tube with energy per unit length �
stretches between the Q and �Q. Making mg nonzero

changes this so that for r * m�1
g , VQ �QðrÞ is damped by a

factor e�mgr and hence decreases to zero for large r rather
than increasing without bound. In turn, this implies that
VQ �QðrÞ reaches a maximum at some value of r�m�1

g ,

where the force between the Q and �Q, ~F ¼ � ~rVQ �QðrÞ
vanishes. This is another indication that once mg is non-

zero, QCD no longer precisely confines, since a quark can
tunnel through this potential barrier. If QCD only had very
heavy quarks, then an analysis of this static quark potential
could provide a useful guide to an upper limit on mg.

However, real QCD has light quarks. This has two
effects: first, one cannot use nonrelativistic quantities
such as a potential energy associated with a q �q state
reliably, because the physics is relativistic, and second,
the chromoelectric flux tube forming the string breaks in
the process of hadronization. That is, when an actual q �q
pair is produced in a reaction like eþe� ! q �q, as the q and
�q separate to a distance r���1

QCD � 1 fm, and hence the

energy in the chromoelectric flux tube (string) is sufficient
to produce hadronic final states, such as 2�, 4�, etc. it is
energetically favorable for the string to break with produc-
tion of additional light q �q pairs and gluons, followed by

hadronization. The presence of a string extending to a
few fm can be interpreted as being responsible for short-
lived hadronic resonances lying on Regge trajectories up to
masses of several GeV. But the string (chromoelectric flux
tube) does not stretch beyond a few fm; instead, it is
divided into smaller string bits as the q �q pairs are created.
For the relevant range of mg of a few MeV, recalling that

ð1 MeVÞ�1 ¼ 200 fm, the string breaking and q �q pair
creation and resultant hadronization occur before the
e�mgr factor becomes relevant. If, nevertheless, one were
to attempt to apply a static quark potential assuming no
string breaking out to distances of order m�1

g , one would

obtain apparently quite stringent apparent upper bounds on
mg [11]. We consider that both the use of a nonrelativistic

potential in an ultrarelativistic situation and this assump-
tion of no string breaking out to distances of order m�1

g are

unjustified and hence that the very stringent bound mg <

2� 10�10 MeV claimed by Yndurain [11] is invalid.
Indeed, if mg were really 2� 10�10 MeV, then the string

persistence length assumed in Ref. [11] would be a factor
1012 longer than the actual hadronization distance of
�1 fm.
The hadronization process can be modeled approxi-

mately via a non-Abelian extension of the Schwinger
mechanism [27]. Although this has not been calculated
for mg � 0, a rough estimate of the effect of a gluon

mass can be obtained from the result for q �q production
by the Schwinger mechanism [27],

dW

d4x
’ �2

4�2

X1
n¼1

1

n2
exp

��n�m2
q

�

�
; (3.9)

where � � ðgs=2ÞE, with E serving as a measure of the
magnitude of the chromoelectric field in the flux tube
(a general expression in terms of quantities that are man-
ifestly gauge invariant and Lorentz invariant is given in
[28]), and mq is the quark mass. We denote the area of a

cross section of the flux tube by A. The string tension,
given by �� ðE2=2ÞA, and Gauss’s law implies that EA ¼
g=2; combining these to eliminate A and using the fact that
� ¼ 1=ð2��0Þ, one obtains

� ¼ ðgs=2ÞE ’ 2� ¼ 0:35 GeV2: (3.10)

It is plausible that the kinematic dependence of dW=d4x on
mg would be somewhat similar to the dependence on mq.

We shall assume this and require that dW=d4x not change
by more than a small fractional amount �. For a rough
bound, we retain just the first term in the sum (3.9),
which is the dominant term, and we require that the
fractional change in this term be less than �, i.e., 1�
expð��m2

g=�Þ< �. This yields the upper limit

mg <

�
�

�
ln

�
1

1� �

��
1=2

: (3.11)
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With the above estimate for � and the illustrative value � ¼
0:01, this yields the upper bound mg & 35 MeV, a some-

what less stringent bound than was obtained in (3.5).
There is currently no evidence for the proton decay or

decays of neutrons that are stably bound in nuclei, with
typical partial lifetime limits =B > 1033–1034 yr, where B
denotes the branching ratio for the given mode [10].
Different types of SUð3Þc breaking and gluon mass gen-
eration yield different predictions for how this would
change. Thus, the binding of protons would disappear if
all gluons got masses of order �QCD, or if SUð3Þc were

broken to an SU(2) subgroup, but would remain if SUð3Þc
were broken to a gauged SO(3) subgroup. Thus, although
in principle one could use limits on proton and bound
neutron instability to constrain mg, the results would de-

pend strongly on the assumed type of SUð3Þc color break-
ing and gluon mass generation. Let us consider the case
where SUð3Þc is either broken completely or broken to an
SU(2), rather than a SO(3) subgroup. Then a proton could
decay via a tunneling process in which a quark tunneled
out. However, this tunneling process would be very differ-
ent from the tunneling mechanism responsible for
� decays of heavy nuclei. In the � decays of heavy nuclei,
the emitted � particle has essentially the same mass that it
has inside the parent nucleus. In contrast, for the relevant
range of mg & Oð1Þ MeV given by (3.5), a u or d quark

with a current-quark mass of about 5 or 10 MeV and a
constituent mass of about 330 MeV inside a proton would
have a mass of order hundreds of GeV outside of the
proton. Clearly, not only would there be suppression of
the tunneling process that might give rise to this emission
of a quark, but also it would be energetically forbidden.

Other effects of SUð3Þc color breaking and nonzero
gluon masses would occur in the early universe. Here,
however, the temperature is finite rather than zero, so
that, strictly speaking, one would not be dealing with a
Lorentz-invariant gluon mass, but rather a gluonic screen-
ing mass. For the relevant range of allowed values of mg

given by Eq. (3.5), which are considerably below �QCD,

it follows that the finite-temperature phase transition in
the early universe would occur at a temperature Tc ’
200 MeV, where SUð3Þc-breaking effects were negligible.
Hence, the formation of free quarks in the early universe
would mostly occur starting from color-singlet states. As in
our discussion above, this formation process depends on
assumptions about how far the string between q and �q
stretches before it breaks. Owing to this and other model-
dependent features of the calculation, there is, for a given
mg, a wide range of possible predictions for the resultant

ratio in the number density of free quarks to baryons,
nq=nB. For mg � few MeV, using results from Ref. [27],

Ref. [7] found that nq=nB could be in accord with experi-

mental bounds of order 10�22 [7]. (See Ref. [10] for current
upper limits on nq=nB.) We are in agreement with Ref. [7]

but note that Ref. [11], assuming considerably longer string

persistence lengths, claimed the much more stringent limit
mg < 2� 10�10 MeV.

IV. ON THE MEASURABILITY OFA SMALL
GLUON MASS

The rough upper limit (3.5) shows thatmg must be small

compared with �QCD. To what extent can one make this

more precise? In this section, we address this question and
stress that there is a basic problem that one encounters in
trying to do this. Our starting point is the property that
QCD with mg ¼ 0 (at zero temperature) confines. It may

be recalled that in addition to the experimental evidence, a
convincing theoretical understanding of this has come
from the lattice gauge theory formulation of the theory.
Because the measure of the Euclidean QCD path integral
on the lattice is compact, one avoids inserting a Faddeev-
Popov determinant in this measure and maintains exact
gauge invariance at all stages of the calculation. One can
then rigorously define an order parameter for confinement,
namely, the Wilson loop. The area-law behavior of the
Wilson loop at strong bare coupling, i.e., small 
 ¼
2Nc=g

2
0, in conjunction with numerical simulations that

suggest that one can analytically continue from this limit
to the continuum limit at 
 ! 1 constitute strong evi-
dence that the continuum QCD defined in this limit
confines color. The physical picture for this is the chromo-
electric flux tube that extends between an infinitely heavy,
static quark and antiquark, producing a static quark poten-
tial (3.8), which grows without bound as r ! 1. We have
seen how, for mg � �QCD, although the modified QCD

does not precisely confine, the deconfined quarks and
gluons have masses that are much larger than �QCD.

Hence, insofar as one deals with QCD as an effective
low-energy theory, the physical states in this theory with
masses that are of order�QCD or at least not many orders of

magnitude larger than this scale are color singlets. But this
means that in this effective low-energy theory, the physics
is well described at realizable energies by a confining
theory and not by the Lagrangian fields, the quarks and
gluons. This statement becomes progressively more accu-
rate asmg=�QCD decreases toward zero. This suggests that

it would be futile to try to set an upper limit on a gluon
mass that is many orders of magnitude smaller than �QCD

because there is no well-defined gluon in the effective
QCD theory that is applicable in this energy range.
Indeed, it follows that because gluons are quasiconfined,

basic quantum mechanics places a limit on how precisely
one can probe for a nonzero but small mg and prevents one

from setting an upper limit on mg that is many orders of

magnitude less than �QCD. Since the color-singlet hadrons

have sizes of order 1=�QCD � 1 fm and the gluons are

effectively confined within a distance of this order, the
Heisenberg uncertainty principle dictates that one cannot,
even in principle, measure the gluon momentum or energy
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to a better accuracy than �j ~kgj ��QCD and �Eg ��QCD.

Hence, from such a measurement, one cannot, in principle,

distinguish between the case where Eg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~kgj2 þm2

g

q
and

the case where Eg ¼ j ~kgj formg � �QCD. Confinement in

the effective QCD theory also implies a minimum bound-

state gluon momentum ~kg of order �QCD [29]. Indeed, the

confined gluon propagator does not have a pole, and hence
the gluon does not have a well-defined mass.

In principle, one might attempt to calculate glueball
masses as a function ofmg, then compute how their mixing

with q �q mesons to form mass eigenstates changes as a
result of varying mg, and then compare the results with

experimental data to derive an upper bound on mg. For

many calculations of QCD properties, the lattice formula-
tion is the appropriate tool. As noted above, the most
natural formulation of lattice QCD maintains exact local
gauge invariance, and one would have to give up this
advantage if one were to try to use the lattice to study
glueballs in the case of a nonzero gluon mass, since this
mass breaks the color gauge invariance. Lattice QCD
calculations of glueball masses have been done for pure
glue or glue with quenched, but not light dynamical fer-
mions [30]. Ideally, one would do this calculation with
light dynamical fermions, compute the mixing matrix

that maps the (isosinglet) JPC ¼ 0þþ states of ðju �ui þ
jd �diÞ= ffiffiffi

2
p

, js�si, and jgluei to the f0 mesons f0ð1370Þ,
fð1500Þ, and fð1710Þ (among others) and then compare
with experiment. However, there is no consensus what this
mixing matrix is experimentally, even for regular QCD
with mg ¼ 0 [31]. Another idea would be to try to look

for some kinematic signature of a small nonzero mg in

hadron decays, similar to a test for quark masses in Ds

decays [32], using helicity suppression arguments. But the
situation is not analogous because of the presence of
gluonic self-coupling and resultant g ! gg transitions.

V. CONTRAST WITH ESTIMATES
OF QUARK MASSES

It is of interest to contrast the situation concerning an
upper bound on a possible gluon mass with estimates of
what are denoted the current or ‘‘hard’’ masses of the light
quarks u and d and the intermediate-mass quark s [33].
Here, these hard masses are to be distinguished from the
‘‘soft’’ constituent masses of order�QCD that are generated

dynamically for the light quarks by the formation of the
quark condensates h �qqi that spontaneously break chiral
symmetry. The key point here is that in the limit in which
one turns off color gauge interactions, quarks still have
weak and electromagnetic interactions, but there are no
gluons, since the gluons only enter as the gauge bosons of
QCD. The current or hard masses of the quarks are, indeed,
defined as the masses that these particles would have in

the hypothetical limit in which QCD is turned off [33].
It has been challenging to determine the current-quark
masses mu and md of the light quarks u and d. Two further
differences with respect to the gluons have enabled one to
obtain approximate values for these. First, from the
nucleon masses mp and mn, one can infer that mu and

md differ only by a few MeV and that md >mu. Second,
because of spontaneous chiral symmetry breaking,
one has Gell-Mann–Oakes–Renner (GMOR) relations
such as [34]

m2
� ¼ �ðmu þmdÞ

f2�
h �qqi: (5.1)

The measured values of m� and f�, together with a deter-
mination of h �qqi from, e.g., the lattice, then yield the value
of mu þmd. From the corresponding GMOR relations
for m2

Kþ and m2
K0 , assuming flavor independence of h �qqi

for q ¼ u, d, s, one can obtain approximate values for the
ratios md=mu ’ 2 and ms=md ’ 20 (e.g., [35]). The fact
that, even with these methods and modern refinements
[35], there is still non-negligible uncertainty in mu and
md shows the difficulty of extracting (hard) masses of light
confined particles.

VI. HIGH-ENERGY BEHAVIOR OF CROSS
SECTIONS IN QCD WITH mg � 0

We elaborate here on an interesting point that we noted
at the beginning of this paper. Let us consider a modified
QCD theory with the nonzeromg in Eq. (2.1) satisfying the

bound (3.5). We treat this theory as an effective field
theory, valid up to some UV cutoff �UV. In order for it
to be a useful theory and to match experimental data, it is
necessary that�UV � �QCD. This condition should hold if

mg=�QCD � 1. A very interesting aspect of this construc-

tion is its contrast with the Higgs mechanism in a weakly
interacting theory, such as the standard model. Taking the
limit of large Higgs mass in the SM, one obtains an
estimate of the highest energy to which the resultant theory
(denoted SM0) can be used as a perturbatively calculable
effective field theory, namely �UV;SM0 ’ 4

ffiffiffiffi
�

p
vEW ¼

8
ffiffiffiffi
�

p
mW=g ¼ 1:7 TeV [36], where g is the weak SUð2ÞL

gauge coupling and vEW � 2�1=4G�1=2
F ¼ 246 GeV. Forffiffiffi

s
p

* �UV;SM0 , the J ¼ 0 partial wave amplitude for lon-

gitudinal vector boson scattering violates perturbative uni-
tarity, indicating the onset of strongly coupled physics.
However, the analogous procedure is not applicable in
our present case of QCD with mg � 0, because for the

relevant range given by Eq. (3.5), longitudinal gluon-gluon
scattering is not perturbatively calculable, as a result of the
strong coupling �s �Oð1Þ. The nonapplicability of the
perturbative partial wave amplitude analysis to QCD with
mg & Oð1Þ MeV is clear, because if one were able to apply

it, then, in terms of the color-nonsinglet Higgs VEV jvj,
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one would get �UV � jvj �mg=gs. But this result would

not make physical sense, since it would imply that, for
example, QCD with mg ¼ 1 eV would break down at a

scale of order 1 eV. In QCD with mg � 0, the expression

for�UV has a form that is fundamentally different from the
form �UV �mg=gs that one would obtain for a perturba-

tive theory. The property that QCD with mg � 0 matches

onto the theory with mg ¼ 0 as mg ! 0 implies that QCD

withmg � 0 should be a good effective theory up to a scale

�UV of the form

�UV ��QCD

�
�QCD

mg

�
�
; (6.1)

where the exponent � > 0. The strong-coupling nature of
the theory in the region of energies

ffiffiffi
s

p ��QCD makes it

difficult to obtain a precise value of the exponent �, but it is
plausible that �� Oð1Þ. This value is in accord with the
MIT bag model estimate of the masses of free quarks and
gluons in Eqs. (3.1) and (3.2).

VII. CONTRAST WITH LIMITS
ON A PHOTON MASS

There is a striking contrast in the modest upper limit of a
few MeV that one can obtain for mg and the very stringent

upper limit on the photon mass, m� & 10�19 eV [37]. The

fact that the upper bound on m� is so much smaller than

the upper bound on mg can be traced to the property that

the photon is not confined, together with the property that
matter is electrically neutral on a macroscopic scale, and
the ability to observe electromagnetic fields, such as those
associated with planetary dipole fields and the solar wind,
that have quite large spatial extent. Note that conditions
other than confinement could limit one’s ability to set a
bound on the photon mass. For example, consider the
hypothetical situation in which one were restricted to
making observations in the interior of a metal, where,
instead of freely propagating photons, there are plasmons
with plasma frequency!p given by!

2
p ¼ 4�ne2=me (n ¼

number density of electrons). Then one would only be

able to obtain an upper bound on m� that was a small

fraction of !p (where @!p � few eV in typical metals). A

similar comment would apply if one were restricted to
making observations in a medium where there is Debye
screening.

VIII. CONCLUSION

In this paper we have revisited the question of upper
limits on a possible gluon mass. We have discussed various
ways of modifying QCD to produce gluon masses. From an
analysis of experimental constraints, we have concluded
that a reasonably robust upper bound is mg < Oð1Þ MeV,

given in Eq. (3.5). We believe that our analysis settles an
existing disagreement (by 10 orders of magnitude) in
the literature concerning an upper bound on mg. We have

discussed some of the subtle conceptual issues that one
must confront in trying to set an upper bound on mg that

would be very far below the scale, �QCD ’ 300 MeV.

These include the fact that in this mass range one cannot
use perturbation theory reliably and the physics is not
accurately described in terms of the Lagrangian degrees
of freedom, including gluons. Since the inapplicability of
perturbation theory makes it difficult to use a Higgs mecha-
nism reliably to produce a small gluon mass, we have
explored how one might do this with a nonperturbative
dynamical mechanism and have shown how this attempt
would yield excessively large values ofmg. We have shown

how quasiconfinement in QCD with a small gluon mass, in
conjunction with the Heisenberg uncertainty principle,
renders it difficult to set an upper limit on mg that is very

small compared with �QCD. As part of our analysis, we

have also shown that the ultraviolet cutoff �UV on QCD
with mg � 0, considered as an effective field theory, has a

very different form from the ultraviolet cutoff in the elec-
troweak theory with a heavy Higgs.
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