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The new BABAR data on the pion-photon transition form factor arouses people’s interest for the

determination of the pion distribution amplitude. To explain the data, we take both the leading valence

quark state’s and the nonvalence quark state’s contributions into consideration, where the valence quark

part up to next-to-leading order is presented and the nonvalence quark part is estimated by a phenome-

nological model based on its limiting behavior at both Q2 ! 0 and Q2 ! 1. Our results show that to be

consistent with the new BABAR data at the large Q2 region, a broader amplitude other than the

asymptoticlike pion distribution amplitude should be adopted. The broadness of the pion distribution

amplitude is controlled by a parameter B. It has been found that the new BABAR data at low and high

energy regions can be explained simultaneously by setting B to be around 0.60, in which the pion

distribution amplitude is closed to the Chernyak-Zhitnitsky form.

DOI: 10.1103/PhysRevD.82.034024 PACS numbers: 12.38.�t, 12.38.Bx

I. INTRODUCTION

The pion-photon transition form factor ��� ! �0,
which relates two photons with one lightest meson, is the
simplest example for the perturbative application to exclu-
sive processes. It provides a good platform to study the
property of pion distribution amplitude (DA), i.e. one can
extract useful information on the shape of the leading-twist
pion DA by comparing the estimated result on the transi-
tion form factor F��ðQ2Þ with the measured one. The

CELLO Collaboration measured the pion-photon transi-
tion form factor a long time ago, where one of the photons
was nearly on shell and the other one was off shell with a
virtuality in the range of the low energy region (Q2 <
3 GeV2) [1]. Later on, the CLEO Collaboration also mea-
sured such a form factor but with a broader range of Q2 2
½1:5; 9:2� GeV2 [2]. Very recently, the BABAR
Collaboration did a more precise measurement at both
low and high energy regions, and their data show that in
the range ofQ2 2 ½4; 40� GeV2, the pion-photon transition
form factor behaves as [3]

Q2F��ðQ2Þ ¼ A

�
Q2

10 GeV2

�
�
; (1)

where A ¼ 0:182� 0:002 and � ¼ 0:25� 0:02. Such
large Q2 behavior contradicts the well-known asymptotic
prediction [4], i.e. Q2F��ðQ2Þ tends to be a constant (2f�)
for asymptotic DA �asðx;Q2ÞjQ2!1 ¼ 6xð1� xÞ, where
the pion decay constant f� ¼ 92:4� 0:25 MeV [5]. By

extending the previous next-to-leading order (NLO) cor-
rections [6,7] to the present large Q2 region, or even by
including the next-to-next-to-leading order corrections
[8,9], the significant growth of the pion-photon transition
form factor between 10 and 40 GeV2 cannot be explained
by using the asymptotic or asymptoticlike DA.
Therefore, many attempts have tried to solve the present

puzzle and some authors have argued that in contrary to the
conventional adopted asymptoticlike DA, the pion DA
should be quite broad or even flat in its whole region
[10–13]. More explicitly, with a flat DA �ðxÞ � 1,
Ref. [10] shows that the present BABAR data at large Q2

can be explained by choosing proper values for the phe-
nomenological parameters for the logarithmic model and
the Gaussian model constructed there. However, there is no
strong reason to support such a flat DA, since the intro-
duced infrared regulator m2 (or �) is rightly fitted by the
BABAR data. Moreover, one may observe that Ref. [10]
fails to explain the small Q2 behavior, and it cannot re-
produce the well-known value of F��ðQ2 ¼ 0Þ ¼
1=ð4�2f�Þ that is derived frommeasuring the rate of�0 !
�� [14]. Also it can be easily seen that the flat DAwith the
wave-function model suggested in Ref. [10] cannot derive
the right behavior at Q2 ! 0, since as will be shown later,
it will lead to the probability of finding the valence quark
state in the pion,

Pq �q ¼
Z 1

0

�
�2f2�

3xð1� xÞ�
�
dx;

and the charged mean squared radius,
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hr2
�þiq �q ¼

Z 1

0

�
�2f2�
2x2�2

�
dx;

both of which are divergent. Furthermore, with such a flat
DA, the end-point singularity shall emerge in many exclu-
sive processes, such as B ! light meson transition form
factors, which makes them not calculable in perturbative
QCD. This shall greatly compress the applicability of
perturbative QCD.1

At present, there is no definite conclusion on whether
pion DA is in asymptotic form [4], in Chernyak-Zhitnitsky
(CZ) form [17], or even in flat form [18]. The pion DA can
be expressed in Gegenbauer expansion [4]. The value of
the Gegenbauer moments have been studied in various
processes; cf. Refs. [19–27]. The lattice result of
Ref. [27] prefers a narrower DA with a2ð1 GeV2Þ ¼
0:07ð1Þ, while the lattice results [25,26] prefer broader
DA, i.e. they obtain a2ð1 GeV2Þ ¼ 0:38� 0:23þ0:11

�0:06 and

a2ð1 GeV2Þ ¼ 0:364� 0:126, respectively. These referen-
ces favor a positive value for a2ð1 GeV2Þ and the most
recent one is done by Ref. [23], which shows that
a2ð1 GeV2Þ ¼ 0:17þ0:15

�0:17 through a QCD light-cone sum

rule analysis of the semileptonic B ! � weak transition
form factor based on the BABAR data on B ! �l� [28].
The pion-photon transition form factor being involved in
only one pion DA maybe helpful to clarify the present
situation.

As argued in Ref. [14], the leading Fock state contributes
to F��ð0Þ by only one-half and the remaining one-half

should come from the higher Fock states as Q2 ! 0. And
then both contributions from the leading Fock state and the
higher Fock states are needed to get the correct �0 ! ��
rate. In Ref. [29], we have made such a comprehensive
analysis of the pion-photon transition form factor in a
smaller Q2 region, e.g. Q2 2 ½0; 10� GeV2, by taking
both the valence quark and the nonvalence quark contribu-
tions into consideration. It has been found that both the
asymptoticlike and the CZ-like DAs can explain the
CELLO and CLEO data [1,2] by setting proper parameters
for the pion wave function. Then it shall be interesting to
extend our previous analysis to a higher Q2 region so as to
determine which pionic behavior is more preferable for
consistently explaining the CELLO, CLEO, and BABAR
data within the whole measured energy region.

The paper is organized as follows. In Sec. II, we present
the calculation technology to derive the valence and non-
valence contributions to the pion-photon transition form
factor. For such purpose, we construct a pion wave function
model based on the Brodsky-Huang-Lepage (BHL) pre-
scription and present all the necessary formulas for dis-

cussion of its properties. In Sec. III, we discuss what we
can learn of the pionic leading Fock-state wave function/
DA in comparison with CELLO, CLEO, and BABAR ex-
perimental data. Some further discussion and comments
are made in Sec. IV.

II. CALCULATION TECHNOLOGY

Generally, the pion-photon transition form factor ��� !
�0 can be written as

F��ðQ2Þ ¼ FðVÞ
��ðQ2Þ þ FðNVÞ

�� ðQ2Þ; (2)

where FðVÞ
��ðQ2Þ is the usual valence quark part, and

FðNVÞ
�� ðQ2Þ stands for the nonvalence quark part that is

related to the higher Fock state of the pion. The valence

quark contribution FðVÞ
��ðQ2Þ dominates only as Q2 be-

comes very large. Figure 1 shows this point more clearly.

FðVÞ
��ðQ2Þ comes from Fig. 1(a), which involves the direct

annihilation of the (q �q) pair into two photons, i.e. the
leading Fock-state contribution that dominates the large

Q2 contribution. FðNVÞ
�� ðQ2Þ comes from Fig. 1(b), in which

one photon coupling ‘‘inside’’ the pion wave function, i.e.
strong interactions occur between the photon interactions
that are related to the higher Fock-state’s contributions
[30]. Under the light-cone perturbative QCD approach

[4], we can obtain the valence part FðVÞ
��ðQ2Þ. While for

the nonvalence part FðNVÞ
�� ðQ2Þ, because of its nonperturba-

tive nature, we shall construct a phenomenological model
based on limiting behavior at Q2 ! 0 and Q2 ! 1 to
estimate its contribution.
Since the pion wave function is the key component of

the pion-photon transition form factor, in the following
sections, we shall first have a discussion on its explicit
form.

A. Pion wave function and related DA

Taking into account the Melosh rotation [31], the full
form of the pion wave function can be written as

�q �qðx;k?Þ ¼
X
�1�2

��1�2ðx;k?Þ�R
q �qðx;k?Þ; (3)

where �1 and �2 are the helicity states of the two constitute

FIG. 1 (color online). Typical diagrams that contribute to the
pion-photon transition form factor F��ðQ2Þ, where x0 ¼ ð1� xÞ.
The rightmost shaded oval with a slant pattern stands for the
strong interactions.

1Within the k? factorization approach, by keeping the trans-
verse momentum dependence consistently and with the help of
the Sudakov and threshold resummation, this end-point singu-
larity may be cured to a certain degree, e.g. for the pion-photon
transition form factor [15] and for B ! light form factors [16].
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quarks, and ��1�2ðx;k?Þ stands for the spin-space wave
function coming from the Wigner-Melosh rotation.
��1�2ðx;k?Þ can be found in Refs. [32–35], whose explicit
form is shown in Table I. �R

q �qðx;k?Þ stands for the spatial
wave function, and we adopt the factorized model to do our
discussion, which is divided into a x-dependent part ’�ðxÞ
and a k?-dependent part. ’�ðxÞ may or may not be the
distribution amplitude, which depends on the explicit form
of the k?-dependent part. Based on the BHL prescription
[14,32–35], the spatial wave function �R

q �qðx;k?Þ can be

written as

�R
q �qðx;k?Þ ¼ A’�ðxÞ exp

�
� k2

? þm2
q

8�2xð1� xÞ
�
; (4)

where the x-dependent part ’�ðxÞ can be expanded in
Gegenbauer polynomials, and by keeping its first two
terms, we obtain

�R
q �qðx;k?Þ ¼ Að1þ B� C3=2

2 ð2x� 1ÞÞ

� exp

�
� k2

? þm2
q

8�2xð1� xÞ
�
; (5)

where the Gegenbauer polynomial C3=2
2 ð2x� 1Þ ¼

ð3=2Þ½5ð2x� 1Þ2 � 1�. The typical parameter B deter-
mines the broadness of the wave function. The normaliza-
tion constant A, the harmonic scale �, and the light
constitute quark mass mq are constrained by several rea-

sonable constraints. The first is the conventional wave-
function normalization condition

Z 1

0
dx

Z
jk?j2<	2

0

d2k?
16�3

�q �qðx;k?Þ ¼ f�

2
ffiffiffi
3

p ; (6)

where 	0 stands for some hadronic scale that is of order
Oð1 GeVÞ. The second is the constraint derived from
�0 ! �� decay amplitude [14]

Z 1

0
dx�q �qðx;k? ¼ 0Þ ¼

ffiffiffi
3

p
f�

: (7)

Furthermore, mq should be around the conventional

adopted value of 0.30 GeV.
The leading Fock-state pion DA at the scale	0 takes the

following form:

��ðx;	2
0Þ ¼

2
ffiffiffi
3

p
f�

Z
jk?j2�	2

0

d2k?
16�3

�q �qðx;k?Þ: (8)

Substituting the wave-function model (3), we obtain

��ðx;	2
0Þ ¼

ffiffiffi
3

p
Am�

2
ffiffiffi
2

p
�3=2f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

� ð1þ B� C3=2
2 ð2x� 1ÞÞ

�
�
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ	2

0

8�2xð1� xÞ

s �

� erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8�2xð1� xÞ

s ��
; (9)

where the error function erfðxÞ is defined as erfðxÞ ¼ 2ffiffiffi
�

p �R
x
0 e

�t2dt. Such a DA with B ! 0 is asymptoticlike, and

with the increment of B, it shall be broadened to a certain
degree, e.g. when B� 0:6, it will be CZ like with a
k?-dependent factor which suppresses the end-point
singularity.
The pion DA at any scale Q2 can be derived from the

initial DA ��ðx;	2
0Þ through QCD evolution. The evolu-

tion equation up to order Oð
sÞ takes the following form
[36]:

xx0Q2 @
~��ðx;Q2Þ
@Q2

¼ CF


sðQ2Þ
4�

�Z 1

0
½dy�Vðx; yÞ ~��ðy;	Þ

� xx0 ~��ðx;Q2Þ
�
; (10)

where ½dy� ¼ dydy0�ð1� y� y0Þ, ~��ðx;Q2Þ ¼
��ðx;Q2Þ=ðxx0Þ with x0 ¼ 1� x, and

Vðx; yÞ ¼ 2CF

�
xy0�ðy� xÞ

�
�h1 �h2

þ �

y� x

�
þ ð1 $ 2Þ

�
;

where (1 $ 2) means that all the properties of the first
constitute quark should be exchanged to that of the second
one, and vice versa. �h1 �h2

¼ 1 when the two constitute

quarks’ helicities h1 and h2 are opposite and

� ~��ðy;Q2Þ ¼ ~��ðy;Q2Þ � ~��ðx;Q2Þ. With this evolu-
tion equation, we can take the evolution effects in calculat-
ing the pion-photon transition form factor.
Moreover, a solution of Eq. (10) in Gegenbauer expan-

sion has been derived by Ref. [36], which takes the follow-
ing form:

��ðx;Q2Þ ¼ 6xx0
X1
n¼0

anð	2
0Þ
�
ln

Q2

�2
QCD

���n

C3=2
n ð2x� 1Þ;

(11)

where the Gegenbauer polynomials C3=2
n ð2x� 1Þ are ei-

genfunctions of Vðx; yÞ and the corresponding eigenvalues
are the ‘‘nonsinglet’’ anomalous dimensions

�n ¼ CF

�0

�
1þ 4

Xnþ1

k¼2

1

k
� 2�h1 �h2

ðnþ 1Þðnþ 2Þ
�
;

where �0 ¼ 11� 2nf=3. The nonperturbative coefficients

anð	2
0Þ can be determined from the initial condition

��ðx;	2
0Þ by using the orthogonality relations for the

TABLE I. The explicit form of the spin-space wave function
��1�2 ðx;k?Þ.
�1�2 ## ð""Þ "# #"
��1�2 ðx;k?Þ � kx�ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
qþk2

?Þ
p mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
qþk2

?Þ
p � mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
qþk2

?Þ
p
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Gegenbauer polynomials C3=2
n ð2x� 1Þ, i.e.

anð	2
0Þ ¼

R
1
0 dx��ðx;	2

0ÞC3=2
n ð2x� 1ÞR

1
0 dx6xð1� xÞ½C3=2

n ð2x� 1Þ�2 : (12)

It should be noted that even though the model wave
function (4) is constructed by using only the first two
Gegenbauer terms in the longitudinal function ’�ðxÞ, our
present DA��ðx;	2

0Þ as shown by Eq. (9) can be expanded
in a full form of Gegenbauer series, i.e. both the leading
and the higher Gegenbauer terms are there, whose corre-
sponding Gegenbauer moments can be calculated with the
help of Eq. (12). As will be shown in Table II, the second
Gegenbauer moment a2ð	2

0Þ is close but not equal to the

parameter B. This shows that the DA �� is different from
’�, which is due to the choice of the BHL-transverse
momentum dependence and the consideration of all the
helicity components’ contributions. While by taking a
simpler Gaussian-transverse momentum dependence and
by taking only the usual helicity component into consid-
eration, e.g. the transverse momentum dependence /
expð� k2?

2�xð1�xÞÞ [10], it leads to ��ðx;	2
0Þ � ’�ðxÞ, and

a2ð	2
0Þ ¼ B.

B. FðVÞ
��ðQ2Þ up to NLO

Under the light-cone perturbative QCD approach [4],
and by keeping the k? corrections in both the hard-
scattering amplitude and the wave function, F��ðQ2Þ has
been calculated up to NLO [14,15,29,37–39]. It is noted
that for high helicity states (�1 þ �2 ¼ �1), since their
hard parts are proportional to the small current quark mass,
we can safely neglect their contributions. As a combination
of the LO [14,29,37,38] and the NLO parts [15,39] that
keep the k? dependence in the hard kernel, we can obtain
the following formula after doing the integration over the
azimuth angle:

FðVÞ
��ðQ2Þ ¼ 1

4
ffiffiffi
3

p
�2

Z 1

0

Z x2Q2

0

dx

xQ2

�
1� CF
sðQ2Þ

4�

�
�
ln

	2
f

xQ2 þ k2?
þ 2 lnxþ 3� �2

3

��

��q �qðx; k2?Þdk2?; (13)

where ½dx� ¼ dxdx0�ð1� x� x0Þ, CF ¼ 4=3, and k? ¼
jk?j. 	f stands for the factorization scale, and for conve-

nience, we take 	f ¼ Q [6,7]. Here, without loss of gen-

erality, the usual assumption that the pion wave function
depending on k? through k2? only, i.e. �q �qðx;k?Þ ¼
�q �qðx; k2?Þ, has been implicitly adopted.

C. FðNVÞ
�� ðQ2Þ

As for FðNVÞ
�� ðQ2Þ, due to its nonperturbative nature, it is

hard to be calculated in any Q2 region. As stated in
Ref. [14], around the region of Q2 � 0, we can treat the
photon inside the pion wave function (nearly on shell) as an
external field that is approximately constant throughout the
pion volume. And then, a fermion in a constant external

field is modified only by a phase, i.e. SAðx� yÞ ¼
e�ieðy�xÞ	ASFðx� yÞ. Consequently, the lowest q �q-wave
function for the pion is modified only by a phase e�iey	A,
where y is the q �q separation. Transforming such phase into
the momentum space and applying it to the wave function,

we can obtain the two limiting behavior of FðNVÞ
�� ðQ2Þ at

Q2 ! 0, which can be written as

FðNVÞ
�� ð0Þ ¼ FðVÞ

��ð0Þ ¼ 1

8
ffiffiffi
3

p
�2

Z
dx�q �qðx; 0?Þ; (14)

and

@

@Q2
FðNVÞ
�� ðQ2ÞjQ2!0¼

1

8
ffiffiffi
3

p
�2

�
@

@Q2

Z 1

0

Z x2Q2

0

�
�q �qðx;k2?Þ

x2Q2

�

�dxdk2?

�
Q2!0

¼ �A

128
ffiffiffi
3

p
m2�2�2

Z 1

0
ð1þB�C3=2

2

�ð2x�1ÞÞ x
x0
ðm2þ4xx0�2Þ

�exp

�
� m2

8�2xx0

�
dx; (15)

where x0 ¼ 1� x. The above equation shows explicitly
that at Q2 ! 0, the leading Fock state contributes to

F��ð0Þ only half, i.e. FðVÞ
��ð0Þ ¼ F��ð0Þ=2. While by taking

both the valence and nonvalence contributions into consid-

TABLE II. Pion wave function parameters under the condition of mq ¼ 0:30 GeV, and its

probability Pq �q, charged mean radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

�þiq �q
q

(unit fm), and the Gegenbauer moments

a2;4;6ð	2
0Þ.

B A (GeV�1) � (GeV) Pq �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

�þiq �q
q

a2ð	2
0Þ a4ð	2

0Þ a6ð	2
0Þ

0.00 25.06 0.586 63.5% 0.341 0.027 �0:027 �0:016
0.20 21.71 0.641 60.0% 0.358 0.250 �0:025 �0:034
0.30 20.26 0.668 62.0% 0.378 0.362 �0:018 �0:041
0.40 18.91 0.695 66.1% 0.401 0.471 �0:008 �0:047
0.60 16.62 0.745 79.9% 0.451 0.679 0.020 �0:054

XING-GANG WU AND TAO HUANG PHYSICAL REVIEW D 82, 034024 (2010)

034024-4



eration, one can get the correct rate of the process �0 !
��.

Next, we construct a phenomenological model for

FðNVÞ
�� ðQ2Þ by requiring that it satisfy the above listed two

limiting behavior at Q2 ¼ 0 and by assuming that it is

power suppressed to FðVÞ
��ðQ2Þ in the limit Q2 ! 1. For

such purpose, we adopt the model constructed in Ref. [29]

FðNVÞ
�� ðQ2Þ ¼ 


ð1þQ2=
2Þ2 ; (16)

where


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� F��ð0Þ

@
@Q2 F

ðNVÞ
�� ðQ2ÞjQ2!0

vuut

and 
 ¼ 1
2F��ð0Þ. It is easy to find that FðNVÞ

�� ðQ2Þ will be
suppressed by 1=Q2 to FðVÞ

��ðQ2Þ in the limitQ2 ! 1. Then
at the large Q2 region, the nonvalence Fock-state part

FðNVÞ
�� ðQ2Þ shall give a negligible contribution to the form

factor. However it shall give a sizable contribution at the
small Q2 region.

D. Probability Pq �q and charged mean square radius
hr2

�þiq �q
After deriving the possible ranges for the parameters in

the pion wave function, we shall address the question of
whether the resultant wave function and hence its DA is
reasonable or not. In addition to the pion-photon transition
form factor, the pion electromagnetic form factor F�þðQ2Þ
also provides a platform for studying the properties of the
pion wave function [34,40–43].

For such purpose, following the same procedure as
described in detail in Ref. [34], we derive a formula for
the soft part contribution by taking all the helicity compo-
nents’ contribution to the pion electromagnetic form factor.
The general form for the soft part contribution can be
written as [44]

Fs
�þðQ2Þ ¼

Z dxd2k?
16�3

X
�1;�2

��
q �qðx;k?; �1Þ�q �qðx;k0

?; �2Þ;

(17)

where Q2 ¼ q2
? and k0

? ¼ k? þ ð1� xÞq? for the final

state light-cone wave function when taking the Drell-Yan-
West assignment. We can derive the probability for finding
the lowest valence quark state Pq �q and the charged mean

square radius hr2
�þiq �q from the limiting behavior of

Fs
�þðQ2Þ at Q2 ! 0.

Substituting the pion model wave function (3) and fin-
ishing the integration over k? with the help of the
Schwinger 
-representation method,

1

A

¼ 1

�ð
Þ
Z 1

0


�1e�
Ad
;

Eq. (17) can be simplified as

Fs
�þðQ2Þ ¼

Z 1

0
dx

Z 1

0
d�

A2

128�2ð1þ�Þ3

� exp

�
�8m2

qð1þ�Þ2 þQ2x02ð2þ�ð4þ�ÞÞ
32x0x�2ð1þ�Þ

�

� ½1þB�C3=2
2 ð2x� 1Þ�2

�
I0

� �Q2x0�2

32x�2ð1þ�Þ
�

� ½32x0x�2ð1þ�Þ �Q2x02ð2þ�ð4þ�ÞÞ

þ 8m2
qð1þ�Þ2� � I1

� �Q2x0�2

32x�2ð1þ�Þ
�
Q2x02�2

�
;

(18)

where x0 ¼ 1� x and In (n ¼ 0, 1) stands for the modified
Bessel function of the first kind. After taking the expansion
in the small Q2 limit, we obtain the probability Pq �q for the

valence quark state,

Pq �q ¼ Fs
�þðQ2ÞjQ2¼0 ¼

Z dxd2k?
16�3

j�q �qðx;k?Þj2

¼
Z 1

0
dx

Z 1

0
d�

A2

16�2ð1þ �Þ2 ½1þ B� C3=2
2 ð2x

� 1Þ�2 exp
�
�m2

qð1þ �Þ
4x0x�2

�
½m2

qð1þ �Þ þ 4xx0�2�
(19)

and the charged mean square radius hr2
�þiq �q,

hr2
�þiq �q 
 �6

@Fs
�þðQ2Þ
@Q2

��������Q2¼0

¼
Z 1

0
dx

Z 1

0
d�

3A2ð2þ 4�þ �2Þx0
256�2x�2ð1þ �Þ3

� ½1þ B� C3=2
2 ð2x� 1Þ�2 exp

�
�m2

qð1þ �Þ
4x0x�2

�

� ½8x0x�2 þm2
qð1þ �Þ�: (20)

In the above two equations, one may observe that the terms
in the second square brackets that are proportional to m2

q

come from the ordinal helicity components, while the
remaining terms in the same brackets are from the higher
helicity components.

III. NUMERICAL RESULTS

We adopt the NLO 
sðQ2Þ to do the numerical calcu-
lation, i.e.


sðQ2Þ ¼ 4�

�0 lnðQ2=�2
QCDÞ

�
1� 2�1

�2
0

ln½lnðQ2=�2
QCDÞ�

lnðQ2=�2
QCDÞ

�
;

(21)

where �0 ¼ 11� 2nf=3 and �1 ¼ 51� 19nf=3. The

value of nf varies with the energy scale and the value of
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�QCD is determined by requiring 
sðmZ0Þ ¼ 0:1184 [5],

i.e. �QCD ¼ 0:231 GeV.

A. Properties of pion wave function and pion DA

By taking	0 ¼ 1 GeV andmq ¼ 0:30 GeV, we present

the wave-function parameters in Table II, which are deter-
mined by the mentioned constraints and by taking B ¼
0:00, 0.20, 0.30, 0.40, and 0.60, respectively. The probabil-
ity for the valence quark state Pq �q, the charged mean radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

�þiq �q
q

(unit fm), and the Gegenbauer moments

a2;4;6ð	2
0Þ are also presented in Table II. For the case of

B ¼ 0, a2;4;6ð	2
0Þ can be safely neglected due to their

smallness, and then the corresponding DA is close to the
asymptotic form as shown explicitly by Fig. 2. For a bigger
B, it is found that a2ð	2

0Þ usually is much larger than

a4;6ð	2
0Þ, which is consistent with our model wave function

(4), where only the first two Gegenbauer terms are kept in
’ðxÞ. It is noted that by varying the parameter B within the
region of �½0:00; 0:60�, the pion DA shall vary from
aymptoticlike to a CZ-like form. To show this point more
clearly, we draw the pion DA defined in Eq. (8) in Fig. 2,
where B ¼ 0:00, 0.30, and 0.60, respectively. As a com-
parison, we also present the conventional asymptotic-form
DA, �ASðxÞ ¼ 6xð1� xÞ [4], and the CZ-form DA,
�CZðxÞ ¼ 30xð1� xÞð2x� 1Þ2 [17]. One may observe
from Table II that the value of hr2

�þiq �q increases with the

increment of B, which runs within the region of
½ð0:341 fmÞ2; ð0:451 fmÞ2� by varying B 2 ½0:00; 0:60�.
These values are somewhat smaller than the measured

pion charged radius hr2i�þ
expt ¼ ð0:657� 0:012 fmÞ2 [45]

and ð0:641 fmÞ2 [46], but it is close to the value as sug-
gested in Refs. [34,47,48]. Such smaller hr2

�þiq �q for the

leading Fock-state wave function is reasonable, since the

probability of leading Fock state Pq �q is less than 1 and is

about 60%–80%. This confirms the necessity of taking the
higher Fock states into consideration to give full estimation
of the pion electromagnetic form factor/pion-photon tran-
sition form factor, especially for lower Q2 regions.
A naive pion wave-function model has been suggested in

Ref. [10] to explain the new BABAR data [3], which is
constructed with a flat DA together with a Gaussian ansatz
for the k? dependence, i.e.

�q �qðx;k?Þ ¼ 4�2f���ðxÞffiffiffi
3

p
xx0�

exp

�
� k2?
2�xx0

�
; (22)

where x0 ¼ 1� x and ��ðxÞ � 1. With such a model (by
setting � ¼ 0:53 GeV2), it can be easily seen that one
cannot derive the right behavior at Q2 ! 0 [10], since
following similar steps as shown in Sec. II D, it will lead to

Pq �q ¼
Z 1

0

��2f2pi
3xx0�

�
dx

and

hr2
�þiq �q ¼

Z 1

0

�
�2f2�
2x2�2

�
dx;

both of which are divergent. This in some sense explains
why such a model wave function can explain the pion-
photon transition form factor’s large Q2 behavior (due to
the large enhancement at the end-point region), but fails to
explain the lower Q2 behavior.
Next, it would be interesting to make a comparison with

Brodsky and Teramond’s (BT) holographic model with a
quark mass effect [49,50] for the pion DA. The BT model
is predicted by using the anti–de Sitter/conformal field
theory (AdS/CFT) correspondence and by using the soft-
wall holographic model, whose explicit form is [50]

�Mðx;	2
0Þ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

exp

�
� 1

2
2

�
m2

u

x
þ m2

d

1� x

��

�
�
1� exp

�
� 	2

0

2
2xð1� xÞ
��

; (23)

where 
 ¼ 0:375 GeV [49], mu ¼ 2 MeV, and md ¼
5 MeV [50]. The factor C ’ 2:55, which can be determined
by its normalization. It is found that for 	0 � 1 GeV, the
term involving 	0 gives a quite small contribution and it
can be safely neglected as is done by Ref. [50]. A com-
parison of our present pion DA model (8) with that of the
BT model is presented in Fig. 3, where our models with
B ¼ 0:00, 0.05, 0.10, and 0.15 are presented by the circles,
the dashed, the dash-dotted, and dotted lines, respectively,
and the BT model is drawn by a solid line. Since both
models have similar transverse momentum behavior, it is
natural to estimate that when setting B ’ 0:125, which
corresponds to the same second Gegenbauer moment of
the BT model a2ð	2

0Þ � 0:145. These two models shall

lead to a similar behavior for the pion-photon transition

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

φ π

Asymptotic Form
CZ Form
Model with B=0.00
Model with B=0.30
Model with B=0.60

FIG. 2 (color online). Comparison of the pion DA model
defined in Eq. (8) with the asymptotic-form DA and the CZ-
form DA, where B ¼ 0:00, 0.30, and 0.60, respectively.

XING-GANG WU AND TAO HUANG PHYSICAL REVIEW D 82, 034024 (2010)

034024-6



form factor if calculating under the calculation technology
as described in Sec. II C.2

B. Pion-photon transition form factor

First, we calculate the pion-photon transition form factor
with the model wave function (3) by taking mq ¼
0:30 GeV and by varying B within the region of [0.00,
0.60]. The result is shown in Fig. 4, where the dash-dotted
line, the dotted line, and the dashed line are for B ¼ 0:00,
B ¼ 0:30, and B ¼ 0:60, respectively. As a comparison,
we also present the BABAR fitted curve (1) in Fig. 4, which
is shown by a solid line. For a small energy region, Q2 &
15 GeV2, it is found that both asymptoticlike and CZ-like
wave functions by adjusting the quark mass parameter can
explain the CELLO, CLEO, and BABAR experimental
data, which agrees with the observation in Ref. [29].
However, at large Q2 region, different behavior of DA
(by varying B) shall lead to different limiting behavior.
Typically, it is found that when Q2 ! 1, the Q2F��ðQ2Þ
for asymptoticlike wave function (with B ¼ 0) tends to the
usual limit 2f� ’ 0:185 GeV [4]. So to explain the newly
obtained BABAR data on the high energy region, we need a
broader DA other than the asymptotic one. It is found that
with the increment of B (corresponding to a more broader
DA as shown by Fig. 2), the estimated pion-transition form
factor shall be closer to the BABAR data. Therefore the
pion DA behavior will be determined, if the BABAR
present measurement can be confirmed in the coming
future.

Second, we show how the leading valence quark and the
nonvalence quark contribute to the pion-photon transition
form factor. We show the results for B ¼ 0:60 in Fig. 5,
where the solid line, the dotted line, and the dashed line are
for the total contribution, the leading valence quark con-
tribution, and the nonvalence quark contribution to the
pion-photon transition form factor, respectively. Figure 5
shows that the leading valence Fock-state contribution
dominates the pion-photon transition from factor

0 10 20 30 40
0

0.1

0.2

0.3

0.4

Q2 (GeV2)

Q
2  F

πγ
(Q

2 ) 
(G

eV
)

BaBar data

CLEO data

CELLO data

FIG. 4 (color online). Q2F��ðQ2Þ with the model wave func-
tion (3) by taking mq ¼ 0:30 GeV and by varying B within the

region of [0.00, 0.60]. The dash-dotted, the dotted, and the
dashed lines are for B ¼ 0:00, B ¼ 0:30, and B ¼ 0:60, respec-
tively. The solid line is the fitted curve (1) derived by BABAR [3].
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0

0.1

0.2

0.3
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2  F
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(Q
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)

BaBar data
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FIG. 5 (color online). Q2F��ðQ2Þ with the model wave func-
tion (3) by taking mq ¼ 0:30 GeV and B ¼ 0:60. The solid, the

dotted, and the dashed lines are for the total contribution, the
leading valence quark contribution, and the nonvalence quark
contribution to the form factor, respectively.

FIG. 3 (color online). Comparison of the pion DA model
defined in Eq. (8) with Brodsky and Teramond’s (BT) holo-
graphic model, where B ¼ 0:00, 0.05, 0.10, and 0.15, respec-
tively.

2For such a calculation, one needs to be careful that the spin-
space wave function for the BT model should be changed
accordingly, since mu and md are taken as different values that
are different from our present treatment of mu ¼ md ¼ mq.
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Q2F��ðQ2Þ for the large Q2 region, and the nonvalence

quark part is small in the high Q2 region, but it shall
provide a sizable contribution to the low and intermediate
energy regions. So one should consider the nonvalence
Fock-states’ contribution to Q2F��ð0Þ so as to explain

the experimental data at both low and high Q2 regions.
Third, we discuss the uncertainties caused by varying

the value of mq. For such purpose, we fix B to be 0.60.3

From Fig. 2, one may observe that when B ¼ 0:6, the DA
is close to the CZ form. As has been argued in Ref. [29], for
the case of CZ-like DA, in order to be consistent with the
experimental data at low energy scale,mq should be within

the region of 0:40þ0:10
�0:10 GeV. So we vary mq within the

region of [0.30, 0.50] GeV to show the uncertainties. The
results are shown in Fig. 6, where the solid line is formq ¼

0:40 GeV, and the shaded band shows its uncertainty. In
the lowerQ2 region, the upper edge of the band is formq ¼
0:50 GeV and the lower edge is formq ¼ 0:30 GeV; while

in the higher Q2 region, the upper edge of the band is for
mq ¼ 0:30 GeV and the lower edge is formq ¼ 0:50 GeV.

IV. SUMMARY

In the present paper, we have taken both the valence
quark states and the nonvalence quark states into consid-
eration. The valence quark part is calculated up to NLO
within the kT factorization approach and the nonvalence
quark part is estimated by a naive model based on its
limiting behavior at bothQ2 ! 0 andQ2 ! 1. Our results
show that (1) For Q2 & 15 GeV2, it is found that both
asymptoticlike and broader wave functions can explain
the CELLO, CLEO, and BABAR experimental data under
reasonable choices of parameters. To be consistent with the
new BABAR data at the large Q2 region, we need a broader
DA, i.e. the conventional adopted asymptotic DA should be
broadened to a certain degree. (2) With suitable parameters
for the pion model wave function that is constructed based
on the BHL prescription, it is found that a more broader
DA (with larger B) shall lead to a better agreement with the
BABAR data. If BABAR confirms its present measurement,
then pion DA should be broader, such as a CZ-like one with
an improved behavior at the end-point region. (3) The
present adopted model of the pion wave function as shown
by Eq. (4) shall present a basis for the application of the
pQCD approach [4,40–43].
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