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We investigate the tensor form factors of the baryon octet within the framework of the chiral quark-

soliton model, emphasizing those of the nucleon, taking linear 1=Nc rotational as well as linear ms

corrections into account, and applying the symmetry-conserving quantization. We explicitly calculate the

tensor form factors Hq
TðQ2Þ corresponding to the generalized parton distributions HTðx; �; tÞ. The tensor

form factors are obtained for the momentum transfer up to Q2 � 1 GeV2 and at a renormalization scale of

0:36 GeV2. We find for the tensor charges �u ¼ 1:08, �d ¼ �0:32, and �s ¼ �0:01 and discuss their

physical consequences, comparing them with those from other models. Results for tensor charges for the

baryon octet are also given.
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I. INTRODUCTION

At leading twist, the basic quark structure of the nucleon
is described by three independent quark parton distribution
functions (PDFs): the unpolarized PDF qðxÞ, the helicity
PDF �qðxÞ, and transversity PDF �qðxÞ for each flavor.
More generally, eight generalized parton distributions
(GPDs) contain full information on the structure of the
nucleon: two chiral-even spin-independent GPDsHðx; �; tÞ
and Eðx; �; tÞ, two chiral-even spin-dependent GPDs
~Hðx; �; tÞ and ~Eðx; �; tÞ, and four chiral-odd spin-
dependent GPDs HTðx; �; tÞ, ETðx; �; tÞ, ~HTðx; �; tÞ, and
~ETðx; �; tÞ [1–5]. Thus, knowing all these leading-twist
GPDs will provide a detailed description of the nucleon
structure, so called a nucleon tomography.

The helicity distributions are related to the axial-vector
current of the nucleon, which are relatively easily acces-
sible in experiment because of their chiral-even character.
On the contrary, the chiral-odd distributions that are perti-
nent to the tensor current of the nucleon are rather difficult
to be measured. Since quantum chromodynamics (QCD)
possesses an approximate chiral symmetry and all electro-
weak vertices preserve chirality, properties of the tensor
current are experimentally very hard to be accessed. There
exist no probes to measure directly the tensor structure, so
that one is restricted to scattering reactions in which two
chiral-odd processes are involved. For example, the trans-
verse spin asymmetry ATT in Drell-Yan processes in p �p
reactions [6–9] and the azimuthal single spin asymmetry in
semi-inclusive deep inelastic scattering (SIDIS) [10] are

seen as promising reactions to gain information on the
transversity of the nucleon.
Because of this difficulty, an experimental extraction of

the transversity distribution �qðxÞ was only recently per-
formed for the first time [10]. Based on the azimuthal
single spin asymmetry in SIDIS processes lp" ! l�X,
Ref. [10] used experimental data from the Belle
Collaboration at KEK [11] as well as data from the
HERMES [12,13] and COMPASS [14] collaborations in
order to obtain results for the u and d quark transversity
distributions �uðxÞ and �dðxÞ. Subsequently, Ref. [15] ex-
tracted the tensor charges �u ¼ 0:46þ0:36

�0:28 and �d ¼
�0:19þ0:30

�0:23 at a renormalization scale of �2 ¼ 0:4 GeV2.

Anselmino et al. [16] presented an updated analysis and
obtained the results �u ¼ 0:54þ0:09

�0:22 and �d ¼ �0:23þ0:09
�0:16

at a scale of�2 ¼ 0:8 GeV2. Moreover, several theoretical
investigations on the tensor charges were carried out, for
example, in the nonrelativistic quark model, in the MIT-
bag model [17], in SU(6)-symmetric quark models [18,19],
in a valence quark model with axial-vector meson domi-
nance [20], and on the lattice [21].
In the present work, wewill study the tensor form factors

up to a momentum transfer of Q2 � 1 GeV2 within the
framework of the self-consistent SU(3) chiral quark-
soliton model (�QSM) [22]. The �QSM provides an ef-
fective chiral model for QCD in the low-energy regime
with constituent quarks and the pseudoscalar mesons as the
relevant degrees of freedom. Moreover, this model has a
deep connection to the QCD vacuum based on instantons
[23] and has only a few free parameters. These parameters
can mostly be fixed to the meson masses and meson decay
constants in the mesonic sector. The only free parameter is
the constituent quark mass that is also fixed by reproducing
the proton electric form factor. We obtain numerically an
explicit (self-consistent) pion field, i.e. the nontopological
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soliton field, which can be used to calculate basically all
baryon observables. A merit of this model is that we are
able to determine baryon form factors of various currents
within exactly the same relativistic framework and with the
same set of parameters. Furthermore, the renormalization
scale for the �QSM is naturally given by the cutoff pa-
rameter for the regularization which is about 0:36 GeV2.
Note that it is implicitly related to the inverse of the size of
instantons ( �p � 0:35 fm) [24,25]. In particular, this renor-
malization scale is of great importance in investigating the
tensor charges of the proton. In contrast to the axial-vector
charges the tensor charges depend on the renormalization
scale already at one-loop level.

The axial-vector form factors were calculated in
Refs. [26–29] with the same parameters as used in the
present work. The tensor charges, i.e. the tensor form
factors at Q2 ¼ 0, were already investigated in the SU(2)
version of the �QSM in Refs. [30] and in the SU(3) version
in Ref. [31]. However, the SU(3) calculation [31] was done
prior to the finding of the symmetry-conserving quantiza-
tion [32] which ensures the correct electromagnetic gauge
invariance. Reference [33] formulated the �QSM on the
light cone, within which the tensor charges were studied in
[34]. In the case of the SU(2) �QSM the tensor charges
were also calculated from the first moments of the trans-
versity distribution �qðxÞ in Refs. [35–37]. In the present
work, we will extend the previous work [31] and calculate
the tensor form factors up to Q2 ¼ 1 GeV2 with applica-
tion of the symmetry-conserving quantization.

The outline of this work is sketched as follows. In Sec. II
we recapitulate the form factors of the tensor current such
that it can be used in the �QSM. In Sec. III, we show how
to compute the tensor form factors of SU(3) baryons within
the �QSM. Section IV presents the main results of this
work and discusses them in comparison with those of other
works. The last section is devoted to a summary and
conclusion. The explicit expressions for the quark densities
are given in the Appendices.

II. GENERAL FORMALISM

The matrix element of the quark tensor current between
two nucleon states is parametrized by three form factors
[5,21,38] as follows:

hNs0 ðp0Þj �c ð0Þi�����c ð0ÞjNsðpÞi

¼ �us0 ðp0Þ
�
H

�
T ðQ2Þi��� þ E

�
TðQ2Þ	

�q� � q�	�

2M

þ ~H�
TðQ2Þ ðn

�q� � q�n�Þ
2M2

�
usðpÞ; (1)

where ��� is the spin operator i½	�; 	��=2 and �� the

Gell-Mann matrices where we include the unit matrix �0 ¼
1. The c represents the quark field. The usðpÞ denotes the
spinor for the nucleon with massM, momentum p, and the
third component of its spin s. The momentum transfer q

and the total momentum are defined, respectively, as q ¼
p0 � p with q2 ¼ t ¼ �Q2 and n ¼ p0 þ p. In the lan-
guage of GPDs the above-defined form factors are equiva-
lent to the following expressions1:

Z 1

�1
dxH�

T ðx; �; tÞ ¼ H�
T ðq2Þ;Z 1

�1
dxE

�
T ðx; �; tÞ ¼ E

�
Tðq2Þ;Z 1

�1
dx ~H�

T ðx; �; tÞ ¼ ~H�
Tðq2Þ:

(2)

In the present work, we will concentrate on the tensor form
factors HTðQ2Þ that can be related to the spatial part of the
above matrix element in the Breit frame

"nklhN0
s0 j �c ð0Þi�kl�

�c ð0ÞjNsi

¼ H�
T ðQ2Þi2
s0

�
�n þ qn

q � �
4MðEþMÞ

�

s (3)

with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
as the nucleon energy, 
s the two-

component spinor, and N0 ¼ Nðp0Þ. In order to derive the
expressions for H�

T ðQ2Þ, we take the third component of
the space, i.e. n ¼ 3, and perform an average over the
orientation of the momentum transfer. Then we apply first

the operator
R

d�
4� ½q� ðq� to both sides and take the

average. The results are found to be

Z d�q

4�
hN0

1=2jT�
z jN1=2i ¼ H

�
T ðQ2Þi 2Mþ E

M

2

3

� E
�
T ðQ2Þi jqj

2

M2

1

3
; (4)

Z d�q

4�
½q� ðq� hN0

1=2jTjN1=2iÞ�z

¼ �H�
T ðQ2Þijqj2 4

3
þ E�

TðQ2Þ i

M2
jqj4 1

3
(5)

with T� ¼ i"nkl �c ð0Þ�kl�
�c ð0Þên. We can therefore sepa-

rate H
�
T and E

�
T as

H�
T ðQ2Þ ¼ 3

M

E

Z d�q

4�

�
T�
NN þ 1

jqj2 ½q� ðq� T�
NNÞ�

�
z
;

(6)

E�
T ðQ2Þ ¼ 12M3

Ejqj2
Z d�q

4�

�
�
T
�
NN þ 2Mþ E

2Mjqj2 ½q� ðq� T
�
NNÞ�

�
z
; (7)

using the relation i"nkl�kl ¼ 2i	0	n	5 and the definition

1In the notation of the generalized form factors of [39] the
above form factors are equivalent to H

�
T ðq2Þ ¼ A

�
T10ðtÞ,

E
�
T ðq2Þ ¼ B

�
T10ðtÞ, and ~H

�
T ðq2Þ ¼ ~A

�
T10ðtÞ.
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T �
NN

:¼ hN0
1=2jc yð0Þ�	5��c ð0ÞjN1=2i: (8)

Equations (6) and (7) can now be evaluated in the
�QSM. We want to note that both form factors involve
the expressions ðT�

NNÞz and ½q� ðq� T�
NNÞ�z. However,

we will concentrate in the present work on the tensor form
factor H�

T ðQ2Þ. Even though both form factors consist of
the same two densities, the second form factor ETðQ2Þ
requires more technical efforts for the region of small
Q2. In addition, the third form factor, ~H�

TðQ2Þ requires a
completely new density. These two form factors will be
discussed in a future work. At this point we also see
explicitly the difference of the tensor form factors from
the axial-vector ones for which the nucleon matrix element
is given as

A �
NN ¼ hN0

1=2jc yð0Þ	0�	5��c ð0ÞjN1=2i: (9)

TheANN is distinguished from TNN by a factor of only 	0.
It indicates that the tensor current turns out to be anti-
Hermitian, whereas the axial-vector one is Hermitian.
However, in the nonrelativistic limit the tensor form factors
coincide with the axial-vector ones, because 	0 is replaced
by the unity matrix in this limit.

In the following we will give additional expressions
which will be used later in the present work. With the
previously defined current we have the following relations
between the individual flavor decompositions in SU(3):

H0
Tð0Þ ¼ g0T ¼ �uþ �dþ �s; (10)

H3
Tð0Þ ¼ g3T ¼ �u� �d; (11)

H8
Tð0Þ ¼ g8T ¼ 1ffiffiffi

3
p ð�uþ �d� 2�sÞ; (12)

and in SU(2) with �0 ¼ 1:

H0
Tð0Þ ¼ g0T ¼ �uþ �d; (13)

H3
Tð0Þ ¼ g3T ¼ �u� �d: (14)

We want to note that in the literature several notations for
the SU(3) singlet g0T and nonsinglet g8T quantities exist.

These are due to the fact that either �0 ¼ ffiffiffiffiffiffiffiffi
2=3

p � 1 are

chosen or the factor
ffiffiffiffiffiffiffiffi
1=3

p
is taken out from g8T .

Additionally, in order to compare the present results of
the tensor charges with those of other works, it is essential
to know the renormalization scale. Different values ob-
tained at different scales can be connected by following the
next-to-leading order (NLO) evolution equation [40,41]:

�qð�2Þ ¼
�
�Sð�2Þ
�Sð�2

i Þ
�
4=27

�
1� 337

486�
ð�Sð�2

i Þ � �Sð�2ÞÞ
�

� �qð�2
i Þ; (15)

�NLO
S ð�2Þ ¼ 4�

9 lnð�2=�2
QCDÞ

�
1� 64

81

lnlnð�2=�2
QCDÞ

lnð�2=�2
QCDÞ

�

(16)

with �QCD ¼ 0:248 GeV, the initial renormalization scale

�2
i and Nc ¼ Nf ¼ 3.

III. SU(3) CHIRAL QUARK-SOLITON MODEL

We will now briefly describe the SU(3) �QSM. We
follow the notation used in Refs. [42–45] and for details
we refer to Refs. [22,46,47]. The SU(3) �QSM is charac-
terized by the following low-energy effective partition
function in Euclidean space:

Z�QSM ¼
Z

DcDc yDU exp

�
�
Z

d4x�yiDðUÞ�
�

¼
Z

DU expð�Seff½U�Þ; (17)

where c and U represent the quark and pseudo-Goldstone
boson fields, respectively. The Seff denotes the effective
chiral action

SeffðUÞ ¼ �Nc Tr lniDðUÞ; (18)

where Tr designates the functional trace, Nc the number of
colors, and DðUÞ the Dirac differential operator

DðUÞ ¼ 	4ði6@� m̂�MU	5Þ ¼ �i@4 þ hðUÞ � �m

(19)

with

�m ¼ � �mþms

3
	41þ �m�msffiffiffi

3
p 	4�

8

¼ M1	41þM8	4�
8: (20)

In the present work we assume isospin symmetry, so
that the current quark mass matrix is defined as m̂ ¼
diagð �m; �m;msÞ ¼ �mþ �m. The SU(3) single-quark
Hamiltonian hðUÞ is given by

hðUÞ ¼ i	4	i@i � 	4MU	5 � 	4 �m; (21)

where U	5 represents the chiral field for which we assume
Witten’s embedding of the SU(2) soliton into SU(3)

U	5ðxÞ ¼ U	5

SUð2ÞðxÞ 0
0 1

� �
(22)

with the SU(2) pion field �iðxÞ as
U	5

SUð2Þ ¼ expði	5�i�iðxÞÞ

¼ 1þ 	5

2
USUð2Þ þ 1� 	5

2
Uy

SUð2Þ: (23)

The integration over the pion field U in Eq. (17) can be
carried out by the saddle-point approximation in the large
Nc limit due to the Nc factor in Eq. (18). The SU(2) pion
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field U is expressed as the most symmetric hedgehog form

USU2 ¼ exp½in̂ � �PðrÞ�; (24)

where PðrÞ is the radial profile function of the soliton.
The baryon state jBi in Eq. (8) is defined as an Ioffe-type

current consisting of Nc valence quarks in the �QSM:

jBðpÞi ¼ lim
x4!�1

1ffiffiffiffi
Z

p eip4x4
Z

d3xeip�xJyBðxÞj0i (25)

with

JBðxÞ ¼ 1

Nc!
�
b1���bNc
B "1���Nc c 1b1ðxÞ � � � c NcbNc

ðxÞ;
(26)

where the matrix �
b1...bNc
B carries the hypercharge Y, isospin

I, I3, and spin J, J3 quantum numbers of the baryon and the
bi and i denote the spin-flavor- and color-indices, respec-
tively. Having minimized the action in Eq. (18), we obtain
an equation of motion which is numerically solved in a
self-consistent manner with respect to the function PðrÞ in
Eq. (24). The corresponding unique solution Uc is called
the classical chiral soliton.

So far, we did not introduce any quantum numbers for
the system. This is done by quantizing the rotational and
translational zero modes of the soliton. The rotations and
translations of the soliton are implemented by

Uðx; tÞ ¼ AðtÞUcðx� zðtÞÞAyðtÞ; (27)

where AðtÞ denotes a time-dependent SU(3) matrix and zðtÞ
stands for the time-dependent translation of the center of
mass of the soliton in coordinate space. The rotational
velocity of the soliton �ðtÞ is now defined as

� ¼ 1

i
Ay _A ¼ 1

2i
TrðAy _A��Þ�� ¼ 1

2
���

�: (28)

Thus, treating �ðtÞ and �m perturbatively with a slowly
rotating soliton assumed and with �m regarded as a small
parameter, we derive the collective Hamiltonian of the
�QSM [48] expressed as

Hcoll ¼ Hsym þHsb; (29)

Hsym ¼ Mc þ 1

2I1

X3
i¼1

JiJi þ 1

2I2

X7
a¼4

JaJa; (30)

Hsb ¼ 1

�m
M1�SUð2Þ þ �Dð8Þ

88 ðAÞ þ Y þ 	ffiffiffi
3

p Dð8Þ
8i ðAÞJi:

(31)

Diagonalizing the collective Hamiltonian we derive the
octet baryon states

jN8i ¼ j81=2; Ni þ c10
ffiffiffi
5

p j101=2; Ni þ c27
ffiffiffi
6

p j271=2; Ni;
(32)

where c10 and c27 are mixing parameters expressed as

c10 ¼ � I2
15

�
�þ 1

2
	

�
; c27 ¼ � I2

25

�
�� 1

6
	

�
;

(33)

and � and 	 represent the effects of SU(3) symmetry
breaking written as

� ¼ 1

�m

1ffiffiffi
3

p M8�SUð2Þ � Ncffiffiffi
3

p M8

K2

I2
;

	 ¼ �2
ffiffiffi
3

p
M8

�
K1

I1
� K2

I2

�
:

(34)

The moments of inertia I1, I2 and K1, K2 can be found, for
example, in Ref. [42]. In the �QSM the constituent quark
massM of Eq. (21) is in general momentum dependent and
introduces a natural regularization scheme for the diver-
gent quark loops in the model. However, it is rather diffi-
cult to treat the momentum-dependent constituent quark
mass within the present model. Instead, we will take it as a
free and constant parameter, and introduce a regularization
scheme such as the proper-time regularization. It is well
known that the value of M ¼ 420 MeV together with the
proper-time regularization reproduces very well experi-
mental form factor data for the SU(3) baryons
[22,26,27,46,47]. We want to mention that in the calcula-
tion of nucleon structure function the Pauli-Villars regu-
larization is usually employed [49]. A detailed formalism
for the zero-mode quantization can be found in
Refs. [22,47,48].

IV. TENSOR FORM FACTORS IN THE CHIRAL
QUARK-SOLITON MODEL

In this section we give the final expressions for the tensor
form factor H

�
T ðQ2Þ of Eq. (6) evaluated in the �QSM. In

the present framework, linear-order corrections coming
from �ðtÞ and �m are taken into account while the trans-
lation of the soliton is treated only to the zeroth order.
Keeping the notations of Refs. [42,43,45], we find that
Eq. (6) turns out to be

H�
T ðQ2Þ ¼ M

E

Z
drr2½j0ðjQjrÞH �

T0ðrÞ

þ ffiffiffi
2

p
j2ðjQjrÞH �

T2ðrÞ�; (35)

where the indices � denote the singlet (� ¼ 0) and non-
singlet (� ¼ 3, 8) parts of the tensor form factors. The
j0ðjQjrÞ and j2ðjQjrÞ stand for the spherical Bessel func-
tions. The nucleon matrix elementH �

T0ðrÞ is given explic-
itly in SU(3) as follows:
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H �¼3;8
T0 ðrÞ ¼ �

ffiffiffi
1

3

s
hDð8Þ

�3iNAT0ðrÞ þ 1

3
ffiffiffi
3

p 1

I1
hDð8Þ

�8J3iNBT0ðrÞ �
ffiffiffi
1

3

s
1

I2
hdab3Dð8Þ

�aJbiNCT0ðrÞ � 1

3
ffiffiffi
2

p 1

I1
hDð8Þ

�3iNDT0ðrÞ

� 2

3
ffiffiffi
3

p K1

I1
M8hDð8Þ

83D
ð8Þ
�8iNBT0ðrÞ þ 2ffiffiffi

3
p K2

I2
M8hdab3Dð8Þ

8aD
ð8Þ
�biNCT0ðrÞ

�
ffiffiffi
1

3

s �
2M1hDð8Þ

�3iN þ 2ffiffiffi
3

p M8hDð8Þ
88D

ð8Þ
�3iN

�
H T0ðrÞ þ 2

3
ffiffiffi
3

p M8hDð8Þ
83D

ð8Þ
�8iNIT0ðrÞ

� 2ffiffiffi
3

p M8hdab3Dð8Þ
�aD

ð8Þ
8b iNJ T0ðrÞ; (36)

H 0
T0ðrÞ ¼

1

3

1

I1
hJ3iNBT0ðrÞ � 2

3

K1

I1
M8hDð8Þ

83 iNBT0ðrÞ þ 2

3
M8hDð8Þ

83 iNIT0ðrÞ; (37)

where AT0; . . . ;J T0 are the quark densities found in
Appendix A. The terms with M1 or M8 are strange-quark
mass (ms) corrections arising from the operator. The op-
erator J3 is the third component of the spin operator. The
Dð8Þ represent the SU(3)Wigner functions and h iN are their
matrix elements sandwiched between the collective nu-
cleon wave functions given in Eq. (33). The results of these
matrix elements are finally given in terms of the SU(3)
Clebsch-Gordan coefficients.

From the preceding SU(3) expressions, Eqs. (36) and
(37), we can deduce straightforwardly the corresponding
expressions for the SU(2) version. Since there is no strange
quark in SU(2), most of the preceding terms are not present
and Eqs. (36) and (37) are reduced in SU(2) to the follow-
ing isovector and isosinglet expressions:

H 3
T0ðrÞ ¼ �

ffiffiffi
1

3

s
hD33iNAT0ðrÞ � 1

3
ffiffiffi
2

p 1

I1
hD33iNDT0ðrÞ;

(38)

H 0
T0ðrÞ ¼

1

3

1

I1
hJ3iNBT0ðrÞ; (39)

with hD33iN ¼ �1=3 and hJ3iN ¼ 1=2 as the correspond-
ing SU(2) matrix elements.

The matrix element H �
T2 can be expressed in the same

form of Eqs. (36) and (37) with the operators in the
densities of Eqs. (36) and (37) replaced as described in
Appendix A.

At this point we want to mention that the densities
ATðrÞ; . . . ;J TðrÞ are similar to those for the axial-vector
form factors AðrÞ; . . . ;J ðrÞ [27]. The only difference
comes from the 	0 (	

4 in Euclidean space) in Eqs. (8) and
(9). This results in the fact that the reduced matrix elements
of the operators occurring in Eq. (36) are the same for both
tensor and axial-vector densities. The difference in the
complete densities is therefore a minus sign in the lower
Lorentz structure. The factor 	4, however, makes the den-
sities for the tensor charges totally different from the axial-

vector ones. The effective chiral action expressed in
Eq. (18) contains in principle all order of the effective
chiral Lagrangians. Its imaginary part generates the well-
known Wess-Zumino-Witten Lagrangian [22,50]. In order
to produce this Lagrangian correctly, one should not regu-
larize the imaginary part if the momentum dependence of
the constituent quark mass is turned off. Thus, the contri-
butions from the imaginary part of the action to an observ-
able do not have any regularization. As for the tensor
charges, it is the other way around; that is, the real part
contains no regularization but the imaginary part. This is
due to the presence of the factor 	4 in the tensor operator
that switches the real and imaginary parts.

V. AXIAL-VECTOR FORM FACTORS IN THE
CHIRAL QUARK-SOLITON MODEL

In this section we will discuss shortly the axial-vector
form factors G�

AðQ2Þ calculated in the �QSM. The general

baryon matrix element is decomposed into its Lorentz-
structure as given below:

hNs0 ðp0Þj �c ð0Þ	5	���c ð0ÞjNsðpÞi
¼ us0 ðp0Þ

�
G

�
AðQ2Þ	� þG

�
PðQ2Þ q

�

2M
þG

�
TðQ2Þ n

�

2M

�

� 	5usðpÞ: (40)

Being similar to the evaluation of the H
�
T ðQ2Þ form factors

discussed in the previous section, the axial-vector form
factors G�

AðQ2Þ are obtained in the same framework with

the corresponding expressions as follows:

G�
AðQ2Þ ¼ M

E

Z
drr2

�
j0ðjQjrÞG�

0 ðrÞ

� 1ffiffiffi
2

p j2ðjQjrÞG�
2 ðrÞ

�
: (41)

The nucleon matrix element G�
0 ðrÞ is given in the SU(3)

case as follows:
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G�¼3;8
0 ðrÞ ¼ �

ffiffiffi
1

3

s
hDð8Þ

�3iNA0ðrÞ þ 1

3
ffiffiffi
3

p 1

I1
hDð8Þ

�8J3iNB0ðrÞ �
ffiffiffi
1

3

s
1

I2
hdab3Dð8Þ

�aJbiNC0ðrÞ � 1

3
ffiffiffi
2

p 1

I1
hDð8Þ

�3iND0ðrÞ

� 2

3
ffiffiffi
3

p K1

I1
M8hDð8Þ

83D
ð8Þ
�8iNB0ðrÞ þ 2ffiffiffi

3
p K2

I2
M8hdab3Dð8Þ

8aD
ð8Þ
�biNC0ðrÞ

�
ffiffiffi
1

3

s �
2M1hDð8Þ

�3iN þ 2ffiffiffi
3

p M8hDð8Þ
88D

ð8Þ
�3iN

�
H 0ðrÞ þ 2

3
ffiffiffi
3

p M8hDð8Þ
83D

ð8Þ
�8iNI0ðrÞ � 2ffiffiffi

3
p M8hdab3Dð8Þ

�aD
ð8Þ
8b iNJ 0ðrÞ;

(42)

G 0
0ðrÞ ¼

1

3

1

I1
hJ3iNB0ðrÞ � 2

3

K1

I1
M8hDð8Þ

83 iNB0ðrÞ þ 2

3
M8hDð8Þ

83 iNI0ðrÞ; (43)

where the densities A0; . . . ;J 0 are related to those of the
tensor form factor by simply dropping the 	4 appearing in
the densities AT0; . . . ;J T0 given in AppendixA.

The axial-vector form factors in the SU(2) �QSM are
given as

G 3
0ðrÞ ¼ �

ffiffiffi
1

3

s
hD33iNA0ðrÞ � 1

3
ffiffiffi
2

p 1

I1
hD33iNDT0ðrÞ;

(44)

G 0
0ðrÞ ¼

1

3

1

I1
hJ3iNB0ðrÞ: (45)

The above given expressions for the axial-vector form
factors are equivalent to those obtained in [27]. However,
the given numerical results in the present work are ob-
tained by taking �0 ¼ 1, whereas those of the work [27]

correspond to taking �0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
.

VI. TENSOR AND AXIAL-VECTOR CHARGES

In the case of the tensor and axial-vector charges, i.e. the
form factors at Q2 ¼ 0, it is possible to write the corre-
sponding expressions in a very compact way. At the point
Q2 ¼ 0 the second terms in Eqs. (35) and (41) vanish and
the spherical Bessel function of the first terms is reduced to
unity. Hence, all the model-dependent dynamical parts are
just given by the integrals such as

R
drr2A, which are just

simple numbers. The residual factors such as hDð8Þ
33 iN are

SU(3) Clebsch-Gordan coefficients which can be derived
by the expression given in Appendix B.
The expressions Eqs. (35) and (41) for the tensor and

axial-vector charges can be reduced to the following ex-
pressions in SU(3):

g�¼3;8 ¼ �hDð8Þ
�3iNffiffiffi
3

p Aþ hDð8Þ
�8J3iN
3I1

ffiffiffi
3

p B� hdab3Dð8Þ
�aJbiN

I2
ffiffiffi
3

p C� hDð8Þ
�3iN

3I1
ffiffiffi
2

p D�M8

2K1hDð8Þ
83D

ð8Þ
�8iN

3I1
ffiffiffi
3

p BþM8

2K2hdab3Dð8Þ
8aD

ð8Þ
�biN

3I2
C

�
ffiffiffi
1

3

s �
2M1hDð8Þ

�3iN þ 2ffiffiffi
3

p M8hDð8Þ
88D

ð8Þ
�3iN

�
H þM8

2hDð8Þ
83D

ð8Þ
�8iN

3
ffiffiffi
3

p I�M8

2hdab3Dð8Þ
�aD

ð8Þ
8b iNffiffiffi

3
p J; (46)

g0 ¼ hJ3iN
3I1

B�M8

2K1hDð8Þ
83 iN

3I1
BþM8

2hDð8Þ
83 iN
3

I; (47)

and those in SU(2):

g3 ¼ �hD33iNffiffiffi
3

p A� hD33iN
3I1

ffiffiffi
2

p D; (48)

g0 ¼ hJ3iN
3I1

B: (49)

In the case of SU(3) symmetry, i.e. without ms correc-
tions, the nucleon matrix elements as used in Eqs. (46)–
(49) are given in Table V in Appendix B. We also list in
Table VI in Appendix B the values for the densities

AT0; . . . ;J T0 and A0; . . . ;J 0 integrated over r with the
weight r2 as obtained in the �QSM. All results at Q2 ¼ 0
as given in the present work can be reproduced by using the
results listed in Tables V and VI together with Eqs. (46)–
(49).

VII. RESULTS AND DISCUSSION

We are now in a position to discuss the results for the
tensor form factors HTðQ2Þ of Eq. (1). We want to mention
that all model parameters are the same as in the former
works [26–29,42–45]. For a given M, the regularization
cutoff parameter � and the current quark mass �m in the
Lagrangian are then fixed to the pion decay constant f�
and the pion mass m�, respectively. Throughout this work
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the strange current quark mass is fixed to ms ¼ 180 MeV
which approximately reproduces the kaon mass. Hence, we
do not have any further free parameter for the present
investigation. Especially, this is the merit of the �QSM
which enables us to investigate all baryon form factors
within exactly the same framework. In the present case,
these are the tensor and axial-vector form factors. We also
apply the symmetry-conserving quantization as found in
Ref. [32]. The experimental proton electric charge radius is
best reproduced in the �QSM with the constituent quark
mass M ¼ 420 MeV which is thus our preferred value.
Nevertheless we have checked in this work that the results
for the tensor form factors are rather stable with M varied,
so that we present all results with M ¼ 420 MeV.

We first concentrate on the tensor charges g�T ¼ H�
T ð0Þ

for the singlet and nonsinglet components corresponding,
respectively, to � ¼ 0 and � ¼ 3, 8. In Table I we list the
results of the tensor charges for the singlet and nonsinglet
components, comparing them with those of the axial-
vector charges. In Ref. [30] the SU(2) isovector and iso-
singlet tensor charges were obtained to be g3T ¼ 1:45 and
g0T ¼ 0:69 which are in agreement with those obtained in
the present work. From the above results, we find the
following interesting inequalities:

g
�
T > g

�
A; (50)

that is, the tensor charges turn out to be in general larger
than the axial-vector charges. These inequalities are also
true for the SU(2) results. As mentioned already, the only
difference between the tensor and axial-vector operators is
due to the factor of 	4. Therefore, both charges coincide in
the nonrelativistic limit [17,51]. As discussed already in
Ref. [30], this can be qualitatively understood from the
asymptotics of both charges in soliton size R0. The tensor
charges show generally weaker dependence on the soliton
size than the axial-vector ones do [30]:

g3A � ðMR0Þ2; g3T �MR0;

g0A � 1

ðMR0Þ4
; g0T �

1

MR0

:
(51)

As a result, the tensor charges from the �QSM turn out to
be closer to those from the nonrelativistic quark model
(NRQM) (the limit of the small soliton size R0 ! 0) than
the corresponding axial-vector charges. A similar conclu-
sion was drawn in the bag model [51].

The tensor charges were studied independently within
the SU(2) �QSM in Refs. [36,52] in which the nucleon
structure functions have been calculated. The tensor and
axial-vector charges were derived as the first moments of
the longitudinally and transversely polarized distribution
functions, respectively. Reference [36] obtained the SU(2)
axial-vector charges as g0A ¼ 0:35 and g3A ¼ 1:41, and the

tensor charges as g0T ¼ 0:56 and g3T ¼ 1:22, whereas
Ref. [52] used g0A ¼ 0:35, g3A ¼ 1:31, g0T ¼ 0:68, and
g3T ¼ 1:21. While the values for the singlet from
Refs. [36,52] are similar to those of the present work, the
values for g3A and g3T seem to be somewhat different.

Moreover, their results of g3A and g3T do not show the

inequality of Eq. (50). However, note that their ratios of
g0A=g

3
A ’ 0:25ð0:27Þ and g0T=g3T ’ 0:46ð0:56Þ and the SU(2)

ratios of the present work g0A=g
3
A ¼ 0:37 and g0T=g

3
T ¼

0:52 show the same deviation from the nonrelativistic
quark model value g0=g3 ¼ 0:6.
In the case of the SU(3) �QSM, the tensor charges were

already studied in [31]. However, the former calculation
was done without the symmetry-conserving quantization
which ensures the correct realization of the Gell-Mann-
Nishijima formula, and yielded the following results: g0T ¼
0:70, g3T ¼ 1:54, and g8T ¼ 0:42. Compared to the present
results listed in Table I, the previous results are deviated
from the present ones by about 6%–10%.
The singlet and nonsinglet tensor charges can be decom-

posed into the tensor charges for each flavor as follows:

�u ¼ 1

2

�
2

3
g0T þ g3T þ 1ffiffiffi

3
p g8T

�
;

�d ¼ 1

2

�
2

3
g0T � g3T þ 1ffiffiffi

3
p g8T

�
;

�s ¼ 1

3
ðg0T � ffiffiffi

3
p

g8TÞ:

(52)

In Table I, we list the results for the flavor-decomposed
tensor charges of the nucleon in comparison with the
corresponding axial-vector ones. As in the case of the
axial-vector charges, the rotational 1=Nc corrections are
also crucial for the tensor charges. On the other hand, the
ms corrections that come from both the operators and wave
function corrections turn out to be rather small, i.e. below
5%. Moreover, the Dirac-sea quark contribution to the
form factor HTðQ2Þ is almost negligible. The strange ten-
sor charge turns out to be tiny. Compared to the work [52],

TABLE I. Tensor charges in comparison with the axial-vector charges. Both charges, in SU(2) and SU(3), have been calculated with
the same set of parameters in the present work. The results for the nonrelativistic quark model are also given.

g0T g3T g8T g0A g3A g8A �u �u �d �d �s �s

�QSM SU(3) 0.76 1.40 0.45 0.45 1.18 0.35 0.84 1.08 �0:34 �0:32 �0:05 �0:01
�QSM SU(2) 0.75 1.44 � � � 0.45 1.21 � � � 0.82 1.08 �0:37 �0:32 � � � � � �
NRQM 1 5=3 � � � 1 5=3 � � � 4

3
4
3 � 1

3 � 1
3 � � � � � �
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Table I shows the same tendency, namely, �u > �u and
�d >�d.

Table II lists the ratio of the tensor charges j�d=�uj for
the proton, compared to different approaches. Note that
this ratio is independent of any renormalization scale [54].
For comparison, we first consider the results of the SU(2)
�QSM [30] as well as those of the same model by
Ref. [52]. We also compare the present results with those
of the SU(3) infinite-momentum frame �QSM [34] and of
the following SU(6)-symmetric model: the MIT-bag model
[17], the harmonic oscillator and hypercentral light-cone
quark models of [18,19]. Furthermore, Ref. [53] followed
the approach of Ref. [19] by using a proton wave function
derived in a quark model [55]. The results of the constitu-
ent quark model (CQM) [18,19,53] correspond to the three
valence quark contribution without the Dirac sea in the
framework of the light-cone quantization. The approxima-
tions used in the present work and in the SU(3) infinite-
momentum framework �QSM of Ref. [34] are quite oppo-
site each other. In Ref. [34] the rotation of the �QSM
soliton can be taken exactly while the Dirac-sea contribu-
tion is truncated. In the present formalism the whole Dirac-
sea contribution is included while the rotation of the soliton
is taken perturbatively. In the case of the SU(6)-symmetric
models [17–19,53], the SU(6)-symmetric ansatz induces a
ratio j�d=�uj ¼ 1=4. As for the experimental value of
j�d=�uj we take the results of Ref. [16], where �u ¼
0:54þ0:09

�0:22 and �d ¼ �0:23þ0:09
�0:16 at �2 ¼ 0:8GeV2 were

obtained. Compared to that value, all theoretical results
look underestimated, however, still within uncertainty.

From the results of the SU(2) and SU(3) �QSM listed in
Table II, we find that the SU(2) result from Ref. [30] seems

deviated from that of Ref. [52] and also from that of the
present work. The difference of the present work to
Ref. [30] is mainly due to the fact that the g0T differ by a
value of 0.06, i.e. 8%. This difference could be explained
by the fact that the soliton profile and discretization pa-
rameters used in Ref. [30] are different from the present
work. Taking this into account, a deviation of 8% is an
acceptable one. In comparison to the work in Ref. [52] the
ratio �d=�u is comparable to the present one since both the
�d and �u are approximately by the same factor smaller as
compared to the results of the present work.
In Ref. [19], the following relation was presented:

2�u ¼ �uþ 4

3
; 2�d ¼ �d� 1

3
; (53)

which is compatible with the Soffer inequality [56]. It is
worthwhile to note that this relation is numerically ap-
proximately fulfilled by the results of the present work.
In the following, we will compare our results to the

lattice calculation of Ref. [21]. The lattice results for the
tensor form factors were derived at a renormalization scale
of�2 ¼ 4 GeV2 and are linearly extrapolated to the physi-
cal pion mass as well as to the continuum. Disconnected
quark-loop diagrams were not considered. In the �QSM,
the renormalization scale is given by the cutoff mass of the
regularization, which is approximately �2 � 0:36 GeV2.
This value is related implicitly to the size of the QCD
instantons �� � 0:35 fm [24,25]. We use Eq. (15) in order
to evolve the lattice and SIDIS results [16] from 4 GeV2

and 0:80 GeV2, respectively, to the renormalization scale
of the �QSM 0:36 GeV2. We compare the present results
with those of the lattice calculations as follows:

SIDIS ½16� ð0:80GeV2Þ: �u ¼ 0:54þ0:09
�0:22; �d ¼ �0:231þ0:09

�0:16;

SIDIS ½16� ð0:36 GeV2Þ: �u ¼ 0:60þ0:10
�0:24; �d ¼ �0:26þ0:1

�0:18;

Lattice ½21� ð4:00 GeV2Þ: �u ¼ 0:86� 0:13; �d ¼ �0:21� 0:005;

Lattice ½21� ð0:36 GeV2Þ: �u ¼ 1:05� 0:16; �d ¼ �0:26� 0:01;

�QSM ð0:36 GeV2Þ: �u ¼ 1:08; �d ¼ �0:32;

from which we find that the results are generally in good
agreement with those of the lattice calculation [21].
However, both approaches disagree with the SIDIS results
[16] for �u by nearly a factor of 2.

We now turn to the tensor form factors H
�
T ðQ2Þ calcu-

lated up to the momentum transfer of Q2 � 1 GeV2. The

tensor form factorsH
�
T ðQ2Þ expressed in Eq. (35) consist of

two densities. While only the first one determines the
tensor charges at Q2 ¼ 0, both densities are responsible
for H�

T ðQ2Þ. In the upper left panel of Fig. 1, the up and
down tensor form factors are shown together with the
corresponding axial-vector form factors. Interestingly, we

TABLE II. The scale independent quantity j�d=�uj. References [30,34,52] correspond, respectively, to the SU(2) �QSM, the same
model by Wakamatsu, and the SU(3) infinite-momentum frame (IMF) �QSM. The values of the works [17–19,53] were obtained in the
SU(6) symmetric CQM. The SU(6) symmetric ansatz induces a ratio of 1=4. Reference [16] represents a global analysis of SIDIS
experimental data.

Proton This work SU(2) [30] Ref. [52] IMF [34] CQM [17–19,53] Lattice [21] SIDIS [16] NR

j�d=�uj 0.30 0.36 0.28 0.27 0.25 0.25 0:42þ0:0003
�0:20 0.25
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find that the general behaviors of these form factors are
very similar. In particular, �d and �d look similar to each
other. In the upper right panel, the strange tensor and axial-
vector form factors are drawn. In contrast to the nonstrange
form factors, the strange tensor form factor seems to be
very different from the axial-vector one. The Q2 depen-
dence of the strange tensor form factor is somewhat pecu-
liar. It behaves like a neutral form factor. Moreover, the
strange tensor charge turns out to be very small, compared
to the axial-vector one. It implies that the tensor form
factors are ‘‘less relativistic.’’

In the lattice work [21] the tensor form factors �uðQ2Þ
and �dðQ2Þ were calculated up to a momentum transfer of
Q2 ¼ 3:5 GeV2. In the lower panel of Fig. 1, we compare
our scaled form factors �qðQ2Þ=�qð0Þ with those of the
lattice calculation [21]. In fact, these scaled form factors
are independent of the renormalization scale. While the
lattice result for �u decreases almost linearly as Q2 in-
creases, that of the present work falls off more rapidly.
Thus, the value of �u at Q2 ¼ 1 GeV2 is almost 2.5 times
smaller than that of the lattice calculation. Note, however,
that this is an expected result. A similar behavior was also
obtained for the�ð1232Þ electric quadrupole form factor as

shown in Ref. [57]. These differences of the Q2 depen-
dence can be understood from the fact that lattice calcu-
lations tend to yield rather flat form factors because of the
heavy pion mass employed. This has been shown explicitly
for the nucleon isovector form factor Fp�n

1 ðQ2Þ on the

lattice [58].
In general, the form factors from the �QSM are well

reproduced by the dipole formula

HTðQ2Þ ¼ HTð0Þ
ð1þQ2=M2

dÞ2
(54)

with the dipole mass Md. A direct fit leads to the dipole
masses corresponding to the tensor form factors for � ¼ 0,
3, 8 and the up and down form factors �uðQ2Þ and �dðQ2Þ

FIG. 1 (color online). Flavor tensor form factors �uðQ2Þ, �dðQ2Þ, and �sðQ2Þ for the proton. In the upper panel, we compare the
tensor form factors with the axial-vector ones. The solid (red) curves show the tensor form factors, whereas the dashed (blue) ones
represent the axial-vector form factors. In the lower panel, we compare the present results of the renormalization-independent scaled
tensor form factors �uðQ2Þ=�uð0Þ, �dðQ2Þ=�dð0Þ with those of the lattice QCD [21]. The solid (red) curves designate the �QSM form
factors of this work while the dashed (blue) ones correspond to the factors from the lattice QCD calculation.

TABLE III. Dipole masses Md for the tensor form factors
H

�
T ðQ2Þ, �uðQ2Þ, and �dðQ2Þ. Given are the values of the tensor

form factors for each flavor at Q2 ¼ 0 and the dipole masses in
units of GeV, which reproduce the present results.

Proton H0
TðQ2Þ H3

TðQ2Þ H8
TðQ2Þ �uðQ2Þ �dðQ2Þ

Q2 ¼ 0 0.76 1.40 0.45 1.08 �0:32
Md 0.851 1.03 0.984 0.980 1.24
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as listed in Table III. Note, however, that the strange tensor
form factors cannot be fitted in terms of the dipole type.

For completeness, we list in Table IV the tensor charges
�q for the baryon octet. Having scrutinized the results in
Table IV, we find the following relations:

�up ¼ �dn; �un ¼ �dp; �u� ¼ �d�;

�u�þ ¼ �d�� ; �u�0 ¼ �d�0 ; �u�� ¼ �d�þ ;

�u�0 ¼ �d�� ; �u�� ¼ �d�0 ; �sp ¼ �sn;

�s�� ¼ �s�0 ; �s�0 ¼ �s�� ; (55)

which are the consequence of the assumed isospin sym-
metry in the present work. Generally, in SUð3Þ flavor
symmetry we have the following relations:

�up ¼ �dn ¼ �u�þ ¼ �d�� ¼ �s�0 ¼ �s�� ;

�un ¼ �dp ¼ �u�0 ¼ �d�� ¼ �s�� ¼ �s�0 :
(56)

By comparing the above relations with the numbers given
in Table IV we can see the overall smallness of SU(3)
symmetry breaking contributions for the tensor charges of
all octet baryons. Similar relations to Eqs. (55) and (56)
can be also found for the axial-vector charges and magnetic
moments of the octet baryon [59,60].

VIII. SUMMARYAND CONCLUSION

In the present work we investigated the tensor form
factors HTðQ2Þ of the SU(3) baryons, which are deeply
related to the chiral-odd generalized parton distribution
HTðx; �; tÞ. We used the SU(3) self-consistent chiral
quark-soliton model (�QSM) with symmetry-conserving
quantization in order to calculate the tensor charges and
form factors up to the momentum transfer Q2 � 1 GeV2,
taking into account linear rotational 1=Nc corrections and
linear ms corrections. All parameters of the model includ-
ing the constituent quark mass have already been fixed in
reproducing the meson and nucleon properties. No addi-
tional parameter has been fitted in the present calculation.

We first computed the flavor singlet and nonsinglet
tensor charges of the nucleon: g0T ¼ 0:76, g3T ¼ 1:40, and
g8T ¼ 0:45. As for the flavor-decomposed tensor charges
�q ¼ Hq

Tð0Þ, we obtained the following results: �u ¼
1:08, �d ¼ �0:32, and �s ¼ �0:01. We found that for
these tensor charges the Dirac-sea contribution as well as

the effects of flavor SU(3) symmetry breaking are negli-
gibly small. We compared the present results of the tensor

form factors Hu;d
T ðQ2Þ with those of the lattice QCD [21].

For the up and down tensor charges, i.e.Hu;d
T ð0Þ, the results

are in good agreement with the lattice data. However, the
present results of the tensor form factors fall off faster than
those from the lattice QCD, asQ2 increases. The reason for
this lies in the fact that the heavier pion mass utilized in the
lattice calculation causes generally flat form factors. We
also presented the tensor charges of the baryon octet. The
results indicated that the effects of SU(3) symmetry break-
ing turn out to be negligibly small.
The second and third tensor form factors, i.e. ETðQ2Þ

and ~HTðQ2Þ, will be discussed elsewhere. The correspond-
ing investigation is underway.
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APPENDIX A: DENSITIES

In this Appendix, we provide the densities for the tensor
form factors given in Eq. (36) which comprise
AT0ðrÞ; . . . ;J T0ðrÞ and AT2ðrÞ; . . . ;J T2ðrÞ. The corre-
sponding vector operators O1 in the spherical tensor op-
erator notation of Ref. [61] for the individual densities are
given as follows:

for AT0ðrÞ; . . . ;J T0ðrÞ ! O1 ¼ �1;

for AT2ðrÞ; . . . ;J T2ðrÞ ! O1 ¼
ffiffiffiffiffiffiffi
4�

p fY2 	 �1g1:

In the following, the sums run freely over all single-quark
levels including valence ones jvi except that the sum over
n0 is constrained to negative-energy levels:

TABLE IV. Tensor charges for �qð0Þ for the baryon octet.

pðuudÞ nðdduÞ �ðudsÞ �þðuusÞ �0ðudsÞ ��ðddsÞ �0ðussÞ ��ðdssÞ
�u 1.08 �0:32 �0:03 1.08 0.53 �0:02 �0:32 �0:02
�d �0:32 1.08 �0:03 �0:02 0.53 1.08 �0:02 �0:32
�s �0:01 �0:01 0.79 �0:29 �0:29 �0:29 1.06 1.06
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1

Nc

ATðrÞ ¼ hvjjri	4fO1 	 �1g0hrjjvi� 1

2

X
n

signð"nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gn þ 1

p hnjjri	4fO1 	 �1g0hrjjni

1

Nc

BTðrÞ ¼
X

"n�"v

1

"v �"n
ð�ÞGnhvjjri	4O1hrjjnihnjj�1jjvi� 1

2

X
n;m

R3ð"n;"mÞð�ÞGm�Gnhnjj�1jjmihmjjri	4O1hrjjni

1

Nc

T TðrÞ ¼
X
"
n0

1

"v � "n0
hvjjri	4fO1 	 �1g0hrjjn0ihn0 j vi�

X
n;m

R3ð"n;"m0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gn þ 1

p hm0jjri	4fO1 	 �1g0hrjjnihn jm0i

1

Nc

DTðrÞ ¼
X
"n

signð"nÞ
"v �"n

ð�ÞGnhvjj�1jjnihnjjri	4fO1 	 �1g1hrjjvi

þ 1

2

X
n;m

R6ð"n;"mÞð�ÞGm�Gnhnjj�1jjmihmjjri	4fO1 	 �1g1hrjjni

1

Nc

H TðrÞ ¼
X

"n�"v

1

"v �"n
hvjjri	4fO1 	 �1g0hrjnihnj	0jvi� 1

2

X
n;m

R5ð"n;"mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm þ 1

p hmjjri	4fO1 	 �1g0hrjjnihnj	0jmi

1

Nc

ITðrÞ ¼
X

"n�"v

1

"v �"n
ð�ÞGnhvjjri	4O1hrjjnihnj	0�1jjvi� 1

2

X
n;m

R5ð"n;"mÞð�ÞGm�Gnhnjj	0�1jjmihmjjri	4O1hrjjni

1

Nc

J TðrÞ ¼
X
"
n0

1

"v � "n0
hvjjri	4fO1 	 �1g0hrjjn0ihn0j	0jvi

�X
n;m

R5ð"n;"m0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm þ 1

p hm0jjri	4fO1 	 �1g0hrjjnihnj	0jm0i: (A1)

where we take the notation for the reduced matrix elements
of the r-dependent states as schematically given below:

hnjjriO1hrjjmi ¼ AðrÞhinjj BðrÞhjnjj
� 	

O1

CðrÞjjimi
DðrÞjjjmi

 !

¼ AðrÞCðrÞhinjjO1jjimi
þ BðrÞDðrÞhjnjjO1jjjmi:

The functions AðrÞ, BðrÞ, CðrÞ, DðrÞ and grand-spin states
in, im, jn, jm can be found in Ref. [62].

The regularization functions Rið"n; "mÞ appearing in
Eq. (A1) are given by

R3ð"n; "mÞ ¼ 1

2
ffiffiffiffi
�

p
Z 1

1=�2

duffiffiffi
u

p
�
1

u

e�"2nu � e�"2mu

"2m � "2n

� "ne
�u"2n þ "me

�u"2m

"m þ "n

�
;

R5ð"n; "mÞ ¼ 1

2

sign"n � sign"m
"n � "m

;

R6ð"n; "mÞ ¼ 1

2

1� signð"nÞsignð"mÞ
"n � "m

:

APPENDIX B: BARYON MATRIX ELEMENTS AND
INTEGRATED DENSITIES

All baryon matrix elements appearing in this work are
calculated by using the following relation:

hB0ðR0ÞjDðnÞ
��jBðRÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðR0Þ
dimðRÞ

s
ð�1Þð1=2ÞY0

sþS0
3

�ð�1Þð1=2ÞYsþS3 ; (B1)

X
	

R0 n R	

Q0
y � Qy

� �
R0 n R	
�Qs0 � �Qs

� �
; (B2)

where BðRÞ represents a baryon from the SU(3) represen-
tation R with the flavor quantum numbers Qy ¼ YII3 and

spin quantum numbers Qs ¼ YsSS3 ( �Qs ¼ �YsS� S3).
The quantities in brackets represent the SU(3) Clebsch-
Gordan coefficients. In the case of SU(3) symmetry, i.e.
without ms corrections, the nucleon matrix elements as

TABLE V. SU(3) Nucleon matrix elements.

hDð8Þ
33 iN hDð8Þ

83 iN hDð8Þ
38 iN hDð8Þ

88 iN hdab3Dð8Þ
3a JbiN hdab3Dð8Þ

8a JbiN
�I3

7
15 �

ffiffi
3

p
30 I3

ffiffi
3

p
15

3
10 I3

7
30

ffiffi
3

p
60

TABLE VI. Integrated densities for tensor and axial-vector
charges with the constituent quark mass M ¼ 420 MeV and
numerical parameters fixed as described in the text. We use
here the following notations: A ¼ R

drr2AðrÞ, B ¼ R
drr2BðrÞ,

C ¼ R
drr2CðrÞ, D ¼ R

drr2DðrÞ, H ¼ R
drr2H ðrÞ, I ¼R

drr2IðrÞ, and J ¼ R
drr2J ðrÞ.

A B C D H I J

Tensor 5.22 4.75 �2:46 5.84 �0:02 2.43 �1:66
Axial-Vector 4.20 2.86 �2:10 5.46 0.17 1.20 �1:33
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used in Eqs. (46)–(49) are given in Table V. We also list in
Table VI the values for the densities AT0; . . . ;J T0 and

A0; . . . ;J 0 integrated over r with the weight r2 as ob-
tained in the �QSM.
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