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In this paper, a study of two-photon and two-gluon decays in the context of p-wave heavy quarkonia is

presented. Within the covariant light-front framework, the annihilation rates of scalar and tensor

quarkonium states are derived. In the absence of free parameters in this case, the results for the

charmonium decay widths are consistent with the experimental data. However, in comparison to other

theoretical calculations, there are large discrepancies in our results regarding bottomonia.

DOI: 10.1103/PhysRevD.82.034021 PACS numbers: 14.40.Pq, 12.39.Ki

I. INTRODUCTION

Heavy quarkonium provides for a unique laboratory to
study quantum chromodynamics (QCD) regarding the
bound states of a heavy quark-antiquark system. Notably,
the two-photon and two-gluon annihilation rates of p-wave
heavy quarkonium are helpful for better understanding the
details of quark-antiquark interaction and can function as
stringent tests for a potential model. Regarding experimen-
tation, the two-photon decay width of �cJ has been mea-
sured by many laboratories [1,2] and a new CLEO
measurement was reported recently [2]. Regarding theory,
relevant decay rates were first obtained through nonrela-
tivistic approximation [3,4]; the relativistic corrections
were included within the Bethe-Salpeter equation [5–8],
potential model [9], relativistic quark model [10–12], non-
relativistic QCD factorization framework [13], two-body
Dirac equations of constraint dynamics [14], effective
Lagrangian [15], and bound state perturbation theory
[16]. The lattice calculation [17] and rigorous QCD pre-
dictions [18,19] were also applied. In addition, the s-wave
and p-wave electromagnetic and light hadronic quark-
onium decays in the heavy-quark velocity expansion
were computed in the nonrelativistic QCD approach [20–
22].

This paper is aimed at the study of the two-photon and
two-gluon decay widths of p-wave heavy quarkonium
states including the scalar ð�c0; �b0; �

0
b0Þ and tensor

ð�c2; �b2; �
0
b2Þ mesons. It is known that heavy quarkonium

is relevant to nonrelativistic treatments [3,4,23]. Although
nonrelativistic QCD is a powerful theoretical tool used to
separate high-energy modes from low-energy contribu-
tions, in most cases those attempting the calculation of
low-energy hadronic matrix elements have relied on
model-dependent nonperturbative methods. The light-front
quark model (LFQM) [24,25] is a relativistic quark model
in which a consistent and fully relativistic treatment of
quark spins and the center-of-mass motion can be carried

out. This model has many advantages. For example, the
light-front wave function is manifestly Lorentz invariant as
it is expressed in terms of the momentum fraction variables
in analog to the parton distributions in the infinite momen-
tum frame. Moreover, hadron spin can also be correctly
constructed using the so-called Melosh rotation [26]. This
model is very well suited for studying hadronic form
factors. Specifically, as the recoil momentum increases
(corresponding to a decreasing q2), we have to start seri-
ously considering relativistic effects. In particular, at the
maximum recoil point q2 ¼ 0where the final-state particle
could be highly relativistic, there is no reason to expect that
the nonrelativistic quark model is still applicable.
The LFQM has been employed to obtain some physical

quantities [27–30]. However, one often calculates a par-
ticular component (the plus component) of the associated
current matrix element in the LFQM formulation. Because
of the lack of relativistic covariance, the results may show
some inconsistencies. The usual strategy of taking only the
plus component of the current matrix elements will ignore
the zero-mode contributions and render the matrix element
noncovariant. As a consequence, it is desirable to construct
a covariant light-front model that can provide a systematic
way of exploring zero-mode effects. Such a covariant
model has been constructed in [31] for heavy mesons
within the framework of heavy-quark effective theory.
Without appealing to the heavy-quark limit, a covariant
approach of the light-front model has been put forward for
the usual s-wave mesons [32], extended to the p-wave
mesons [33], and employed in the context of the s-wave
heavy quarkonium [34]. In this study, the p-wave heavy
quarkonium is explored through this covariant model. The
details and formalism are displayed in the next section.
The remainder of this paper is organized as follows. In

Sec. II, the formalism of a covariant light-front model is
shown in cases of scalar and tensor quarkonia and the
annihilation rates of these p-wave heavy quarkonium are
derived. In Sec. III, after fixing the parameters which
appear in the trial wave function, the numerical results
and discussions are presented. Finally, conclusions are
given in Sec. IV.
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II. FORMALISMOFACOVARIANT LIGHT-FRONT
MODEL

A. Formalism

In the conventional light-front framework, the constitu-
ent quarks of the meson are required to be on their mass
shells (see Appendix A of Ref. [33] for an introduction).
Jaus [32] proposed a covariant light-front approach that
permits a systematic way of dealing with zero-mode con-
tributions. Physical quantities can be calculated in terms of
Feynman momentum loop integrals which are manifestly
covariant; this means that the constituent quarks of the
bound state are off shell. In principle, this covariant ap-
proach will be useful if the vertex functions can be deter-
mined by solving the QCD bound state equation. In
practice, we have to be content with phenomenological
vertex functions, such as those employed in the conven-
tional light-front model. Therefore, by using the light-front
decomposition of the Feynman loop momentum, say p�,

and integrating out the minus component of the loop
momentum p�, one moves from the covariant calculation
to the light-front one. Moreover, the spectator quark is
forced to be on its mass shell after p� integration.
Consequently, the covariant vertex functions can be re-
placed by the phenomenological light-front ones.

As stated in passing, in going from the manifestly co-
variant Feynman integral to the light-front integral, the
latter is no longer covariant as it can receive additional
spurious contributions proportional to the lightlike four
vector !� ¼ ð!�; !þ; !?Þ ¼ ð2; 0; 0?Þ. The undesired
spurious contributions can be eliminated by the inclusion
of the zero-mode contribution which amounts to perform-
ing the p� integration. The advantage of this covariant
light-front framework is that it allows a systematic way of
handling the zero-mode contributions and permits the user
to obtain covariant matrix elements.

To begin with, we consider the decay amplitudes given
by one-loop diagrams, as shown in Fig. 1 for the two-
photon decay of p-wave quarkonium states. The incoming
meson has the momentum P ¼ p1 þ p2, where p1 and p2

are the momenta of the off-shell quark and antiquark,
respectively, with masses m. These momenta can be ex-
pressed in terms of the internal variables ðxi; p?Þ,

pþ
1;2 ¼ x1;2P

þ; p1;2? ¼ x1;2P? � p?; (2.1)

with x1 þ x2 ¼ 1. Note that we use P ¼ ðPþ; P�; P?Þ,
where P� ¼ P0 � P3, so that P2 ¼ PþP� � P2

?. In the

covariant light-front approach, total four momentum is
conserved at each vertex where quarks and antiquarks are
off shell. However, it is useful to define some internal
quantities analogous to those defined for on-shell quarks:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

? þ p2
z

q
; pz ¼ ðx2 � x1ÞM0

2
;

M2
0 ¼ ð2eÞ2 ¼ p2

? þm2

x1x2
;

(2.2)

wherem is the mass of heavy quark c or b. Here,M2
0 can be

interpreted as the kinetic invariant mass squared of the
incoming q �q system and ei the energy of the quark i.
We need Feynman rules for the meson-quark-antiquark

vertices to calculate the amplitudes shown in Fig. 1. These
Feynman rules for vertices of scalar (S) and tensor (T)
mesons are

i�M ¼
��iHS; for 3P0;
i
2HT½�� � 1

WV
ðp1 � p2Þ��ðp1 � p2Þ�; for 3P2:

(2.3)

It has been shown in Ref. [35] that one can pass to the light-
front approach by integrating out the p� component of the
internal momentum in covariant Feynman momentum loop
integrals. The specific form of the covariant vertex func-
tions for on-shell quarks can be determined through a
comparison with the conventional vertex functions as
shown in Appendix A of Ref. [33]. They are obtained as

HM ! HMðp̂2
1; p̂

2
2Þ � hM; WV ! WVðp̂2

1; p̂
2
2Þ � wV;

(2.4)

where p̂1 ¼ P� p̂2 and p̂2
2 ¼ m2. The form of the func-

tion hM contains two parts: one is the momentum distribu-
tion amplitude �ðxi; p?Þ which is the central ingredient in
light-front QCD, while the other is a spin wave function
which constructs a state of definite spin ðS; SzÞ out of light-
front helicity eigenstates ð�1; �2Þ. The spin wave function
is constructed by using the Melosh transformation [26] and
its spin structure is shown in Eq. (2.3). The explicit forms
of hM and wV are given by

FIG. 1. Feynman diagrams for the M ! ��� process where P
in the parentheses denotes the momentum of the meson. (b) is
related to (a) by the exchange of two photons.
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hS ¼ ðM2 �M2
0Þ

ffiffiffiffiffiffiffiffiffi
x1x2
Nc

s
1ffiffiffi
2

p
M0

M0

2
ffiffiffi
3

p �;

hT ¼ ðM2 �M2
0Þ

ffiffiffiffiffiffiffiffiffi
x1x2
Nc

s
1ffiffiffi
2

p
M0

�; wV ¼ M0 þ 2m:

(2.5)

The momentum distribution amplitude �ðxi; p?Þ is the
generalization of the distribution amplitude �ðxiÞ of the
pQCDmethod and can be chosen to be normalizable, i.e., it
satisfies

Z dxd2p?
2ð2�Þ3 j�ðx; p?Þj2 ¼ 1: (2.6)

In principle,�ðx; p?Þ is obtained by solving the light-front
QCD bound state equation HLFj�i ¼ Mj�i which is the
familiar Schrödinger equation in ordinary quantum me-
chanics and HLF is the light-front Hamiltonian. However,
at the present time, methods concerning how one can solve
bound states equations are still unknown. We are satisfied
with utilizing some phenomenological momentum distri-
bution amplitudes which have been constructed phenom-
enologically in describing hadrons. One widely used form
is the Gaussian type which we will employ in the applica-
tion of the covariant light-front approach.

B. Two-photon decay widths of p-wave heavy
quarkonium

Quarkonia are eigenstates of the charge conjugation
operator C with eigenvalues C ¼ ð�1ÞLþS, and the charge
conservation requires charge conjugation C ¼ þ1 state
coupling to two real photons. Thus, only 3P0 and

3P2 levels

of the p-wave quarkonium states can transform into two
real photons. In the process, M ! ��, the final two pho-
tons are both on shell. For the purpose of illustration, it is
useful to consider a more general process: M ! ��� with
one photon off shell. We introduce some transition form
factors fiðq2Þ arising from theM��� vertex. TheM ! ��
process is related to the form factors at q2 ¼ 0, i.e., fið0Þ. It
is worth mentioning that, however, the state M in the
process M ! ��� is not only the 3P0 and

3P2 levels.

The matrix elements of the decay S ! ��� and T !
��� have the following structures [10]:

A S
� � h�ðk; �Þj �q��qjSðPÞi
¼ f0ðq2Þ½��ðP � kÞ � k�ðP � �Þ�; (2.7)

AT
� � h�ðk; �Þj �q��qjTðP; "Þi
¼ f1ðq2Þ½��ðq � " � kÞ � k�ðq � " � �Þ þ "���

�ðq � kÞ
� "��k

�ð� � qÞ� þ f2ðq2Þ½��ðq � kÞ � k�ð� � qÞ�
� q � " � k

q � k ; (2.8)

where � is the polarization vector of the on-shell photon,
q ¼ P� k is the momentum transfer, and " is the polar-
ization of the tensor meson which satisfies the following
relations:

P�"��ð�Þ ¼ P�"��ð�Þ ¼ 0; "��ð�Þ ¼ "��ð�Þ;
"��ð�Þ ¼ 0; "��ð�Þ"���ð�0Þ ¼ 	��0 ;X

�

"��ð�Þ"�
�ð�Þ ¼
1

2
M�
M�� þ 1

2
M��M�


� 1

3
M��M
�; (2.9)

with � ¼ �2, �1, 0 representing the tensor meson helic-
ities and M�� ¼ g�� � P�P�=M

2. There is no explicit

representation of the meson polarization tensor "��ð�Þ.
The transition amplitude for the processes of S ! ���
and T ! ��� can be derived from the common Feynman
rules and the vertices for the meson-quark-antiquark cou-
pling given in Eq. (2.3). In the covariant light-front ap-
proach, the meson is on shell while the constituent quarks
are off shell. To the lowest order approximation, SðTÞ !
��� is a one-loop diagram and is depicted in Fig. 1. The
amplitude is given as a momentum integral

AS
� ¼ ie2qe

2Nc

Z d4p1

ð2�Þ4
�

HS

N1N2Na

�Tr½ð�p6 2 þmÞ6�ðp6 a þmÞ��ðp6 1 þmÞ�
þ HS

N1N2Nb

Tr½ð�p6 2 þmÞ��ðp6 b þmÞ6�ðp6 1 þmÞ�
�
;

(2.10)

AT
� ¼ ie2qe

2Nc

Z d4p1

ð2�Þ4
�

HT

N1N2Na

�Tr½tð�p6 2 þmÞ6�ðp6 a þmÞ��ðp6 1 þmÞ�
þ HT

N1N2Nb

Tr½tð�p6 2 þmÞ��ðp6 b þmÞ6�ðp6 1 þmÞ�
�
;

(2.11)

where

pa ¼ p1 � q; pb ¼ q� p2;

N1 ¼ p2
1 �m2 þ i�; N2 ¼ p2

2 �m2 þ i�;

Na ¼ p2
a �m2 þ i�; Nb ¼ p2

b �m2 þ i�;

t ¼ "
�

�
�
 � 1

WV

ðp1 � p2Þ

� ðp1 � p2Þ�

2
;

(2.12)

and eq is the electric charge of the quark: eq ¼ 2=3 for

the c quark and eq ¼ �1=3 for the b quark. The first and

second terms in Eq. (2.10) come from diagrams Figs. 1(a)
and 1(b), respectively. In the calculation, it is convenient to
choose the purely transverse frame qþ ¼ 0, i.e., q2 ¼
�q2? � 0. The advantage of this choice is that there is no
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so-called Z-diagram contributions. The sacrifice associated
with this approach is that only the form factor at spacelike
regions can be calculated directly. The values at the time-
like momentum transfer q2 > 0 regions are obtained
through analytic continuation. In this study, the continu-
ation is not necessary because we only need the form
factors at q2 ¼ 0 for the SðTÞ ! �� process.

First, we discuss the calculation of Fig. 1(a). The factors
N1, N2, and Na produce three singularities in the p�

1

complex plane: one lies in the upper plane and the other
two are in the lower plane. By closing the contour in the
upper p�

1 complex plane, the momentum integral can be
easily calculated since there is only one singularity in the
plane. This corresponds to putting the antiquark on the
mass shell. Given this restriction, the momentum p2 ! p̂2

with p̂2
2 ¼ m2, and p̂1 ¼ P� p̂2. The on-shell restriction

and the requirement of covariance lead to the following
replacements:

N1 ! N̂1 ¼ x1ðM2 �M2
0Þ;

N2 ! N̂2 ¼ N̂1 þ ð1� 2x1ÞM2

¼ x2M
2 � x1M

2
0;

Na ! N̂a ¼ x2q
2 � x1M

2
0 þ 2p? � q?;Z d4p1

ð2�4Þ
HS;T

N1N2Na

! �i�
Z dx2d

2p?
ð2�4Þ

hS;T

x2N̂1N̂a

: (2.13)

For Fig. 1(b), the contour is closed in the lower p�
1 com-

plex plane. It corresponds to putting the quark on the mass
shell and the momentum p1 ! p̂1 with p̂2

1 ¼ m2. For this
scenario, we need to do the following replacements:

N1 ! N̂1 ¼ x1M
2 � x2M

2
0x1ðM2 �M2

0Þ;
N2 ! N̂2 ¼ x2ðM2 �M2

0Þ;
Nb ! N̂a ¼ x1q

2 � x2M
2
0 � 2p? � q?;Z d4p1

ð2�4Þ
HS;T

N1N2Nb

! �i�
Z dx2d

2p?
ð2�4Þ

hS;T

x1N̂2N̂b

: (2.14)

After the above treatments, the transition amplitudes of
S ! ��� and T ! ��� for Fig. 1(a), for example, are
obtained as

ASðaÞ
� ¼ Nce

2
qe

2
Z dx2d

2p?
4�3

hS
x1x2ðM2 �M2

0Þ
m

�x2q
2 þ x1M

2
0 � 2p? � q?

M0

2
ffiffiffi
3

p

� f��ðm2 � P � q� p2
1 þ 2p1 � qÞ þ 2p1�ð2� � p1 � � � P� � � qÞ þ q�ð� � P� 2� � p1Þ þ P�� � qg; (2.15)

ATðaÞ
� ¼ Nce

2
qe

2
Z dx2d

2p?
4�3

hT
x1x2ðM2 �M2

0Þ
1

�x2q
2 þ x1M

2
0 � 2p? � q?

�
�
��

�
ðm2 þP � p1 � p2

1Þp1 � " � qþ ðm2 �P � qþ 2p1 � q�p2
1Þ
�
1� 2m

wV

�
p1 � " � p1

�

þP�

�
ðm2 þ p1 � q� p2

1Þ� � " � p1 � � �p1p1 � " � qþ � � q
�
1� 2m

wV

�
p1 � " �p1

�

þ q�

�
ðp2

1 �m2 �P � p1Þ� � " � p1 þ ð� �P� 2� �p1Þ
�
1� 2m

wV

�
p1 � " �p1

�

þ p1�

�
ðm2 �P � qþ 2P �p1 � p2

1Þ� � " �p1 þ � �Pp1 � " � qþ ð4� �p1 � 2� � q� 2� �PÞ
�
1� 2m

wV

�
p1 � " �p1

�

þ "��p
�
1

�
m2ð� �p1 � � �P� � � qÞ þ ð� � p1P � q� � �Pp1 � q� � � qP �p1Þ þp2

1ð� � qþ � �P� � �p1Þ
��
:

(2.16)

The integration of p1�, p1�p1�, p1�p1�p1
, and p1�p1�p1
p1� in Eqs. (2.15) and (2.16) can be expressed in terms of three
external vectors: ~P, q, and !, as in the Appendix. The transition amplitude of SðTÞ ! ��� for Fig. 1(b) can be obtained
through a similar process. If we choose the frame where the meson is at rest and the photons travel in the �z directions,
then the two-photon decay amplitude of S ! �� is obtained as
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MSðS ! ��Þ ¼ ðASðaÞ
� þASðbÞ

� Þjq2¼0 � �0

¼ e2qe
2

ffiffiffiffiffiffi
Nc

2

s
� � �0

Z dx2d
2p?

8�3

m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

?
q �

2x1M
2
0 �M2 � 4p2

?
2

ffiffiffi
3

p
x1M0

þ 2x2M
2
0 �M2 � 4p2

?
2

ffiffiffi
3

p
x2M0

�
; (2.17)

where �0 is the polarization of another photon. The decay
rate of the process S ! �� is [36]

�ðS ! ��Þ ¼ s

8�M2
S

j ~kjX
pol

jMSj2; (2.18)

where s ¼ 1=2 for two identical photons and the photon
momentum j ~kj ¼ M=2. Regarding the case of T ! ��, in
the practical calculations below, it is convenient to repre-
sent "�� in the following form [37]:

"��ð�Þ ¼
ffiffiffi
6

p
12

ð2� j�jÞð1� j�jÞ
�
3n

�
3 n

�
3 þ

�
g���

P�P�

M2

��

þ 1

4
ð1� j�jÞ½�ðn�1 n�1 � n�2 n

�
2Þ

þ ij�jðn�1 n�2 þn
�
2 n

�
1Þ�þ

1

2
ð2�j�jÞ

� ½�ðn�1 n�3 þn
�
3 n

�
1Þþ ij�jðn�2 n�3 þn

�
2 n

�
1Þ�;
(2.19)

where n�i ði ¼ 1; 2; 3Þ is the basis vector satisfying
n�i n

�
j g�� ¼ gij. In the center-of-mass frame, we may

have P� ¼ ðE; 0; 0; jPjÞ and choose the basis with collinear
n�3 and P� vectors as the simplest one

n
�
1 ¼ ð0; 1; 0; 0Þ; n

�
2 ¼ ð0; 0; 1; 0Þ;

n
�
3 ¼ 1

M
ðjPj; 0; 0; EÞ:

(2.20)

For the frame in which the meson is at rest and the photons
travel in the �z directions, the decay amplitudes of T !
�� are obtained for � ¼ 0 and �2

MT
�¼0ðT ! ��Þ ¼ ðATðaÞ

� þATðbÞ
� Þjq2¼0;�¼0 � �0

¼ e2qe
2

ffiffiffiffiffiffi
Nc

2

s ffiffiffi
2

3

s
� � �0

Z dx2d
2p?

16�3

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

?
q �

t0a
x1M

2
0

þ t0b
x2M

2
0

�
; (2.21)

MT
�¼�2ðT ! ��Þ ¼ ðATðaÞ

� þATðbÞ
� Þjq2¼0;�¼�2 � �0

¼ e2qe
2

ffiffiffiffiffiffi
Nc

2

s Z dx2d
2p?

8�3

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

?
q

�
�

t2a
x1M

2
0

þ t2b
x2M

2
0

�
; (2.22)

where

t0a ¼ x1ðm2 � x2M
2Þðx1M2

0 � x2M
2Þ

þ p2
?½�3m2 þ ð1� 4x1 þ 2x21ÞM2� � p4

?

þ m

wV

fx1ð2m2 �M2Þðx2M2 � x1M
2
0Þ

þ p2
?½2m2 � 4x21M

2
0 þ ð4x1x2 � 1ÞM2� � 2p4

?g;
t0b ¼ t0ajx1$x2 ; (2.23)

t�2a ¼ p2
?

�
m2 þM2

0x
2
1 þ 2

m

wV

p2
?

�
� ði�0 � n2� � n1 þ i� � n2�0 � n1 � �0 � n1� � n1
	 � � n2�0 � n2Þ;

t�2b ¼ t2ajx1$x2 : (2.24)

The derivations of Eqs. (2.21) and (2.22) use the formulasZ
d2p?½p? � q?; ðp? � q?Þ2; ðp? � q?Þ3; ðp? � q?Þ4�

¼
Z

d2p?
�
0;
p2
?q

2
?

2
; 0;

3p4
?q

4
?

8

�
: (2.25)

The amplitudes of T ! �� for � ¼ �1 vanish because the
combination of the helicities of two final photons can be
�2 or 0, but never equal to �1. The decay rate of the
process T ! �� is

�ðT ! ��Þ ¼ s

8�M2
T

j ~kj
5

X
�¼0;�1;�2

X
pol

jMTj2: (2.26)

The factor 5 in the denominator corresponds to 2J þ 1,
where J is the total angular momentum of the meson.
Finally, the two-gluon decay width of quarkonium can

be easily obtained from the two-photon decay width, with a
simple replacement in the photon decay width formula

e4q

2 ! 2

9

2
s : (2.27)

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the two-photon and two-gluon decay
widths of p-wave heavy quarkonium states are estimated.
Prior to numerical calculations, the parameters mc;b and

�c �c;b �b, which appeared in the wave function, must be first

determined. We consider the Hamiltonian of the s- and
p-wave heavy quarkonium states as

Hs ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~�2

p
þ Vconf � 4
s

3r
þ g0s1 � s2; (3.1)
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Hp ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~�2

p
þ Vconf � 4
s

3r
þ g1S � Lþ g2S12

þ g3s1 � s2; (3.2)

where Vconf ¼ brðbr2Þ is the linear [harmonic oscillator
(HO)] potential, S12 ¼ ð3s1 � r̂s2 � r̂� s1 � s2Þ is the tensor
force operator, and g0;1;2;3 are the functions of the relevant
interquark potentials (the details are shown in, for example,
[38,39]). In this way, not only is the spin-weighted average
of the s-wave states MðSJÞ � ½Mð1S0Þ þ 3Mð3S1Þ�=4 free

of the spin-spin contribution, but also the mass difference
between the spin-single ground state Mð1P1Þ and the spin-
weighted average of the p-wave triplet states Mð3PJÞ �
½Mð3P0Þ þ 3Mð3P1Þ þ 5Mð3P2Þ�=9 has a contribution

which comes from the spin-spin interaction.1 Ex-
perimentally the latter hyperfine splitting is less than
1 Mev [1] in the charmonium sector and can be ignored
here. Notably, we can use the masses MðSJÞ, Mð3PJÞ and
their variational principle for the Hamiltonian equations
(3.1) and (3.2) to determine parameters m and �. In the
process, the 1S, 1P, and 2P states harmonic wave functions

�1Sðx; p?Þ ¼ 4

�
�

�2

�
3=4

ffiffiffiffiffiffiffiffi
dpz

dx

s
exp

�
�j ~pj2
2�2

�
; (3.3)

�1P
m ðx; p?Þ ¼ 4

�
�

�2

�
3=4

ffiffiffiffiffiffiffiffi
dpz

dx

s ffiffiffiffiffiffi
2

�2

s
pm exp

�
�j ~pj2
2�2

�
; (3.4)

�2P
m ðx; p?Þ ¼ 4

�
�

�2

�
3=4

ffiffiffiffiffiffiffiffi
dpz

dx

s ffiffiffiffiffiffi
5

�2

s
pm

�
1� 2j ~pj2

5�2

�

� exp

�
� j ~pj2

2�2

�
; (3.5)

which satisfy the normalization Eq. (2.6) and their con-
jugate coordinate wave function

~� 1SðrÞ ¼
�
�2

�

�
3=4

exp

�
��2r2

2

�
; (3.6)

~� 1P
m ðrÞ ¼ ffiffiffi

2
p �

�2

�

�
3=4

�rm exp

�
��2r2

2

�
; (3.7)

~� 2P
m ðrÞ ¼ ffiffiffi

5
p �

�2

�

�
3=4

�rm

�
1� 2�2r2

5

�
exp

�
��2r2

2

�
;

(3.8)

where am¼�1 ¼ 	ðax � iayÞ=
ffiffiffi
2

p
and am¼0 ¼ az are

needed. In addition to the coefficient of confined potential
b, the c �c and b �b sectors each have four parameters,mq, 
s,

�1S, and �1P, for the 1S and 1P quarkonium states.
Regarding the constraints, in addition to the four masses
Mc �c;b �bð1SJÞ and Mc �c;b �bð13PJÞ, the four equations (3.3),

(3.4), (3.6), and (3.7) are used as the trial functions of the
variational principle for 1S and 1P states, respectively.
Therefore, b is the only free parameter in our fitting. We
employ the data �ð�c0 ! ��Þ ¼ 2:36� 0:35 keV [1], to
fix b; then the above parameters can be determined and
shown in Table I. For 2P states, due to the insufficient data
regarding �0

cJ, only the parameter �2P
b �b

is determined by the

mass Mb �bð23PJÞ and also revealed in Table I. There are
three items in Table I worth mentioning: First, the parame-
ter b ¼ 0:176þ0:007

�0:008 GeV2 in the linear potential is consis-

tent with the string tension b ¼ 0:18 GeV2 which is well
known from other quark model analyses [12,41,42].
Second, there are presently different conceptions about
the value of 
s in the low-energy region. In lattice QCD
[43] and the field correlator method [39], for example, ones
found for the coupling constant in the static potential,
parametrized as a linear plus Coulomb potential, the small
values 
s are 0.21 and 0.16, respectively. In phenomeno-
logical potentials the Coulomb constant is larger:
s is 0.46
[44] and 0:43� 0:02 [45] which corresponded to the char-
monium and bottomonium states. Here our values are
consistent with the latter. Third, in the HO potential, the
strong coupling constant 
s of the c �c sector is smaller than
that of the b �b sector, which violates the concept of asymp-
totic freedom. The dependences of 
sðc �cÞ and 
sðb �bÞ on
b regarding the linear and HO potentials are shown in
Figs. 2 and 3, respectively. Obviously, the HO potential
is not suitable when b 
 0:0410 GeV3. However, in the
data fitting of �ð�c0 ! ��Þ, we obtained b ¼
0:0490þ0:0022

�0:0024 GeV3. Therefore, only the linear potential

is employed in the following calculations.

TABLE I. The relevant parameters b, mq, 
s, and � of the p-wave heavy quarkonium states.

Potential b mq (GeV) 
s �1P (GeV) �2P (GeV)

Linear 0:176þ0:007
�0:008 GeV2 c �c 1:42	 0:02 0:489�0:018

þ0:019 0:510� 0:002

b �b 4:78	 0:01 0:399�0:006
þ0:007 0:807� 0:005 0:568þ0:025

�0:024

HO 0:0490þ0:0022
�0:0024 GeV3 c �c 1:42	 0:02 0:358�0:025

þ0:018 0:577þ0:001
�0:003

b �b 4:87�0:01
þ0:00 0:425�0:005

þ0:006 0:847� 0:05 0:571þ0:007
�0:009

1The calculations of the expectation values of the fourth and
fifth terms for the Hamiltonian equation (3.2) can be referred to
in the appendix of Ref. [40].
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Next, we use the parameters of the linear potential in
Table I and Eqs. (2.18), (2.26), and (2.27) to calculate the
two-photon and two-gluon decay widths of the �c0;c2,

�b0;b2, and �0
b0;b2 states. The numerical results, which

compare with the experimental data and other theoretical
evaluations, are shown in Tables II and III. From these
tables, except in the case of our two-photon decay width of
�c0 as an input, all the c �c decay widths of this work are
consistent with those of previous experiments and the
major theoretical methods. However, our results of �b0;b2

and �0
b0;b2 differ from other calculations. More specifically,

our two-photon decay widths of �b0;b2 and �0
b0;b2 are

significantly smaller than those of other approaches.
From Table II, the ratio �ð�c0 ! ��Þ=�ð�b0 ! ��Þ is
about 300 for our work and about 60–80 for other estima-
tions. It is well known that the decay rate has two contri-
butions: one is the kinematic phase space; the other is the
dynamic decay amplitude square. No matter what ap-
proach, the phase space and factor e4q of �ð�c0 ! ��Þ, in
total, is about 50 times the one of �ð�b0 ! ��Þ. Regarding
the comparison of decay amplitude MS in Eq. (2.17), we
find that the contribution of the numerator in the paren-
theses is roughly the same for �c0 and �b0. On the other
hand, the denominator in the parentheses, M0, is approxi-
mately equal to the meson mass for the heavy quarkonium.

cc

bb

0.16 0.17 0.18 0.19 0.20
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

b GeV2

s

FIG. 2. Dependences of 
sðc �cÞ (solid line) and 
sðb �bÞ (dashed
line) on b in the linear potential.

cc

bb

0.035 0.040 0.045 0.050 0.055
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

b GeV3

s

FIG. 3. Dependences of 
sðc �cÞ (solid line) and 
sðb �bÞ (dashed
line) on b in the HO potential.

TABLE II. Two-photon widths of the p-wave heavy quarkonium states. R is defined as �
�c2

2� =�
�c0

2� .

�
�c0

2� (keV) �
�c2

2� (keV) R �
�b0

2� (eV) �
�b2

2� (eV) �
�0
b0

2� (eV) �
�0
b2

2� (eV)

PDG [1] 2:36� 0:35 0:515� 0:060 0:218� 0:058
This work 2:36� 0:35 0:346þ0:009

�0:011 0:147� 0:026 8:02þ1:12
�1:15 3:99þ0:11

�0:13 2:26þ0:16
�0:17 1:72þ0:39

�0:33

Münz [5] 1:39� 0:16 0:44� 0:14 0:32þ0:16
�0:12 24� 3 5:6� 0:6 26� 2 6:8� 1:0

Wang [6,7] 3.78 0.501 0.133 48.8 7.4 50.3 7.7

Ebert [10] 2.9 0.50 0.17 38 8 29 6

Lavertya [8] 2.02(2.12) 0.46(0.19) 0.23(0.09) 32.9(94.4) 7.19(5.38) 34.1(94.5) 7.59(5.57)

Schuler [13] 2.5 0.28 0.11 43 7.4

Guptab [9] 6.38(8.13) 0.57(1.14) 0.09(0.14) 80(85) 8(12)

Huang [18] 3:72� 1:11 0:49� 0:15 0:13þ0:11
�0:06

Bodwin [19] 7:1� 2:5 0:81� 0:29 0:11� 0:08
Craterc [14] 3.96(3.34) 0.743(0.435) 0.188(0.130)

Barbieri [4] 3.5 0.93 0.27

Godfrey [12] 1.29 0.46 0.36

Lansberg [15] 5.00 0.70 0.14

Dudekd [17] 2:41� 0:58
Lakhina [16] 3.28

LO (NLO)e [46] 0.267(0.184)

aThe values are obtained by the perturbative (nonperturbative) calculation.
bThe values are obtained by the QCD potential (alternative treatment).
cThe values are obtained by the two-body (naive) decay amplitude.
dOnly the statistical error is shown.
eThese values refer to a leading (next-to-leading) order calculation done at the renormalization scale 2mc.
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Therefore, the dynamic decay amplitude square of �c0 !
�� is about 6 times that of �b0 ! ��. Our ratio �ð�c0 !
��Þ=�ð�b0 ! ��Þ ’ 300 is obtained by combining the
above two components. Regardless, more experimental
measurements are required for these channels. Finally,
the ratio R � ��c2

2� =�
�c0

2� of experiment and various theo-

retical estimations are also listed in Table II for a
comparison.

IV. CONCLUSIONS

This study has discussed two-photon and two-gluon
decay widths of p-wave heavy quarkonium states within
the covariant light-front quark model. This formalism,
which preserves the Lorentz covariance in the light-front
framework, was applied to annihilations of the scalar and
tensor quarkonia. To obtain the numerical results, we used
the harmonic wave functions and fixed the parameters
appearing in them. The constraints were the spin-weighted
average masses MðSJ; 3PJÞ and their variational principle

regarding the Hamiltonian. We considered the linear and
HO potentials in the Hamiltonian and found that, when the
data �ð�c0 ! ��Þ were fitted, the former resulted in a
value of b consistent with that of other quark models and
the latter led to a violation of asymptotic freedom.
Therefore, only the parameters corresponding to the linear
potential were applied to estimate the relevant decay
widths. The numerical results showed that, for the c �c

sector, all of the decay widths were in agreement with
the experimental data and the major theoretical calcula-
tions. However, for the b �b sector, discrepancies appeared
in the decay widths of �b0;b2 and �0

b0;b2 from other

estimations.
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APPENDIX: FORMULAS FOR THE PRODUCT OF
SEVERAL p1’S

In general, after the p1 integration, p1 can be expressed
in terms of three external vectors, ~P, q, and !, where ~P ¼
Pþ k. Furthermore, the inclusion of the zero-mode con-
tribution cancels the ! dependence and in practice for p1

in the trace under the integration, we have [32,33]

p̂ 1� ¼: ~P�A
ð1Þ
1 þ q�A

ð1Þ
2 ; (A1)

p̂1�p̂1� ¼: g��A
ð2Þ
1 þ ~P�

~P�A
ð2Þ
2 þ ð ~P�q� þ q� ~P�ÞAð2Þ

3

þ q�q�A
ð2Þ
4 þ

~P�!� þ!�
~P�

! ~P
Bð2Þ
1 ; (A2)

p̂1�p̂1�p̂1
 ¼: ðg��
~P
 þ g�


~P� þ g�
 ~P�ÞAð3Þ
1 þ ðg��q
 þ g�
q� þ g�
q�ÞAð3Þ

2 þ ~P�
~P�

~P
A
ð3Þ
3

þ ð ~P�
~P�q
 þ ~P�q� ~P
 þ q� ~P�

~P
ÞAð3Þ
4 þ ðq�q� ~P
 þ q� ~P�q
 þ ~P�q�q
ÞAð3Þ

5 þ q�q�q
A
ð3Þ
6

þ 1

! ~P
ð ~P�

~P�!
 þ ~P�!�
~P
 þ!�

~P�
~P
ÞBð3Þ

1

þ 1

! ~P
½ð ~P�q� þ q� ~P�Þ!
 þ ð ~P�q
 þ q� ~P
Þ!�ð ~P�q
 þ q� ~P
Þ!��Bð3Þ

2 ; (A3)

TABLE III. Two-gluon decay widths of the p-wave heavy quarkonium states.

�
�c0

2g (MeV) �
�c2

2g (MeV) �
�b0

2g (keV) �
�b2

2g (keV) �
�0
b0

2g (keV) �
�0
b2

2g (keV)

PDGa [1] 10:4� 0:7 1:98� 0:11
This work 11:9þ0:7

�0:9 1:74�0:08
þ0:09 431þ45

�49 214�0
þ1 122þ4

�6 92:3þ17:7
�14:8

Wang [6,7] 10.3 2.64 887 220 914 248

Lavertyb [8] 4.68(4.88) 1.72(0.69) 960(2740) 330(250) 990(2740) 350(260)

Guptac [9] 13.44(17.10) 1.20(2.39) 2150(2290) 220(330)

Bodwin [19] 4:8� 0:7 1:98� 0:18
Barbieri [4] 2.4 0.64

Godfrey [12] 6.25 0.774 672 123 672 137

Ebert [11] 653 109 431 76

a�tot ffi �2g.
bThe values are obtained by the perturbative (nonperturbative) calculation.
cThe values are obtained by the QCD potential (alternative treatment).
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p̂ 1�p̂1�p̂1
p̂1� ¼: X9
i¼1

Ii��
�A
ð4Þ
i þ X4

j¼1

Jj��
�B
ð4Þ
j ; (A4)

where the symbol ¼: denotes that the equation is true only in the integration and

I1��
� ¼ g��g
� þ g�
g�� þ g��g�
;

I2��
� ¼ g��
~P


~P� þ g�

~P�

~P� þ g��
~P�

~P
 þ g
� ~P�
~P� þ g�� ~P�

~P
 þ g�
 ~P�
~P�;

I3��
� ¼ g��ð ~P
q� þ ~P�q
Þ þ permutations;

I4��
� ¼ g��q
q� þ g�
q�q� þ g��q�q
 þ g
�q�q� þ g��q�q
 þ g�
q�q�;

I5��
� ¼ ~P�
~P�

~P

~P�;

I6��
� ¼ ~P�
~P�

~P
q� þ ~P�
~P�q
 ~P� þ ~P�q� ~P


~P� þ q� ~P�
~P


~P�;

I7��
� ¼ ~P�
~P�q
q� þ permutations;

I8��
� ¼ ~P�q�q
q� þ q� ~P�q
q� þ q�q� ~P
q� þ q�q�q
 ~P�;

I9��
� ¼ q�q�q
q�;

J1��
� ¼ 1

! ~P
½g��ð ~P
!� þ ~P�!
Þ þ permutations�;

J2��
� ¼ 1

! ~P
ð ~P�

~P�
~P
!� þ ~P�

~P�!

~P� þ ~P�!�

~P

~P� þ!�

~P�
~P


~P�Þ;

J3��
� ¼ 1

! ~P
½ð ~P�

~P�q
 þ ~P�q� ~P
 þ q� ~P�
~P
Þ!� þ permutations�;

J4��
� ¼ 1

! ~P
½ð ~P�q�q
 þ q� ~P�q
 þ q�q� ~P
Þ!� þ permutations�;

(A5)

with

Að1Þ
1 ¼ x1

2
; Að1Þ

2 ¼ Að1Þ
1 � p? � q?

q2
; Að2Þ

1 ¼ �p2
? � ðp? � q?Þ2

q2
; Að2Þ

2 ¼ ðAð1Þ
1 Þ2; Að2Þ

3 ¼ Að1Þ
1 Að1Þ

2 ;

Að2Þ
4 ¼ ðAð1Þ

2 Þ2 � Að2Þ
1

q2
; Bð2Þ

1 ¼ Að1Þ
1 Z2 � Að2Þ

1 ; Að3Þ
1 ¼ Að1Þ

1 Að2Þ
1 ; Að3Þ

2 ¼ Að1Þ
2 Að2Þ

1 ; Að3Þ
3 ¼ Að1Þ

1 Að2Þ
2 ;

Að3Þ
4 ¼ Að1Þ

2 Að2Þ
2 ; Að3Þ

5 ¼ Að1Þ
1 Að2Þ

4 ; Að3Þ
6 ¼ Að1Þ

2 Að2Þ
4 � 2

q2
Að1Þ
2 Að2Þ

1 ; Bð3Þ
1 ¼ Að1Þ

1 ðBð2Þ
1 � Að2Þ

1 Þ;

Bð3Þ
2 ¼ Að1Þ

2 Bð2Þ
1 þ q � ~P

q2
Að3Þ
1 ; Að4Þ

1 ¼ ðAð2Þ
1 Þ2
3

; Að4Þ
2 ¼ Að1Þ

1 Að3Þ
1 ; Að4Þ

3 ¼ Að1Þ
1 Að3Þ

2 ; Að4Þ
4 ¼ Að1Þ

2 Að3Þ
2 � Að4Þ

1

q2
;

Að4Þ
5 ¼ Að1Þ

1 Að3Þ
3 ; Að4Þ

6 ¼ Að1Þ
1 Að3Þ

4 ; Að4Þ
7 ¼ Að1Þ

1 Að3Þ
5 ; Að4Þ

8 ¼ Að1Þ
1 Að3Þ

6 ; Að4Þ
9 ¼ Að1Þ

1 Að3Þ
6 � 3

q2
Að4Þ
4 ;

Bð4Þ
1 ¼ Að1Þ

1 Að2Þ
1 Z2 � Að4Þ

1 ; Bð4Þ
2 ¼ Að1Þ

1 Bð3Þ
1 � Að4Þ

2 ; Bð4Þ
3 ¼ Að1Þ

1 Bð3Þ
2 � Að4Þ

3 ;

Bð4Þ
4 ¼ Að1Þ

1

�
Að2Þ
4 Z2 þ 2

q � ~P
q2

Að1Þ
2 Að2Þ

1

�
� Að4Þ

4 ; Z2 ¼ N̂1 þ ðx2 � x1ÞM2 þ ðq2 þ q � ~PÞp? � q?
q2

: (A6)

Equation (A6) is obtained by contracting the larger number of p̂1’s with !�, q�, and g
�, and through a comparison with
the complete expression of the fewer p̂1’s.
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