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The branching ratio and other observables for the rare flavor-changing neutral current decay �B0
d !

�K�0ð! K��þÞeþe� are studied below the �cc threshold. The total amplitude for this decay includes the

term coming from the standard model effective Hamiltonian and the term generated by the processes
�B0
d ! �K�0ð! K��þÞV with intermediate low-lying vector resonances V ¼ �ð770Þ, !ð782Þ, �ð1020Þ

decaying into the eþe� pair. The resonance contribution to the branching ratio, polarization fractions of

the K� meson, and coefficients in the angular distribution is calculated. The influence of the resonances on

the integrated observables in the region of electron-positron invariant mass up to 1 GeV is studied in view

of the planned measurements of the photon polarization at the LHCb.
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I. INTRODUCTION

The investigation of rare B decays induced by the flavor-
changing neutral current (FCNC) transitions b ! s and
b ! d represents an important test of the standard model
(SM) and its extensions (see [1] for a review). Among the
rare decays, the radiative decay b ! s� has probably been
the most popular FCNC transition ever since its experi-
mental observation as B ! K�� at CLEO in 1993 [2]. This
decay proceeds through a loop (penguin) diagram, to
which high-mass particles introduced in extensions to the
SM may contribute with a sizable amplitude. The size of
the decay rate itself, however, provides only a mild con-
straint on such extensions, because the SM predictions for
exclusive rates suffer from large and model-dependent
form factor uncertainties [3,4]. Further reduction in the
errors of the theory appears rather difficult. It is then
clearly advantageous to use, in addition to the rates, other
observables that can reveal new physics (NP).

In particular, in the framework of the SM, the photons
emitted in b ! s� decays are predominantly left-handed,
while those emitted in �b decays are predominantly right-
handed. Based on the leading order effective Hamiltonian,
the amplitude for emission of wrong-helicity photons is
suppressed by a factor / ms=mb [5]. This suppression can
easily be alleviated in a large number of NP scenarios
where the helicity flip occurs on an internal line. An
independent measurement of the photon helicity is there-
fore of interest. Several different methods of measuring the
photon polarization have been suggested. In one method
the photon helicity is probed through mixing-induced CP
asymmetries [5]. Another method makes use of the pho-
tons from the B ! �K�ð! K�Þ decay, which are con-

verted into the electron-positron pair in the detector
material [6,7]. There are also other techniques to probe
photon polarization. These include approaches in which
interference between different resonances [8] or different
helicity states [9] of the hadronic recoil system provide
sensitivity to the polarization. The photon polarization may
also be studied in radiative decays of �b baryons [10]. It
appears, however, that experimentally the photon polariza-
tion is difficult to measure, and one instead has to use the
process b ! s�� ! s‘þ‘�, where the photon is converted
to the lepton pair. In this decay the angular distributions
and lepton polarizations can probe the chiral structure of
the matrix element [6,11–16] and thereby the NP effects.
In order to unambiguously measure effects of NP in the

process b ! s‘þ‘�, if they indeed show up in the observ-
ables, one needs to calculate the SM predictions with a
rather good accuracy. In general, the SM amplitude con-
sists of the short-distance (SD) contributions and the long-
distance (LD) ones. The former are expressed in terms of
the Wilson coefficients Ci calculated in perturbative QCD
up to a certain order in �sð�Þ; they carry information on
processes at energy scales �mW , mt [here �sð�Þ is the
effective QCD coupling constant]. These coefficients are
then evolved, using the renormalization group methods, to
the energies related to the bottom quark mass mb.
The LD terms include factorizable and nonfactorizable

effects from virtual photons via the semileptonic operators
O9V;10A and electromagnetic dipole penguin operator O7�

in the effective Hamiltonian. The radiative corrections
coming from the operators O1–6 and the gluon penguin
operator O8g are also accurately accounted for (for a

review, see [17]).
The LD effects describing the hadronization process are

expressed in terms of hadronic matrix elements of the b !
s operators between the initial B and the K� final state.
These matrix elements are parametrized in terms of form
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factors [12] that are calculated with the help of light-cone
sum rules (LCSR) [18] or in soft-collinear effective theory
[19]. The form factors have large theoretical uncertainties
that are presently the dominant uncertainties in the SM
predictions for exclusive decays.

The presence of additional LD effects originating from
intermediate vector resonances �ð770Þ; !ð782Þ; �ð1020Þ;
J=c ð1SÞ; c ð2SÞ; . . . complicates the description and
makes it more model dependent. These resonances show
up in the region of relatively small dilepton invariant mass

mee �
ffiffiffiffiffi
q2

p
, where q2 ¼ ðqþ þ q�Þ2. In order to suppress

the charmonia contribution, often the region of large di-
lepton mass (q2 � 4m2

c � 6:5 GeV2) is selected; for ex-
ample, BABAR and Belle Collaborations apply the
corresponding experimental cuts [20,21]. In some cases
the resonances J=c ð1SÞ, c ð2SÞ are explicitly excluded in
the analysis via the Breit-Wigner energy factors.

The region of small dilepton invariant mass, mee &
1 GeV, has attracted less attention so far. Nevertheless,
as was pointed out in [6], this region also has a high
potential for searching for NP effects. At small mee �
MR the low-lying vector resonances modify the amplitude
and thus may induce, in certain observables, the right-
handed photon polarization, which is still small but not
negligible. The presence of the photon propagator 1=q2

enhances the resonance contribution. Recently, the authors
of [22] analyzed the angular distribution in the rare decay
�B0 ! �K�0eþe� in the small-q2 region, in order to test the
possibility to measure this distribution at the LHCb. They
have shown the feasibility of future measurements with
small systematic uncertainties.

In the present paper we calculate the branching fraction
d�=dq2 and asymmetries in the �B0 ! �K�0eþe� decay at
dilepton invariant mass mee < 2:5 GeV. Both the SD and
LD effects in the amplitude are evaluated. We use the
effective Hamiltonian with the Wilson coefficients in the
next-to-next-to-leading order (NNLO) approximation. The
LD effects mediated by the resonances, i.e. �B0 ! �K�0V !
�K�0�� ! �K�0eþe� with V ¼ �ð770Þ, !ð782Þ, �ð1020Þ,
are included explicitly in terms of amplitudes of the decays
�B0 ! �K�0V. The information on the latter amplitudes is
taken from experiment if available; otherwise it is taken
from theoretical predictions.

We also study the sensitivity of the observables in the
�B0 ! �K�0eþe� decay to the choice of the form factors of
the transition B ! K�. In the literature there exists a large
variety of models for these form factors. We choose a few
models [12,18,23,24] in our calculation. The other non-
trivial aspect of the theory is the mass of the strange quark
ms, as a nonzero value of ms leads to a small admixture of
the right-handed photon polarization. Therefore, we calcu-
late observables with both zero and nonzero values of the
strange quark mass.

We calculate the coefficients Að2Þ
T and AIm, which deter-

mine, respectively, cosð2�Þ and sinð2�Þ dependencies in

the angular distributions of the leptons (� is the angle
between the plane spanned by eþ, e� and the plane
spanned by the decay products K�, �þ of the �K�0 meson).
The other observables, such as forward-backward asym-
metry dAFB=dq

2 and polarization parameters of K� meson
f0, fk, f?, are also calculated.

The paper is organized as follows. In Sec. II the main
formulas for the calculation of observables are presented.
In Sec. II A the expressions for the fully differential decay
rate and partially integrated ones over the angles and the
dilepton invariant mass are given. Section II B contains
expressions for transversity amplitudes in the SM, and
the amplitudes in the limit of very small q2.
Contributions of the resonances �ð770Þ, !ð782Þ,
�ð1020Þ, and all ingredients needed for their calculation,
are discussed in Sec. II C. Results of the calculations and a
discussion are presented in Sec. III. In Sec. IV we draw our
conclusions. In Appendix A some details of the calculation
of the matrix element and the models of the B ! K�
transition form factors are described.

II. ANGULAR DISTRIBUTIONS AND
AMPLITUDES FOR THE �B0

d ! �K�0eþe� DECAY

A. Differential decay rate

The decay �B0
d ! �K�0eþe�, with �K�0 ! K��þ on the

mass shell [25], is completely described by four indepen-
dent kinematic variables: the electron-positron pair invari-
ant mass squared, q2, and the three angles �1, �2, �. In the
helicity frame (Fig. 1), the angle �1ð�2Þ is defined as the
angle between the directions of motion of eþðK�Þ in the
��ð �K�0Þ rest frame and the ��ð �K�0Þ in the �B0

d rest frame.

The azimuthal angle � is defined as the angle between the
decay planes of �� ! eþe� and �K�0 ! K��þ in the �B0

d

rest frame. The differential decay rate in these coordinates
is given by

d4�

dq̂2d cos�1d cos�2d�
¼ mB

9

64�

X9
k¼1

akðq2Þgkð�1; �2; �Þ;

(1)

where the angular terms gk are defined as

φ

θ2 θ1
K *0
_

B
_

d
0

γ*
K-

π+

e+

e-

FIG. 1. Definition of helicity angles �1, �2, and �, for the
decay �B0

d ! �K�0eþe�.
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g1 ¼ 4sin2�1cos
2�2; g2 ¼ ð1þ cos2�1 � sin2�1 cos2�Þsin2�2; g3 ¼ ð1þ cos2�1 þ sin2�1 cos2�Þsin2�2;

g4 ¼ �2sin2�1sin
2�2 sin2�; g5 ¼ � ffiffiffi

2
p

sin2�1 sin2�2 cos�; g6 ¼ � ffiffiffi
2

p
sin2�1 sin2�2 sin�;

g7 ¼ 4 cos�1sin
2�2; g8 ¼ �2

ffiffiffi
2

p
sin�1 sin2�2 cos�; g9 ¼ �2

ffiffiffi
2

p
sin�1 sin2�2 sin�;

and the amplitude terms ak as

a1 ¼ jA0j2; a2 ¼ jAkj2; a3 ¼ jA?j2; a4 ¼ ImðAkA�
?Þ; a5 ¼ ReðA0A

�
kÞ; a6 ¼ ImðA0A

�
?Þ;

a7 ¼ ReðAkLA�
?L � AkRA�

?RÞ; a8 ¼ ReðA0LA
�
?L � A0RA

�
?RÞ; a9 ¼ ImðA0LA

�
kL � A0RA

�
kRÞ;

where mB is the mass of the B0
d meson, q̂2 � q2=m2

B, and

AiA
�
j � AiLðq2ÞA�

jLðq2Þ þ AiRðq2ÞA�
jRðq2Þ:

Here i, j ¼ ð0; k;?Þ, the electron mass me is neglected,
and A0LðRÞ, AkLðRÞ, and A?LðRÞ are the complex decay
amplitudes of the three helicity states in the transversity
basis.

With its rich multidimensional structure, the differential
decay rate in Eq. (1) has sensitivity to various effects
modifying the SM, such as CP violation beyond the
Cabibbo-Kobayashi-Maskawa mechanism and/or right-
handed currents. Given sufficient data, all ak can, in prin-
ciple, be completely measured from the full angular dis-
tribution in all three angles �1, �2, and �.

The familiar electron-positron pair invariant-mass spec-
trum for �B0

d ! �K�0eþe� decay can be recovered after

integration over all angles as

d�

dq̂2
¼ mBðjA0j2 þ jAkj2 þ jA?j2Þ: (2)

The longitudinal and transverse partial widths are given,
respectively, by

d�0

dq̂2
¼ mBjA0j2; d�T

dq̂2
� d�k

dq̂2
þ d�?

dq̂2
:

The fraction of K� meson polarization is [i ¼ ð0; k;?Þ]

fi ¼ d�i

dq̂2
=
d�

dq̂2
;

d�i

dq̂2
¼ mBjAij2;

and fT ¼ fk þ f? ¼ 1� f0. Integrating Eq. (1) over the

variables cos�1 and �, we obtain

d2�

dq̂2d cos�2
¼ 3

4

d�T

dq̂2
ð1þ �K�cos2�2Þ; (3)

where �K� is the K� meson polarization parameter, �K� �
2f0=fT � 1. Integration of Eq. (1) over cos�2 and� yields

d2�

dq̂2d cos�1
¼ 3

4

d�0

dq̂2
sin2�1 þ 3

8

d�T

dq̂2
ð1þ cos2�1Þ

þ dAFB

dq̂2
cos�1; (4)

where AFB is forward-backward asymmetry,

dAFB

dq̂2
�

Z 1

�1
sgnðcos�1Þ d2�

dq̂2d cos�1
d cos�1

¼ 3mB

2
ReðAkLA�

?L � AkRA�
?RÞ;

and the normalized forward-backward asymmetries

d �AFB=dq̂
2 and d ~AFB=dq̂

2 are given as

d �AFB

dq̂2
� dAFB

dq̂2
=
d�

dq̂2
;

d ~AFB

dq̂2
� dAFB

dq̂2
=
d�T

dq̂2
: (5)

Finally, the two-dimensional differential decay rate in q2

and the angle� between the lepton and meson planes, after
integration over other variables, takes the form

d2�

dq̂2d�
¼ 1

2�

d�

dq̂2

�
1þ 1

2
fTA

ð2Þ
T cos2�� AIm sin2�

�
;

(6)

Að2Þ
T � f? � fk

fT
; AIm � mBImðAkA�

?Þ=
d�

dq̂2
; (7)

~A Im � mBImðAkA�
?Þ=

d�T

dq̂2
: (8)

For q2-integrated quantities we introduce the notation

hXi �
Z q̂2max

q̂2
min

dX

dq̂2
dq̂2;

where the X’s are � or �i. Integrated quantities hfii, hAð2Þ
T i,

and hAImi, which are obtained from the ones above by
integrating the numerator and the denominator separately
over q2, are defined as follows:

hfii� h�ii
h�i ; ði¼ 0;?;kÞ; hAð2Þ

T i� h�?i�h�ki
h�?iþh�ki ;

dh�i
d�

¼h�i
2�

�
1þ1

2
hfTihAð2Þ

T icos2��hAImisin2�
�
;

hAImi�mB

hImAkA�
?i

h�i ;

hImAkA�
?i�

Z q̂2max

q̂2
min

ImðAkA�
?Þdq̂2:
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B. Transversity amplitudes

The nonresonant amplitudes follow from the matrix
element of the �B0

dðpÞ ! �K�0ðk; �ÞeþðqþÞe�ðq�Þ process

in Eq. (A1),

ANR
0L;R ¼ �N	̂1=4

2m̂K�

�
ðCeff

9V � C10AÞ
�
ð1� q̂2 � m̂2

K� Þ

� ð1þ m̂K� ÞA1ðq2Þ � 	̂
A2ðq2Þ
1þ m̂K�

�

þ 2ðm̂b � m̂sÞCeff
7�

�
ð1� q̂2 þ 3m̂2

K� ÞT2ðq2Þ

� 	̂

1� m̂2
K�

T3ðq2Þ
��
; (9)

ANR
kL;R ¼ Nð1� m̂2

K� Þ
ffiffiffiffiffiffiffiffi
2q̂2

q
	̂1=4

�
ðCeff

9V � C10AÞ A1ðq2Þ
1� m̂K�

þ 2
m̂b � m̂s

q̂2
Ceff
7�T2ðq2Þ

�
; (10)

ANR
?L;R ¼ �N

ffiffiffiffiffiffiffiffi
2q̂2

q
	̂3=4

�
ðCeff

9V � C10AÞ Vðq2Þ
1þ m̂K�

þ 2
m̂b þ m̂s

q̂2
Ceff
7�T1ðq2Þ

�
: (11)

In the above formulas the definitions m̂K� � mK�=mB, 	̂ �
	ð1; q̂2; m̂2

K� Þ ¼ ð1� q̂2Þ2 � 2ð1þ q̂2Þm̂2
K� þ m̂4

K� , m̂b �
�mbð�Þ=mB, m̂s � �msð�Þ=mB are used, where mK� is the
mass of the K�0 meson, and

N ¼ jVtbV
�
tsjGFm

2
B�em

32�2
ffiffiffiffiffiffiffi
3�

p :

The transversity amplitudes in Eqs. (9)–(11) take a par-
ticularly simple form in the heavy-quark and large-energy
limit. In fact, exploiting the form factor relations in
Eqs. (A10)–(A16), we obtain

ANR
0L;R ¼�N	̂1=4

�
ðCeff

9V �C10AÞ
�
m̂K� ð1þ q̂2 � m̂2

K� Þ
?ðq2Þ

þ 	̂

2m̂K�

kðq2Þ

�
þ 2ðm̂b � m̂sÞCeff

7�

�
2m̂K�
?ðq2Þ

þ 	̂

2m̂K�

kðq2Þ

��
; (12)

ANR
kL;R ¼ N

ffiffiffiffiffiffiffiffi
2q̂2

q
	̂1=4

�
ðCeff

9V � C10AÞð1� q̂2 þ m̂2
K� Þ

þ 2
m̂b � m̂s

q̂2
ð1� q̂2 � m̂2

K� ÞCeff
7�

�

?ðq2Þ; (13)

ANR
?L;R ¼ �N

ffiffiffiffiffiffiffiffi
2q̂2

q
	̂3=4

�
Ceff
9V � C10A

þ 2
m̂b þ m̂s

q̂2
Ceff
7�

�

?ðq2Þ: (14)

From inspection of these formulas we infer the following
features. The amplitudes (13) and (14) are expressed
through the one form factor 
?ðq2Þ. The observables

Að2Þ
T , ~AIm, and d ~AFB=dq̂

2 do not depend on the functional
form of the form factor 
?ðq2Þ, and therefore they can be
used to study the Wilson coefficients.
In the region q2 & m2

K� ¼ 0:803 GeV2, the transversity

amplitudes (12)–(14) take the form

ANR
0L;R � � N

2m̂K�

�
ðCeff

9V � C10AÞ
�
2m̂2

K�
?ðq2Þ

þ
�
1� 5

2
ðq̂2 þ m̂2

K� Þ
�

kðq2Þ

�

þ 2ðm̂b � m̂sÞCeff
7�

�
4m̂2

K�
?ðq2Þ

þ
�
1� 5

2
ðq̂2 þ m̂2

K� Þ
�

kðq2Þ

��
; (15)

ANR
kL;R � N

ffiffiffiffiffi
2

q̂2

s �
ðCeff

9V � C10AÞq̂2 þ 2ðm̂b � m̂sÞ

�
�
1� 3

2
ðq̂2 þ m̂2

K� Þ
�
Ceff
7�

�

?ðq2Þ; (16)

ANR
?L;R � �N

ffiffiffiffiffi
2

q̂2

s �
ðCeff

9V � C10AÞq̂2 þ 2ðm̂b þ m̂sÞ

�
�
1� 3

2
ðq̂2 þ m̂2

K� Þ
�
Ceff
7�

�

?ðq2Þ: (17)

It follows from these equations that, in the region of very
small invariant masses, namely, q2 	 m2

K� , the asymmetry

Að2Þ
T in Eq. (7) takes the simple form

Að2Þ
T � 2ms

mb

: (18)

This result is in agreement with the well-known fact that, in

the SM for ms ¼ 0 in a naive factorization, Að2Þ
T ¼ 0 [13].

In some extensions of the SM, such as the left-right
model and the unconstrained supersymmetric SM, there
are right-handed currents in the matrix element, with the
magnitude determined by the coupling C0 eff

7� (see, e.g.,

Ref. [13]). In this case the asymmetry Að2Þ
T is written as

Að2Þ
T � 2C0 eff

7� Ceff
7�

ðCeff
7�Þ2 þ ðC0 eff

7� Þ2 : (19)
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C. Resonant contribution

Further, we add the LD contributions from the decays
�B0
d ! �K�0V, where V ¼ �0, !, � mesons, followed by

V ! eþe� in the decay �B0
d ! �K�0eþe� (see Fig. 2). Using

the vector-meson dominance concept we obtain the ampli-
tude including nonresonant and resonant parts,

A	L;R ¼ ANR
	L;R þX

V

cVe
i�V

DVðq̂2Þ
�
	ð1; q̂2; m̂2

K� Þ
	ð1; m̂2

V; m̂
2
K� Þ

�
1=4 m̂Vffiffiffiffiffi

q̂2
p hV	 ;

(20)

cV ¼ sgnðQVÞðBrðV ! eþe�Þ
� Brð �B0

d ! �K�0VÞm̂V�̂V=ð2�mB�BÞÞ1=2; (21)

where 	 ¼ ð0; k;?Þ and
DVðq̂2Þ ¼ q̂2 � m̂2

V þ im̂V�̂Vðq̂2Þ
is the usual Breit-Wigner function for the V meson reso-
nance shape with the energy-dependent width �Vðq2Þ
[�̂Vðq̂2Þ ¼ �Vðq2Þ=mB]. In Eq. (21) QV is the effective

electric charge of the quarks in the vector meson V (Q� ¼
1=

ffiffiffi
2

p
, Q! ¼ 1=

ffiffiffiffiffiffi
18

p
, Q� ¼ �1=3), m̂V � mV=mB, �̂V �

�V=mB, mVð�VÞ is the mass (width) of a V meson, Brð. . .Þ
is the branching ratio, and �B is the lifetime of a B meson.
In addition, hV	 (	 ¼ 0, k ,? ) are the complex amplitudes

for �B0
d ! �K�0V decay processes of the three helicity states

in the transversity basis with the normalization condition
jhV0 j2 þ jhVk j2 þ jhV?j2 ¼ 1, and �V is the phase of the

resonant amplitude relative to the phase of the nonresonant
one.

Parameters of the vector resonances are presented in
Table I. The energy-dependent width for the � meson is
chosen as [26]

��ðq2Þ ¼ ��

m�ffiffiffiffiffi
q2

p k3

k30

1þ r2k20
1þ r2k2

�ðq2 � 4m2
�Þ; (22)

where k ¼ ðq2=4�m2
�Þ1=2, k0 ¼ ðm2

�=4�m2
�Þ1=2 and the

parameter r ¼ 2:5 GeV�1 [27], �ðxÞ ¼ 1 for x 
 0, and
�ðxÞ ¼ 0 otherwise.

For the ! meson we take the energy dependence of the
width in the form

�!ðq2Þ ¼ �!½Brð! ! 3�Þ�ðq2 � 9m2
�Þ

þ Brð! ! �0�Þ�ðq2 �m2
�Þ

þ Brð! ! 2�Þ�ðq2 � 4m2
�Þ�;

where the branching ratios are Brð! ! 3�Þ ¼ 89:2%,
Brð! ! �0�Þ ¼ 8:92%, and Brð! ! 2�Þ ¼ 1:53% [26],
and for the � meson,

��ðq2Þ ¼ ��½Brð� ! KþK�Þ�ðq2 � 4m2
K�Þ

þ Brð� ! K0 �K0Þ�ðq2 � 4m2
K0Þ

þ Brð� ! 3�Þ�ðq2 � 9m2
�Þ

þ Brð� ! 
�Þ�ðq2 �m2

Þ�;

with the branching ratios Brð� ! KþK�Þ ¼ 49:2%,
Brð� ! K0 �K0Þ ¼ 34:0%, Brð� ! 3�Þ ¼ 15:25%, and
Brð� ! 
�Þ ¼ 1:304% [26].
In order to calculate the resonant contribution to the

amplitude of the �B0
d ! �K�0eþe� decay, one has to know

the amplitudes of the decays �B0
d ! �K�0�, �B0

d ! �K�0!, and
�B0
d ! �K�0�. Unfortunately, at present only the amplitude

of the �B0
d ! �K�0� decay is known from experiment [28];

therefore, in our estimate we use the amplitudes of the
�B0
d ! �K�0� and �B0

d ! �K�0! decays from the theoretical

prediction [29]. The absolute values and phase of the
normalized decay amplitudes hV	 are shown in Table II.

III. RESULTS OF THE CALCULATION FOR THE
�B0
d ! �K�0eþe� DECAYAND A DISCUSSION

The parameters of the model are indicated in Table III.
The SM Wilson coefficients at the scale � ¼ 4:8 GeV to
NNLO accuracy [15] are given in Table IV.

A. Invariant-mass distributions

In Figs. 3–6 we present results for the invariant-mass
dependence of various observables for the �B0

d ! �K�0eþe�
decay. The upper limit of the invariant-mass region,
2.5 GeV, is taken to exclude the contribution from
J=c ð1SÞ and higher resonances. Of course, the presented

FIG. 2. Nonresonant and resonant contributions to the decay
amplitude.

TABLE I. Mass, width, and leptonic branching ratio of the �0,
!, and � mesons [26].

V mV (GeV) �V (GeV) BrðV ! eþe�Þ
�0 0.775 49 0.1462 4:71� 10�5

! 0.782 65 0.008 49 7:16� 10�5

� 1.0194 55 0.004 26 2:97� 10�4

TABLE II. Branching ratios [28] and decay amplitudes for
�B0
d ! �K�0�0 [29], �B0

d ! �K�0! [29], and �B0
d ! �K�0� [28].

Mode �K�0�0 �K�0! �K�0�

Brð �B0
d ! �K�0VÞ 3:4� 10�6 2:0� 10�6 9:8� 10�6

jhV0 j2 0.70 0.75 0.480

jhV?j2 0.14 0.12 0.241

argðhVk =hV0 Þ (rad) 1.17 1.79 2.40

argðhV?=hV0 Þ (rad) 1.17 1.82 2.39
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results may depend on the relative phase �V in Eq. (20). In
the figures below we choose this phase to be equal for all
resonances �, !, and �, and equal to zero.

The polarization parameter f0 for K
� is shown in Fig. 3

(recall that the transverse polarization fraction is related to
f0 through fT ¼ 1� f0). The resonances �, !, and �
show up as small irregularities on the smooth curves.
These parameters are calculated for the mass of the strange
quark ms ¼ 79 MeV. The results of the calculation for
ms ¼ 0 are not shown because they are indistinguishable
from the curves for ms ¼ 79 MeV. One can also see a
certain dependence on the choice of form factors.

The asymmetry Að2Þ
T in the SMwithout and with resonant

contributions is presented in Fig. 4. This observable turns
out to be sensitive to all ingredients of the model. The
dependence on the form factor model is quite essential,
especially if resonances are not included (left-hand side).

The addition of the resonances drastically changes this
observable (see the right-hand side of Fig. 4). In particular,
the � meson contribution is very pronounced.

Að2Þ
T is also sensitive to the mass of the strange quark

(compare the top and bottom panels of Fig. 4). In particu-
lar, comparing the top and bottom panels (with reso-
nances), one concludes that, at an invariant mass below

0.5 GeV (where q2 	 m2
K�), for ms ¼ 0 Að2Þ

T vanishes,

while for ms ¼ 79 MeV Að2Þ
T is about 0.04. This value is

in agreement with Eq. (18). Note that this asymmetry is, in
general, an important observable to study effects of NP

[13]. Indeed, comparison of Að2Þ
T for ms ¼ 0 and ms � 0

demonstrates the effect of the ‘‘wrong’’ helicity transition
bL ! sR þ �R. In the SM this effect appears to be small,
being proportional to the ratio 2ms=mb, while in some
extensions of the SM it can reach bigger values depending
on the coefficient C0 eff

7� in Eq. (19) (see, e.g., the estimates

in [13]). It also follows that the effect of the nonzero mass
ms is bigger than the uncertainty related to the chosen
model for the transition form factors.
In general, theoretical uncertainties of the nonresonant

amplitudes arise due to the choice of the renormalization
scale� (the scale at which the Wilson coefficients, �s, and

MS masses are calculated), the ratio mc=mb, and some
other uncertainties [30]. There are also corrections of the
order �QCD=mb which are evaluated in Refs. [15,16].

While it is assumed in [15] that the main part of the
�QCD=mb corrections is inside the QCD form factors, the

authors of [16] explicitly include these corrections in the
amplitudes ANR

	L;R. For an estimate of the theoretical error of

the calculation of the asymmetry Að2Þ
T , we can use the result

of [16], in which the �QCD=mb corrections to each spin

amplitude are estimated to be�10%. That leads to the total

uncertainty Að2Þ
T about �0:05, in the SM with ms ¼ 0 (see

Fig. 14 in [16]). In view of this, the effect of the nonzero

TABLE IV. The SM Wilson coefficients at the scale � ¼
4:8 GeV, to NNLO accuracy. Input: �sðmWÞ ¼ 0:120, �sð�Þ ¼
0:214, obtained from �sðmZÞ ¼ 0:1176 [26], using three-loop
evolution, �mtð �mtÞ ¼ 162:3 GeV, mW ¼ 80:4 GeV, and
sin2�W ¼ 0:23.

�C1ð�Þ �C2ð�Þ �C3ð�Þ �C4ð�Þ �C5ð�Þ
�0:128 1.052 0.011 �0:032 0.009
�C6ð�Þ Ceff

7�ð�Þ Ceff
8g ð�Þ C9Vð�Þ C10Að�Þ

�0:037 �0:304 �0:167 4.211 �4:103

TABLE III. The numerical input used in our analysis.

jVtbV
�
tsj ¼ 0:0407 GF ¼ 1:166 37� 10�5 GeV�2

� ¼ mb ¼ 4:8 GeV �em ¼ 1=137
mc ¼ 1:4 GeV mB ¼ 5:279 53 GeV
�mbð�Þ ¼ 4:14 GeV �B ¼ 1:530 ps
�msð�Þ ¼ 0:079 GeV mK� ¼ 0:896 GeV

0.1 0.2 0.3 0.4 0.5

mee mB

0.2

0.4

0.6

0.8

1

f 0

0.1 0.2 0.3 0.4 0.5

mee mB

0.2

0.4

0.6

0.8

1

f 0

FIG. 3. Longitudinal polarization fraction of the K� meson as a function of mee=mB. Left (right) panel corresponds to the calculation
without (with) resonances taken into account. The mass of the strange quark isms ¼ 79 MeV. The dashed lines correspond to the form
factor model from [18], the dotted lines correspond to the model from [12], and the solid lines are calculated according to Eqs. (A7)–
(A9) and (A17).
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mass of the strange quark observed in Fig. 4 may be over-
shadowed by theoretical uncertainties, although this aspect
requires further investigation.

Finally, in Figs. 5 and 6 we show the normalized
forward-backward asymmetries in Eq. (5). Usually, for
the normalized forward-backward asymmetry the quantity
d �AFB=dq̂

2 is chosen. Along with this one can define the

forward-backward asymmetry d ~AFB=dq̂
2, normalized in a

different way [cf. Eq. (5)]. Comparing both figures we see
that the latter asymmetry in Fig. 6 has interesting proper-
ties: (i) it is almost independent of the form factor model,
and (ii) it may reach values up to �0:75 which are much
larger than the maximal values taken by the asymmetry in

Fig. 5. These properties, in our opinion, make d ~AFB=dq̂
2 a

0.1 0.2 0.3 0.4 0.5

mee mB

0.1

0.05

0

0.05
A

T2

0.1 0.2 0.3 0.4 0.5
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0.4
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0.2

0.1

0

0.1

0.2

A
T2

0.1 0.2 0.3 0.4 0.5

mee mB
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0.05

0

0.05

A
T2

0.1 0.2 0.3 0.4 0.5

mee mB

0.4

0.3

0.2

0.1

0

0.1

0.2

A
T2

FIG. 4. Transverse asymmetry as a function of mee=mB. Left (right) panels correspond to the calculation without (with) resonances
taken into account. Top (bottom) panels correspond to the calculation with mass ms ¼ 79 MeV (ms ¼ 0). The lines are defined as in
Fig. 3.
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FIG. 5. The normalized forward-backward asymmetry d �AFB=dq̂
2 as a function of mee=mB. The left (right) panel corresponds to the

calculation without (with) resonances taken into account. The mass of the strange quark is ms ¼ 79 MeV. The lines are defined as in
Fig. 3.
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convenient observable for experimental study. Note that
both these asymmetries change insignificantly when going
from ms ¼ 0 to ms ¼ 79 MeV.

B. Observables integrated over q2

In Tables V, VI, VII, and VIII we present results of the
calculation of various observables in the framework of the
SM, integrated over q2. Two regions of eþe� invariant

mass mee�
ffiffiffiffiffi
q2

p
are considered: (a) 0:030GeV<mee<

1GeV and (b) 0:5GeV<mee<1GeV. These intervals
are selected because they turn out to be convenient for
future experiments being planned at the LHCb (see
Ref. [22]). In particular, the limit 0.030 GeV for
interval (a) is taken because at lower masses, mee <
0:030 GeV, it is difficult to define the plane of the lepton
pair. When selecting interval (b) we took into account that
the resolution on the � angle in Fig. 1, according to the
analysis of [22], for mee > 0:5 GeV is considerably better
than the resolution for mee < 0:5 GeV. In addition, in
region (b) the vector resonances �, !, � are expected to
show up most prominently.

As seen from Tables V and VI, the branching ratio does
not depend on the s quark mass, while it is sensitive to the
form factors, especially in region (b).
The value of the K� polarization fraction hf0i does not

change when varying the mass of the strange quark, while
the polarization fractions hf?i, hfki show weak depen-

dence on value of ms. Variations of all fractions with the
form factor models are about 10%–20%. In region (a) the
longitudinal polarization is smaller than the transverse
ones, while in region (b) the longitudinal polarization
prevails over the transverse ones.

As for the asymmetry hAð2Þ
T i, one can notice its strong

dependence on the choice of the form factors and espe-
cially on the value of the strange quark mass. Note that for
the form factors, calculated using Eqs. (A7)–(A9) and
(A17), this asymmetry is proportional toms if one neglects

the mass of K�. Then the hAð2Þ
T i value in the last column of

these tables would be equal to zero. However, in our
calculation we do not neglect the mass of K�; therefore
hAð2Þ

T i � 0 for ms ¼ 0. For the nonzero value of ms the
calculated asymmetry is of the order 3%–5% depending on
the choice of the form factors. The asymmetry hAImi ap-
pears to be very small, on the level of 10�5–10�4.
Now we discuss the results with the total amplitude,

including resonances (see Tables VII and VIII). In this

0.1 0.2 0.3 0.4 0.5

mee mB

0.75

0.5

0.25

0
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q2
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mee mB

0.75
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0.25
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0.75

d
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q2

FIG. 6. The normalized forward-backward asymmetry d ~AFB=dq̂
2 as a function of mee=mB. The left (right) panel corresponds to the

calculation without (with) resonances taken into account. The mass of the strange quark is ms ¼ 79 MeV. The lines are defined as in
Fig. 3.

TABLE V. Predictions of the SM for the integrated branching
ratio �Bh�i, the polarization parameters hfii, and the asymme-

tries hAð2Þ
T i, hAImi with the integration boundaries 0:030 GeV 


mee 
 1 GeV. The contribution of the resonances �, !, ’ is not
included. FF stands for the form factor model chosen according
to [12,18] and Eqs. (A7)–(A9) and (A17).

ms ¼ 79 MeV ms ¼ 0
FF [12] FF [18] FF FF [12] FF [18] FF

�Bh�i � 107 1.92 1.79 1.99 1.92 1.79 1.99

hf0i 0.25 0.20 0.19 0.25 0.20 0.19

hf?i 0.39 0.41 0.42 0.38 0.40 0.41

hfki 0.36 0.39 0.39 0.38 0.40 0.40

hAð2Þ
T i � 102 4.1 3.5 4.2 0.1 �0:4 0.2

hAImi � 105 2. 1. 3. 1. 0. 2.

TABLE VI. Same as Table V but with the integration bounda-
ries 0:5 GeV 
 mee 
 1 GeV.

ms ¼ 79 MeV ms ¼ 0

FF [12] FF [18] FF FF [12] FF [18] FF

�Bh�i � 108 5.7 4.8 5.2 5.7 4.8 5.2

hf0i 0.62 0.56 0.55 0.62 0.56 0.55

hf?i 0.20 0.23 0.24 0.19 0.22 0.23

hfki 0.18 0.21 0.22 0.19 0.22 0.23

hAð2Þ
T i � 102 5.0 3.6 5.4 0.6 �0:9 0.9

hAImi � 105 5. 2. 8. 3. �1: 5.
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calculation, for definiteness, the relative resonant phases
�V for V ¼ �, !, � have been taken equal to each other.
For the estimation, we have chosen three values of the
phase: ��=4, 0, and þ�=4.

Let us start with the branching ratio �Bh�i. As seen by
comparing Tables Vand VI with Tables VII and VIII, in the
q2 interval (a) the resonant contribution is negligibly small.
In interval (b) this contribution is bigger, at the level of 1%,
which is still much smaller than the expectations of
Ref. [22].

The polarization fractions of the K� also do not change
by more than �5% after inclusion of the resonances,
though hfii are more sensitive to the choice of the transi-
tion form factors B ! K�.

On the contrary, the asymmetry hAð2Þ
T i receives a large

contribution from the resonances. In the region
0:030 GeV<mee < 1 GeV, this contribution can reach
up to 15% depending on the choice of form factors and
the resonant phase �V , while in the region 0:5 GeV<
mee < 1 GeV, the resonant contribution appears to be
much smaller, �3%. Of course, the asymmetry remains
of the order of a few percent. We should emphasize the
strong dependence of this observable on the choice of form
factors.

This integrated asymmetry remains sensitive to the value
of ms, and therefore sensitive to the wrong helicity tran-

sition bL ! sR þ �R. It also follows from our calculation

that effects of NP should lead to values of hAð2Þ
T i * 0:1;

otherwise, it will be difficult to distinguish these effects
from all model uncertainties discussed above in Sec. III A.
As for the asymmetry hAImi, it changes drastically after

adding the resonances (compare Tables V and VI with
Tables VII and VIII), from values �10�5 without reso-
nances to values �10�3 [in region (a)] and �10�4 [in
region (b)] with resonances. Note that hAImi is determined
by the imaginary part of the amplitude. The latter in the SM
(without resonances) is determined by the light-quark loop
through the function Yðq2Þ [30], and therefore the imagi-
nary part of the nonresonant amplitude appears to be very
small,�10�5. It is not surprising that the imaginary part of
the total amplitude in Eq. (20) is determined solely by the
resonant contribution.
Of course, this observable strongly depends on the reso-

nant phase �V ; however, for any phase it remains small.
Since this asymmetry is determined mainly by the resonant
amplitude, it does not show prominent dependence on ms,
especially in region (a). For these reasons hAImi is not very
suitable for the study of the chiral structure of the decay
amplitude. At the same time, the calculation shows that
observation of this asymmetry at the level of �1% or
bigger will indicate effects beyond the SM.

IV. CONCLUSIONS

Branching ratios and other observables for the rare
FCNC decay �B0

d ! �K�0ð! K��þÞeþe� have been

studied in the region of electron-positron invariant mass

TABLE VIII. Same as Table VII but with the integration
boundaries 0:5 GeV 
 mee 
 1 GeV.

ms ¼ 79 MeV ms ¼ 0
�V FF [12] FF [18] FF FF [12] FF [18] FF

��=4 5.7 4.8 5.3 5.7 4.8 5.2

�Bh�i � 108 0 5.6 4.8 5.2 5.6 4.8 5.2

�=4 5.6 4.7 5.2 5.6 4.7 5.2

��=4 0.62 0.56 0.55 0.62 0.56 0.55

hf0i 0 0.62 0.56 0.54 0.62 0.56 0.54

�=4 0.62 0.56 0.54 0.62 0.56 0.54

��=4 0.20 0.23 0.24 0.19 0.22 0.23

hf?i 0 0.20 0.23 0.24 0.19 0.22 0.23

�=4 0.20 0.23 0.24 0.19 0.22 0.23

��=4 0.18 0.21 0.21 0.19 0.22 0.23

hfki 0 0.18 0.21 0.22 0.19 0.22 0.23

�=4 0.18 0.21 0.22 0.19 0.23 0.23

��=4 5.0 3.5 5.3 0.5 �1:0 0.8

hAð2Þ
T i � 102 0 5.0 3.6 5.3 0.5 �0:9 0.9

�=4 5.0 3.6 5.4 0.6 �0:9 0.9

��=4 0.6 0.2 0.8 0.3 �0:1 0.5

hAImi � 104 0 �0:2 �0:8 �0:1 �0:5 �1:1 �0:4
�=4 �0:6 �1:1 �0:5 �0:8 �1:5 �0:8

TABLE VII. Predictions for the integrated branching ratio
�Bh�i, the polarization parameters hfii, and the asymmetries

hAð2Þ
T i, hAImi with the integration boundaries 0:030 GeV 


mee 
 1 GeV. The long-distance contribution from �, !, and
’ mesons is added. FF stands for the form factor model chosen
according to [12,18] and Eqs. (A7)–(A9) and (A17).

ms ¼ 79 MeV ms ¼ 0

�V FF [12] FF [18] FF FF [12] FF [18] FF

��=4 1.92 1.79 1.99 1.92 1.79 1.99

�Bh�i � 107 0 1.92 1.79 1.99 1.92 1.79 1.99

�=4 1.92 1.79 1.99 1.91 1.79 1.99

��=4 0.25 0.20 0.19 0.25 0.20 0.19

hf0i 0 0.25 0.20 0.19 0.25 0.20 0.19

�=4 0.24 0.20 0.19 0.24 0.20 0.19

��=4 0.39 0.41 0.42 0.38 0.40 0.40

hf?i 0 0.39 0.41 0.42 0.38 0.40 0.40

�=4 0.39 0.42 0.42 0.38 0.40 0.41

��=4 0.36 0.39 0.39 0.38 0.40 0.41

hfki 0 0.36 0.39 0.39 0.38 0.40 0.41

�=4 0.36 0.39 0.39 0.38 0.40 0.41

��=4 3.5 2.9 3.6 �0:5 �1:0 �0:4
hAð2Þ

T i � 102 0 3.6 3.0 3.7 �0:4 �1:0 �0:3
�=4 3.9 3.4 4.0 0. �0:6 0.1

��=4 0.6 0.6 0.6 0.6 0.6 0.6

hAImi � 103 0 �1:2 �1:3 �1:2 �1:2 �1:3 �1:2
�=4 �2:3 �2:4 �2:3 �2:3 �2:4 �2:3
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below the �cc threshold. Our main emphasis has been
placed on an accurate account of the mechanism �B0

d !
�K�0ð! K��þÞV with low-lying vector resonances V ¼
�ð770Þ, !ð782Þ, �ð1020Þ decaying into the eþe� pair.

The invariant-mass dependence of the branching ratio
and coefficients in the angular distribution of the lepton

pair, Að2Þ
T , AIm, d �AFB=dq

2, has been calculated and studied.
In view of the planned experiments at the LHCb, in which
the observables integrated over the invariant mass will be
measured [22], we also calculated the corresponding
quantities.

In general, the resonant contribution appears to be small
in the branching ratio, polarization parameters of the K�
meson, and forward-backward asymmetry. Nevertheless,
some of the observables change drastically after adding the
resonances to the pure SM contribution. In particular, the

q2 dependence of the asymmetry Að2Þ
T gets considerably

modified by the vector resonances. This observation is of

importance in view of the sensitivity of Að2Þ
T to the value of

the strange quark mass, and thereby to the chiral-odd

dipole transition bL ! sR þ �R. Thus A
ð2Þ
T is also sensitive

to effects of NP which are related to the right-handed

currents. Still, Að2Þ
T in the SM with resonances is small, of

the order of a few percent. The resonances also increase the
asymmetry AIm by at least 1 order of magnitude; however,
this observable remains very small, 10�4–10�3, and there-
fore it is difficult to measure.

The calculated quantities depend on the model of tran-
sition form factors which have been considered. In general,
the band due to different models is of the order of�5%. In
this connection, we have introduced a new forward-

backward asymmetry d ~AFB=dq
2, normalized differently

compared to the standard definition. This modified
forward-backward asymmetry has the advantages of being
almost independent of the form factor model and of taking
big values up to �0:75.

Most of the above features remain after integration of
the observables over the eþe� invariant mass up to 1 GeV.
Two integration regions have been selected which are
particularly suitable for the planned future measurements
at the LHCb [22]. The predictions for all integrated ob-
servables are given in the framework of the SM, taking into
account low-lying vector resonances.

APPENDIX A: MATRIX ELEMENTAND FORM
FACTORS

1. Matrix element

The effective Hamiltonian for the quark-level transition
b ! seþe� within the SM is well known and can be taken,
e.g., from Ref. [1]. It is expressed in terms of the local
operators Oi and Wilson coefficients Ci, where i ¼
1; . . . ; 6, 7�, 8g, 9V, 10A.

The matrix element of this effective Hamiltonian for the
nonresonant decay �B0

dðpÞ ! �K�0ðk; �ÞeþðqþÞe�ðq�Þ can

be written, in the so-called naive factorization [1], as

MNR ¼ GF�emffiffiffi
2

p
�

V�
tsVtb

�
h �K�0ðk; �Þj�s��PLbj �B0

dðpÞi

� ðCeff
9V �uðq�Þ��vðqþÞ þ C10A �uðq�Þ���5vðqþÞÞ

� 2

q2
Ceff
7�h �K�0ðk; �Þj �si���q

�ð �mbð�ÞPR

þ �msð�ÞPLÞbj �B0
dðpÞi �uðq�Þ��vðqþÞ

�
: (A1)

Here, Vij are the Cabibbo-Kobayashi-Maskawa matrix

elements [31], GF is the Fermi coupling constant, �em is
the electromagnetic fine-structure constant, PL;R ¼
ð1� �5Þ=2 denote chiral projectors, and �mbð�Þ [ �msð�Þ]
is the running bottom (strange) quark mass in the MS
scheme at the scale �. Moreover, ��� ¼ i

2 ½��; ���, q� ¼
ðqþ þ q�Þ�, Ceff

7� ¼ C7� � ð4 �C3 � �C5Þ=9� ð4 �C4 �
�C6Þ=3, Ceff

9V ¼ C9V þ Yðq2Þ, where Yðq2Þ is given in

Ref. [30].
The ‘‘barred’’ coefficients �Ci (for i ¼ 1; . . . ; 6) are de-

fined as certain linear combinations of the Ci, such that the
�Ci coincide at leading logarithmic order with the Wilson
coefficients in the standard basis [17]. The coefficients Ci

are calculated at the scale � ¼ mW , in a perturbative
expansion in powers of �sðmWÞ, and are then evolved
down to scales ��mb using the renormalization group
equations.

The MS mass �mbð�Þ can be related with the pole mass
mb at the scale � ¼ mb through [32,33]

�mbðmbÞ ¼ mb

�
1� 4

3

�sðmbÞ
�

� 10:167

�
�sðmbÞ

�

�
2

þO
��
�sðmbÞ

�

�
3
��

:

The expression for the next terms in this equation can be
found in Ref. [33]. The mass of the strange quark can be
determined from the spectral function sum rules or lattice
QCD simulation [34]. The up-to-date value of ms given by
the PDG [26] is �msð2 GeVÞ ¼ 95� 25 MeV. Note that
this running mass is evaluated at �0 ¼ 2 GeV with three
active quark flavors. The evolution of the �msð�Þ is gov-
erned by the renormalization group equation which has the
solution [35]

�msð�Þ
�msð�0Þ

¼ fð�sð�Þ=�Þ
fð�sð�0Þ=�Þ ;

with

fðxÞ ¼ x4=9ð1þ 0:895 062xþ 1:371 43x2 þOðx3ÞÞ:

2. Form factors of B ! K� transition
The hadronic part of the matrix element in Eq. (A1)

describing the B ! K�eþe� transition can be parame-
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trized in terms of B ! K� form factors, which usually are
defined as

h �K�ðk; �Þj�s��bj �BðpÞi ¼ 2Vðq2Þ
mB þmK�

"�����
��p�k�;

(A2)

h �K�ðk; �Þj�s���5bj �BðpÞi ¼ i���ðmB þmK� ÞA1ðq2Þ

� ið�� � pÞðpþ kÞ� A2ðq2Þ
mB þmK�

� ið�� � pÞq� 2mK�

q2

� ðA3ðq2Þ � A0ðq2ÞÞ; (A3)

with

A3ðq2Þ ¼ mB þmK�

2mK�
A1ðq2Þ

�mB �mK�

2mK�
A2ðq2Þ;

A0ð0Þ ¼ A3ð0Þ;
h �K�ðk; �Þj�s���q

�bj �BðpÞi ¼ i2T1ðq2Þ"�����
��p�k�; (A4)

h �K�ðk;�Þj�s����5q
�bj �BðpÞi

¼ T2ðq2Þð���ðP � qÞ � ð�� � qÞP�Þ

þ T3ðq2Þð�� � qÞ
�
q� � q2

P � qP�

�
; (A5)

with T1ð0Þ ¼ T2ð0Þ. In the above equations, q ¼ p� k,
P ¼ pþ k, p2 ¼ m2

B, k
2 ¼ m2

K� , �� is the polarization

vector of the K� meson, �� � k ¼ 0, and "0123 ¼ 1.
In the numerical estimations, we use the form factors

from LCSR calculations [12,18] as well as the large-en-
ergy-effective-theory form factors 
?ðq2Þ and 
kðq2Þ
[23,24,30]. Form factors given in [12] are parametrized
as follows

Fðq2Þ ¼ Fð0Þ expðc1q̂2 þ c2q̂
4Þ; (A6)

where q̂2 � q2=m2
B. The coefficients in this parametriza-

tion are listed in Table IX. The q2 dependence of the B !
K� form factors given in [18] is parametrized as

Fðq2Þ ¼ r1
1� q2=m2

R

þ r2
1� q2=m2

fit

; (A7)

Fðq2Þ ¼ r1
1� q2=m2

fit

þ r2
ð1� q2=m2

fitÞ2
; (A8)

Fðq2Þ ¼ r2
1� q2=m2

fit

; (A9)

where the fit parameters r1;2, m
2
R, and m2

fit are shown in

Table X. In the large-energy effective theory the seven a
priori independent B ! K� form factors in Eqs. (A2)–(A5)
can be expressed in terms of two universal form factors

?ðq2Þ and 
kðq2Þ [23]:

A1ðq2Þ ¼ 2EK�

mB þmK�

?ðq2Þ; (A10)

A2ðq2Þ ¼ mB þmK�

mB

ð
?ðq2Þ � 
kðq2ÞÞ; (A11)

A0ðq2Þ ¼ EK�

mK�

kðq2Þ þmK�

mB

ð
?ðq2Þ � 
kðq2ÞÞ; (A12)

Vðq2Þ ¼ mB þmK�

mB


?ðq2Þ; (A13)

T1ðq2Þ ¼ 
?ðq2Þ; (A14)

T2ðq2Þ ¼
�
1� q2

m2
B �m2

K�

�

?ðq2Þ; (A15)

T3ðq2Þ ¼ 
?ðq2Þ �
�
1�m2

K�

m2
B

�

kðq2Þ: (A16)

Note the different convention for the longitudinal form
factor with 
kðq2Þ ¼ mK�=EK��kðq2Þ, �kðq2Þ being defined

in Ref. [23]. Here, EK� is the energy of the final vector
meson in the B rest frame,

EK� ¼ mB

2

�
1� q2

m2
B

þm2
K�

m2
B

�
:

The form factors 
?ðq2Þ and 
kðq2Þ are defined by the

TABLE IX. Input values for the parametrization (A6) of the
B ! K� form factors.

A1 A2 A0 V T1 T2 T3

Fð0Þ 0.294 0.246 0.412 0.399 0.334 0.334 0.234

c1 0.656 1.237 1.543 1.537 1.575 0.562 1.230

c2 0.456 0.822 0.954 1.123 1.140 0.481 1.089

TABLE X. The parameters r1;2, m
2
R, and m2

fit describing the q2

dependence of the B ! K� form factors in the LCSR approach

[18] and T3ðq2Þ ¼ m2
B�m2

K�
q2

ð ~T3ðq2Þ � T2ðq2ÞÞ. The fit equations to
be used are given in the last column.

r1 r2 m2
R, GeV

2 m2
fit, GeV

2 Fit eq.

V 0.923 �0:511 ð5:32Þ2 49.40 (A7)

A1 0.290 40.38 (A9)

A2 �0:084 0.342 52.00 (A8)

A0 1.364 �0:990 ð5:28Þ2 36.78 (A7)

T1 0.823 �0:491 ð5:32Þ2 46.31 (A7)

T2 0.333 41.41 (A9)
~T3 �0:036 0.368 48.10 (A8)
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relations


?ðq2Þ ¼ mB

mB þmK�
Vðq2Þ;


kðq2Þ ¼ mB þmK�

2EK�
A1ðq2Þ � mB

mB þmK�
A2ðq2Þ:

(A17)

We use the definitions Eqs. (A7)–(A9) and (A17), with
parameters given in Table X, to determine the q2 depen-
dence of 
? and 
k.

[1] M. Antonelli, D.M. Asner, D. Bauer et al.,
arXiv:0907.5386v1.

[2] R. Ammar et al. (CLEO Collaboration), Phys. Rev. Lett.
71, 674 (1993).

[3] A. Ali and A.Ya. Parkhomenko, Eur. Phys. J. C 23, 89
(2002).

[4] S.W. Bosch and G. Buchalla, Nucl. Phys. B621, 459
(2002).

[5] D. Atwood, M. Gronau, and A. Soni, Phys. Rev. Lett. 79,
185 (1997); B. Grinstein, Y. Grossman, Z. Ligeti, and D.
Pirjol, Phys. Rev. D 71, 011504 (2005); D. Atwood, T.
Gershon, M. Hazumi, and A. Soni, Phys. Rev. D 71,
076003 (2005).

[6] Y. Grossman and D. Pirjol, J. High Energy Phys. 06 (2000)
029.

[7] L.M. Sehgal and J. van Leusen, Phys. Lett. B 591, 235
(2004).

[8] M. Gronau and D. Pirjol, Phys. Rev. D 66, 054008 (2002);
M. Gronau, Y. Grossman, D. Pirjol, and A. Ryd, Phys.
Rev. Lett. 88, 051802 (2002); J. P. Lee, Phys. Rev. D 69,
014017 (2004).

[9] D. Atwood, T. Gershon, M. Hazumi, and A. Soni, arXiv:
hep-ph/0701021v1; V.D. Orlovsky and V. I. Shevchenko,
Phys. Rev. D 77, 093003 (2008).

[10] T. Mannel and S. Recksiegel, Acta Phys. Pol. B 28, 2489
(1997); G. Hiller and A. Kagan, Phys. Rev. D 65, 074038
(2002); G. Hiller, M. Knecht, F. Legger, and T.
Schietinger, Phys. Lett. B 649, 152 (2007).

[11] D. Melikhov, N. Nikitin, and S. Simula, Phys. Lett. B 442,
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