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1Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
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We study the SUð3Þ linear sigma model for the pseudoscalar mesons in the Gaussian functional

approximation (GFA). We use the SUð3Þ linear sigma model Lagrangian with nonet scalar and

pseudoscalar mesons, including symmetry breaking terms. In the GFA, we take the Gaussian Ansatz

for the ground state wave function and apply the variational method to minimize the ground state energy.

We derive the gap equations for the dressed meson masses, which are actually just variational parameters

in the GFA method. We use the Bethe-Salpeter equation for meson-meson scattering, which provides the

masses of the physical nonet mesons. We construct the projection operators for the flavor SUð3Þ in order to
work out the scattering T matrix in an efficient way. In this paper, we discuss the properties of the Nambu-

Goldstone bosons in various limits of the chiral ULð3Þ �URð3Þ symmetry.
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I. INTRODUCTION

The masses and properties of the SUð3Þ scalar mesons
are long standing puzzles in hadron-nuclear physics related
to the underlying chiral symmetry of QCD. It is also very
interesting to describe the properties of these SUð3Þ scalar
and pseudoscalar mesons at finite temperature and density.
To this end it is important to study the ULð3Þ �URð3Þ
symmetric linear sigma model in the nonperturbative
Gaussian functional approximation (GFA) [1,2]. The linear
sigma model is a strongly interacting renormalizable quan-
tum field theory; due to the size of the self-interaction
coupling constant(s) the perturbative approximations
seem to be inapplicable. Therefore, a nonperturbative ap-
proximation, such as the Gaussian functional one, that is
equivalent to the resummation of certain infinite classes
of Feynman diagrams that are unitary and causal [1–3] is
called for.

The chiral ULð3Þ �URð3Þ symmetry in the SUð3Þ linear
sigma model [4] is both spontaneously and explicitly bro-
ken, which means that some pseudoscalar mesons are
Nambu-Goldstone (NG) bosons, i.e. with vanishing masses
in the chiral limit. Straightforward solutions to the gap
equations in the Gaussian wave functional approximation
yield nonzero meson masses even in the chiral limit [1,2];
however, proof of the NG theorem used to be an open
problem for over 30 years [1,5]. The first solution to this
problem in the Oð2Þ symmetric sigma model was based on
the Bethe-Salpeter (BS) equation [6], but other proof soon
followed [7]. The first proof was straightforwardly ex-
tended to Oð4Þ ’ SULð2Þ � SURð2Þ in Ref. [8] and was
finally proven in the general OðNÞ case in Ref. [5]. The

SUð3Þ linear sigma model has a chiral symmetry that
corresponds to the SULð3Þ � SURð3Þ subgroup of the (ex-
plicitly broken) Oð18Þ symmetry, that depends on the
specifics of the (symmetry breaking) parameters of the
model, and thus readily fit into this framework, but the
Nambu-Goldstone theorem has never been explicitly veri-
fied in the various limits of the chiral ULð3Þ �URð3Þ
Lagrangian.
There are also several influential studies of the thermal

properties of various spinless mesons that are based on the
Gaussian approximation, both in the two-flavor SUð2Þ
[9,10] and the three-flavor SUð3Þ cases [11], but again
without taking into account the Bethe-Salpeter equation.
Therefore, these studies do not obey the NG theorem in the
chiral limit and as such are ill-suited for the study of chiral
symmetry restoration.
As for the SUð3Þ case, there are many studies of the

properties of Uð3Þ mesons in the mean field, or the Born
approximation [12,13] and in the Gaussian approximation
[11]. The extension of the chiral SUð2Þ model to the chiral
SUð3Þ model is not trivial, because there are several differ-
ent self-interaction terms (three rather than one in the
simplest SUð2Þ case, but one of them, the �2, is generally
expected to be (much) smaller than the first one �1 [14]), so
we have to develop the necessary mathematical tools to
deal with the scattering Bethe-Salpeter equation (T matrix)
for the Uð3Þ mesons [12,13,15].
It is important to explicitly work out the NG bosons for

various cases of the chiral Lagrangian, so as to verify
which pseudoscalar mesons are NG bosons, before apply-
ing this formalism to nonzero temperature and/or density.
The question ofUAð1Þ symmetry breaking also looms large
over this endeavor, so we pay special attention to the
flavor-singlet-octet mixing.
As this is a complicated method applied to a difficult

problem, and many missteps have been made in the past,
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we take a step-by-step approach. We look first at the chiral
limit: even here there are some nontrivial cases, such as
when �2 ¼ 0 and c=0, (many) new naively unexpected
Nambu-Goldstone bosons appear beyond the ‘‘elementary
fields’’ that already exist in the Lagrangian—they are
‘‘composite’’ (bound state) NG bosons that correspond to
the brokenOð18Þ symmetry rather than theULð3Þ �URð3Þ
one that has (at most) nine NG bosons. This formation of
composite NG bosons demonstrates the nonperturbative
nature and the respect of the underlying symmetries by
the GFA method. We then turn on explicit chiral symmetry
breaking term h0 � 0, but with good SUð3Þ symmetry. We
show how this explicit symmetry breaking term influences
the masses of the pseudoscalar mesons to lowest (linear)
approximation.

In this paper, we present the necessary mathematical
expressions necessary for the application of the Gaussian
functional approximation, defined in Sec. III, to the SUð3Þ
linear sigma model introduced in Sec. II. In Sec. IV, we
provide the expressions for the Bethe-Salpeter equations in
various channels using the SUð3Þ projection operators
developed in Sec. V. In Sec. VI, we verify explicitly the
NG theorem for various cases and identify which are the
NG bosons. In Sec. VII, we briefly discuss the role of
explicit symmetry breaking terms by taking the simplest
case. Section VIII is devoted to a summary of this paper.

II. THE SUð3Þ LINEAR SIGMA MODEL

To understand the masses of scalar and pseudoscalar
mesons, we employ the SUð3Þ linear sigma model
[4,12,13,16] and use the GFA. In this section, we briefly
review the SUð3Þ linear sigma model and work out the
mass gap equations in the mean field approximation.

The Lagrangian density of the ULð3Þ �URð3Þ linear
sigma model is given by

Lð�Þ ¼ Trð@��y@���m2�y�Þ � �1 ½Trð�y�Þ�2
� �2 Trð�y�Þ2 þ c½Detð�Þ þ Detð�yÞ�
þ Tr½Hð�þ�yÞ�: (1)

The meson field matrix� is a complex 3� 3matrix of the
scalar and pseudoscalar meson nonets,

� ¼ Ta�a ¼ Tað�a þ i�aÞ; (2)

where �a are the scalar fields and �a are the pseudoscalar
fields. Ta ¼ �a=2 are the generators of Uð3Þ, where �a are

the Gell-Mann matrices with �0 ¼
ffiffi
2
3

q
1. The 3� 3 matrix

H breaks the chiral symmetry explicitly and is chosen as

H ¼ Taha; (3)

where ha are nine (external) SUð3Þ symmetry breaking

parameters. Only three (diagonal) ones, a ¼ ð0; 3; 8Þ, are
relevant and the two, a ¼ ð0; 8Þ, are the dominant ones. In
this paper, we only study the case h0 � 0, and so SUð3Þ
symmetry is conserved. We need to know at least the order
of magnitude of the coupling constants. Here we may use
the results of Ref. [11] as a (rough) guide to the expected
values of the coupling constants: to first approximation we
expect �1 ’ 50, �2 ’ 1:5, and if we define c ¼ �3f�, we
find �3 ’ 50. Thus, we see that this is indeed a strongly
coupled system and that we need a nonperturbative
approximation.
The generators of Uð3Þ satisfy the (anti)commutation

relations:

½�a; �b� ¼ 2ifabc�c; and f�a; �bg ¼ 2dabc�c; (4)

where dabc and fabc ‘‘structure constants’’ are defined to
contain the 0 index. The values of SUð3Þ structure con-
stants are provided in any good textbook and in review
articles [17]. Those f structure constants with a zero
among its a, b, c indices are zero, and those d structure
constants containing 0 in its a, b, c indices are only non-

zero for d0ab ¼
ffiffiffiffiffiffiffiffi
2=3

p
�ab, with a b ¼ 1; . . . ; 8.

By inserting the� field into the Lagrangian, the follow-
ing Lagrangian is obtained:

Lð�a;�aÞ ¼ 1
2½@��a@

��a þ @��a@
��a�

� 1
2m

2ð�a�a þ �a�aÞ
þ Gabcð�a�b�c � 3�a�b�cÞ
� 2H abcd�a�b�c�d � 1

3F abcdð�a�b�c�d

þ �a�b�c�dÞ þ ha�a: (5)

The coefficients Gabc, F abcd and H abcd are given by

G abc ¼ c

6

�
dabc � 3

2
ð�a0d0bc þ �b0da0c þ �c0dab0Þ

þ 9

2
d000�a0�b0�c0

�
; (6)

F abcd ¼ �1

4
ð�ab�cd þ �ad�bc þ �ac�bdÞ

þ �2

8
ðdabndncd þ dadndnbc þ dacndnbdÞ; (7)

H abcd ¼ �1

4
�ab�cd

þ �2

8
ðdabndncd þ facnfnbd þ fbcnfnadÞ: (8)

Considering the shift of the vacuum expectation values of
�a ¼ ��a þ �0

a, the Lagrangian can be written as
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Lð�a;�aÞ ¼ 1
2½@��a@

��a þ @��a@
��a � �aðm2

SÞab�b � �aðm2
PÞab�b� þ ðGabc � 4

3F abcd ��dÞ�a�b�c

� 3ðGabc þ 4
3H abcd ��dÞ�a�b�c � 2H abcd�a�b�c�d � 1

3F abcdð�a�b�c�d þ �a�b�c�dÞ �Uð ��Þ; (9)

where we have just written �a instead of �0
a for simplicity

of writing. The potential term Uð ��Þ is the tree-
approximation potential and ��a is determined at the tree
level. The tree-level potential is

Uð ��aÞ ¼ m2

2
��2
a �Gabc ��a ��b ��c þ 1

3
F abcd ��a ��b ��d ��d

� ha ��a: (10)

The mean field ��a is obtained by the variation.

@Uð ��aÞ
@ ��a

¼ m2 ��a � 3Gabc ��b ��c þ 4

3
F abcd ��b ��c ��d � ha

¼ 0; (11)

and the ‘‘tree-level’’ masses of the scalar and pseudoscalar
mesons are given by

ðm2
SÞab ¼ m2�ab � 6Gabc ��c þ 4F abcd ��c ��d;

ðm2
PÞab ¼ m2�ab þ 6Gabc ��c þ 4H abcd ��c ��d:

(12)

In the general SUð3Þ symmetry breaking case, the 0–8 off-
diagonal components of these matrices are not zero. The

physical states must have a diagonal mass matrix, and we
have to diagonalize the mass matrices.

III. GAUSSIAN FUNCTIONAL APPROXIMATION

The GFA [2,6,8] is the method based on assuming the
ground state solution is a Gaussian functional around the
mean field. We get the effective potential by acting the
Hamiltonian on the ground state with scalar mesons having
vacuum expectation values.
First, the Schrödinger equation in the functional formal-

ism is given as

Hj0i ¼ Ej0i; (13)

where H is the total Hamiltonian and E is the correspond-
ing energy for the wave function j0i. The effective poten-
tial can be obtained by

E ¼
Z

d3xh0jH j0i; (14)

where the Hamiltonian density is obtained through the
Legendre transformation as

H ð�a;�aÞ ¼ � 1

2

�2

��2
a

þ 1

2
ðr�aÞ2 � 1

2

�2

��2
a

þ 1

2
ðr�aÞ2 þ 1

2
m2ð�2

a þ �2
aÞ � Gabcð�a�b�c � 3�a�b�cÞ

þ 2H abcd�a�b�c�d þ 1

3
F abcdð�a�b�c�d þ �a�b�c�dÞ � ha�a; (15)

and the ground state wave functional as a Gaussian function is

j0i ¼ N exp½�1
4ð�a � ��aÞG�1

ab ðm�Þð�b � ��bÞ � 1
4�aG

�1
ab ðm�Þ�b�: (16)

Here, N is the normalization factor. The mass propagator is written as

Gabðx; yÞ ¼ 1

2
�ab

Z d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2 þm2
a

q ei
~kð ~x� ~yÞ: (17)

Finally the effective potential can be calculated as

" ¼ h0jH j0i; (18)

¼ 1
2m

2 ��2
a þ 1

4fG�1
ab ðm�Þ þG�1

ab ðm�Þg þ 1
2ðm2 �m2

�a
ÞGabðm�Þ þ 1

2ðm2 �m2
�a
ÞGabðm�Þ

� Gabcf ��a ��b ��c þ 3 ��aðGbcðm�Þ �Gbcðm�ÞÞg þ 2H abcdfGabðm�Þ ��c ��d þGabðm�ÞGcdðm�Þg
þ 1

3F abcdf ��a ��b ��c ��d þ 6 ��a ��bGcdðm�Þ þ 3Gabðm�ÞGcdðm�Þ þ 3Gabðm�ÞGcdðm�Þg � ha ��a: (19)

The gap equations for scalar and pseudoscalar mesons are obtained by applying the variational principle with respect to
meson masses, @"

@ma
¼ 0 and then the masses are given as

ðm2
SÞab ¼ m2�ab � 6Gabc ��c þ 4F abcd ��c ��d þ 4F abcdGcdðm�Þ þ 4H abcdGcdðm�Þ;

ðm2
PÞab ¼ m2�ab þ 6Gabc ��c þ 4H abcd ��c ��d þ 4H abcdGcdðm�Þ þ 4F abcdGcdðm�Þ:

(20)

The equation following from the variation of the energy density with respect to the mean field value @"
@ ��a

¼ 0 is given by
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ha ¼ m2 ��a � 3Gabc½ ��b ��c þGbcðm�Þ �Gbcðm�Þ� þ 4H abcd ��bGcdðm�Þ þ 1
3F abcd½4 ��b ��c ��d þ 12 ��bGcdðm�Þ�:

(21)

These equations provide the masses and the mean field
values of the meson fields.

IV. T MATRIX FOR MESON-MESON SCATTERING

As explained in Refs. [5,6] one should work out the T
matrix for the determination of the pseudoscalar mesons in
order to fulfill the NG theorem. We work out the �-�
scattering for pseudoscalar mesons. The interaction kernel
in the �-� channel is written as

�iVacbd ¼ �i2H acbd � 2 � 2� i3

�
Gbea þ 4

3
H beaf ��f

�
2

� i

s�m2
e

ð�iÞ3
�
Gedc þ 4

3
H edcg ��g

�
2

¼ �i

�
8H acbd þ 36

�
Gbea þ 4

3
H beaf ��f

�

� 1

s�m2
e

�
Gedc þ 4

3
H edcg ��g

��
: (22)

With this interaction kernel we can get the T matrix as

� iTabcd ¼ �iVabcd � iVabefi�efð�iVefcdÞ þ . . .

¼ �iðVabcd þ Vabef�efTefcd þ . . .Þ: (23)

Therefore, what we need to solve is the scattering matrix

Tabcd ¼ Vabcd þ Vabef�efTefcd: (24)

The polarization term for meson masses ma and mb is

i�abðp2Þ ¼
Z i

ðk� pÞ2 �m2
a þ i"

i

k2 �m2
b þ i"

d4k

ð2�Þ4 :
(25)

To work out the polarization function�ab, first let us work
out the p2 ¼ 0 case. In this case, we can write

�abð0Þ ¼ i
Z � 1

k2 �m2
a þ i"

� 1

k2 �m2
b þ i"

�
1

m2
a �m2

b

� d4k

ð2�Þ4 ¼
I0ðm2

aÞ � I0ðm2
bÞ

m2
a �m2

b

: (26)

Here, we can write the integral as

I0ðm2Þ ¼ i
Z 1

k2 �m2 þ i"

d4k

ð2�Þ4 ¼ i
Z 1

k20 � ~k2 �m2 þ i"

d4k

ð2�Þ4

¼ i
Z 1

ðk0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p
þ i"Þðk0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p
þ i"Þ

d4k

ð2�Þ4 ¼
1

2

Z d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2 þm2
p ¼ 1

4�2

Z �

0

k2dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

¼ 1

8�2
m2½x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x23

q
� logjx3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x23

q
j�; (27)

where x3 ¼ �=m. We take�� 1 GeV to be fixed as a parameter of the model. Wemay take thefour-dimensional cutoff by
transforming the above integral as k0 ¼ ik4:

I0ðm2Þ ¼ i
Z 1

k2 �m2 þ i"

d4k

ð2�Þ4 ¼
Z 1

k2 þm2

d4k

ð2�Þ4 ¼
1

2�2

Z k3dk

k2 þm2
¼ 1

4�2
m2½x24 � logj1þ x24j�; (28)

where x4 ¼ �=m.
We write here the case for ma ¼ mb ¼ m, which is

written in the paper of Nakamura et al. [8]. The general
case has to be worked out in the same frame.

�aaðsÞ ¼ �aað0Þ þ s

ð4�Þ2 ð�1þ JaaðsÞÞ; (29)

where

JaaðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

s
� 1

s
arcsin

ffiffiffiffiffiffiffiffiffi
s

4m2

r
; (30)

for s
4m2 < 1, and

JaaðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

s

s �
log

� ffiffiffiffiffiffiffiffiffi
s

4m2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

4m2
� 1

r �
� i

�

2

�
;

(31)

for 1< s
4m2 <1. We should work out the general case

ma � mb, in the ‘‘dispersive’’ form [see Eqs. (33)]
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IM�ðsÞ ¼ i
Z d4k

ð2�Þ4
1

½k2 �M2 þ i��½ðk�PÞ2 ��2 þ i��
¼ IM�ð0Þ� s

ð4�Þ2KM�ðsÞ

¼ 1

2�0

�
�2

�2 �M2

�
� s

ð4�Þ2KM�ðsÞ

¼ 1

2�0

�
�2

�2 �M2

�
� s

16�3

Z dt

t� s� i�
ImKM�ðtÞ;

(32)

where s ¼ P2 and the real and imaginary parts are

ImKM�ðsÞ ¼ 1

s
ImIM�ðsÞ

¼ �

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� ðM��Þ2

s

��
1� ðMþ�Þ2

s

�s

� �ðs� ðMþ�Þ2Þ;

ReKM�ðsÞ ¼ 2

s

��
M2 ��2

2s

�
log

M

�

þ 1

2

�
1þ

�
M2 þ�2

M2 ��2

�
log

M

�

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� ðM��Þ2

s

��
1� ðMþ�Þ2

s

�s

� tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� ðMþ�Þ2
s� ðM��Þ2

s �
: (33)

V. SUð3Þ PROJECTION OPERATORS AND MIXING
OPERATORS

To solve the scattering Eq. (24), we use the method of
projection operators. The SUð3Þ group structure for the
SUð3Þ sigma model is

ð1F � 8FÞ � ð1F � 8FÞ ¼ 1ð1Þ � 8xð1Þ � 8yð1Þ � 1ð8Þ
� 8Sð8Þ � 8Að8Þ � 27Sð8Þ � 10Að8Þ
� 10Að8Þ: (34)

We can write out the corresponding projection operators
with some manipulations:

P1ð1Þ
abcd ¼ �ab�cdja;b;c;d¼0;

P8xð1Þ
abcd ¼ 3

2

X8
n¼1

ðdabndcdnÞja;c¼0;b;d¼1...8;

P8yð1Þ
abcd ¼ 3

2

X8
n¼1

ðdabndcdnÞja;c¼1...8;b;d¼0;

P1ð8Þ
abcd ¼

1

8
�ab�cdja;b;c;d¼1...8;

P8Sð8Þ
abcd ¼ 3

5

X8
n¼1

ðdabndcdnÞja;b;c;d¼1...8

P8Að8Þ
abcd ¼ 1

3

X8
n¼1

ðfabnfcdnÞ;

P27Sð8Þ
abcd ¼ 1

2
ð�ac�bd þ �ad�bcÞja;b;c;d¼1���8 � P1ð8Þ

abcd

� P8Sð8Þ
abcd ;

Pð10þ10ÞAð8Þ
abcd ¼ 1

2
ð�ac�bd � �ad�bcÞja;b;c;d¼1...8 � P8Að8Þ

abcd ;

(35)

where the indices a, b, c, d can be 0 . . . 8. When they are 0,
they are related to 1F of Eq. (34); while when they are
1 . . . 8, they are related to 8F of Eq. (34). These projection
operators satisfy

Px
abefP

y
efcd ¼ �xyPx

abcd: (36)

We have used various relations for the derivation of the
projection operators:

faijfbij ¼ 3�ab; daijdbij ¼ 5
3�ab; daijfbij ¼ 0; daij�ij ¼ 0; daijdbjkdcki ¼ �1

2dabc;

faijfbjkdcki ¼ �3
2dabc; faijfbjkfcki ¼ 2

3fabc; faijdbjkdcki ¼ 0;

dabndcdn þ dacndbdn þ dadndbcn ¼ 1
3ð�ab�cd þ �ac�bd þ �ad�bcÞ;

facnfbdn þ fadnfbcn � 3dabndcdn ¼ �ð�ac�bd þ �ad�bcÞ þ �ab�cd; facndbdn � fadnfbcn � fabnfcdn ¼ 0;

dacndbdn � dadndbcn � fabnfcdn ¼ 1
12ð�ad�bc � �ac�bdÞ:

(37)

Besides these projection operators, we also have several mixing operators. They are used to express the mixing between
the singlet and octet mesons. We note that they are not projection operators, and so we useO to denote them. In the singlet
channel, there are two operators:
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O1ðM1Þ
abcd ¼ �ab�cdja;b¼1...8;c;d¼0;

O1ðM2Þ
abcd ¼ �ab�cdja;b¼0;c;d¼1...8:

(38)

They provide the mixing of the singlet and octet mesons in
the resultant singlet channel. While in the octet channel,
there are six operators

O8ðM1Þ
abcd ¼ X8

n¼1

dabndcdnja¼0;b;c;d¼1���8;

O8ðM2Þ
abcd ¼ X8

n¼1

dabndcdnja;b;d¼1...8;c¼0;

O8ðM3Þ
abcd ¼ X8

n¼1

dabndcdnjb¼0;a;c;d¼1���8;

O8ðM4Þ
abcd ¼ X8

n¼1

dabndcdnja;b;c¼1...8;d¼0;

O8ðM5Þ
abcd ¼ X8

n¼1

dabndcdnja;d¼0;b;c¼1���8;

O8ðM6Þ
abcd ¼ X8

n¼1

dabndcdnjb;c¼0;a;d¼1...8:

(39)

They provide the mixing of the singlet-octet mesons and
the octet mesons in the resultant octet channel.
We modify the scattering Eq. (24) to be

Tabcd ¼ Vabcd þ Vabef�efTefcd

¼ Vabcd þ Vaba0b0�a0b0c0d0Tc0d0cd; (40)

where �abcd ¼ �ac�bd�ab. Then by using the projection
operators as well as the mixing operators, we find that there
is a unique expansion for Vabcd of the scattering of �� !
��:

Vabcd ¼ V1ð1ÞP
1ð1Þ
abcd þ V8xð1ÞP

8xð1Þ
abcd þ V8yð1ÞP

8yð1Þ
abcd þ V1ð8ÞP

1ð8Þ
abcd þ V8Sð8ÞP

8Sð8Þ
abcd þ V27Sð8ÞP

27Sð8Þ
abcd þ V8Að8ÞP

8Að8Þ
abcd

þ V10Að8ÞP
ð10þ10ÞAð8Þ
abcd þ V1ðM1ÞO

1ðM1Þ
abcd þ V1ðM2ÞO

1ðM2Þ
abcd þ V8ðM1ÞO

8ðM1Þ
abcd þ V8ðM2ÞO

8ðM2Þ
abcd þ V8ðM3ÞO

8ðM3Þ
abcd

þ V8ðM4ÞO
8ðM4Þ
abcd þ V8ðM5ÞO

8ðM5Þ
abcd þ V8ðM6ÞO

8ðM6Þ
abcd ; (41)

and so does �abcd. Moreover, we find that for �abcd only the projection operators are enough, which means

�1ðMiÞ ¼ �8ðMiÞ ¼ 0: (42)

Since we find that both Vabcd and�abcd can be expanded by the projection operators (35) and the mixing operators (38)
and (39), we assume that the scattering matrix Tabcd can also be expanded by these operators:

Tabcd ¼ T1ð1ÞP
1ð1Þ
abcd þ T8xð1ÞP

8xð1Þ
abcd þ T8yð1ÞP

8yð1Þ
abcd þ T1ð8ÞP

1ð8Þ
abcd þ T8Sð8ÞP

8Sð8Þ
abcd þ T27Sð8ÞP

27Sð8Þ
abcd þ T8Að8ÞP

8Að8Þ
abcd

þ T10Að8ÞP
ð10þ10ÞAð8Þ
abcd þ T1ðM1ÞO

1ðM1Þ
abcd þ T1ðM2ÞO

1ðM2Þ
abcd þ T8ðM1ÞO

8ðM1Þ
abcd þ T8ðM2ÞO

8ðM2Þ
abcd þ T8ðM3ÞO

8ðM3Þ
abcd

þ T8ðM4ÞO
8ðM4Þ
abcd þ T8ðM5ÞO

8ðM5Þ
abcd þ T8ðM6ÞO

8ðM6Þ
abcd ; (43)

and then we can separate the scattering Eq. (40) into several equations in different channels. We discuss them in the
following subsections.

A. Singlet channel

We have the following relations for all the operators:

O1
abefO

x
efcd ¼ 0; (44)

whereO1 denotes P1ð1Þ, P1ð8Þ,O1ðMiÞ andO1ðM2Þ, andOx denotes operators of other flavors. Therefore, we can write out the
Eq. (40) in the singlet channels:
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T1ð1ÞP
1ð1Þ
abcd þ T1ð8ÞP

1ð8Þ
abcd þ T1ðM1ÞO

1ðM1Þ
abcd þ T1ðM2ÞO

1ðM2Þ
abcd

¼ ðV1ð1ÞP
1ð1Þ
abcd þ V1ð8ÞP

1ð8Þ
abcd þ V1ðM1ÞO

1ðM1Þ
aba0b0 þ V1ðM2ÞO

1ðM2Þ
aba0b0 Þ þ ðV1ð1ÞP

1ð1Þ
aba0b0 þ V1ð8ÞP

1ð8Þ
aba0b0 þ V1ðM1ÞO

1ðM1Þ
aba0b0

þ V1ðM2ÞO
1ðM2Þ
aba0b0 Þð�1ð1ÞP

1ð1Þ
a0b0c0d0 þ�1ð8ÞP

1ð8Þ
a0b0c0d0 ÞðT1ð1ÞP

1ð1Þ
c0d0cd þ T1ð8ÞP

1ð8Þ
c0d0cd þ T1ðM1ÞO

1ðM1Þ
c0d0cd þ T1ðM2ÞO

1ðM2Þ
c0d0cdÞ: (45)

It can be simplified to

T1ð1Þ 2
ffiffiffi
2

p
T1ðM2Þ

2
ffiffiffi
2

p
T1ðM1Þ T1ð8Þ

 !
¼ V1ð1Þ 2

ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
þ V1ð1Þ 2

ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
�1ð1Þ 0
0 �1ð8Þ

� �

� T1ð1Þ 2
ffiffiffi
2

p
T1ðM2Þ

2
ffiffiffi
2

p
T1ðM1Þ T1ð8Þ

 !
;

and its solution is

T1ð1Þ 2
ffiffiffi
2

p
T1ðM2Þ

2
ffiffiffi
2

p
T1ðM1Þ T1ð8Þ

 !
¼ 1� V1ð1Þ 2

ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
�1ð1Þ 0
0 �1ð8Þ

� � !�1 V1ð1Þ 2
ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
:

B. Octet channel (8xð1Þ, 8yð1Þ and 8Sð8Þ)
We have the following relations for all the operators:

O8
abefO

x
efcd ¼ 0; (46)

whereO8 denotes P8xð1Þ, P8yð1Þ, P8Sð8Þ andO8ðMiÞ, andOx denotes other operators. Therefore, we can similarly write out the
scattering Eq. (40) in the octet channels. After some simplifications, it turns to be

T8xð1Þ 2
3T8ðM5Þ

ffiffiffiffi
10

p
3 T8ðM1Þ

2
3T8ðM6Þ T8yð1Þ

ffiffiffiffi
10

p
3 T8ðM3Þffiffiffiffi

10
p
3 T8ðM1Þ

ffiffiffiffi
10

p
3 T8ðM4Þ T8Sð8Þ

0
BB@

1
CCA ¼

V8xð1Þ 2
3V8ðM5Þ

ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BB@

1
CCAþ

V8xð1Þ 2
3V8ðM5Þ

ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BB@

1
CCA

�
�8xð1Þ 0 0
0 �8yð1Þ 0
0 0 �8Sð8Þ

0
B@

1
CA T8xð1Þ 2

3T8ðM5Þ
ffiffiffiffi
10

p
3 T8ðM1Þ

2
3T8ðM6Þ T8yð1Þ

ffiffiffiffi
10

p
3 T8ðM3Þffiffiffiffi

10
p
3 T8ðM1Þ

ffiffiffiffi
10

p
3 T8ðM4Þ T8Sð8Þ

0
BB@

1
CCA;

and its solution is

T8xð1Þ 2
3T8ðM5Þ

ffiffiffiffi
10

p
3 T8ðM1Þ

2
3T8ðM6Þ T8yð1Þ

ffiffiffiffi
10

p
3 T8ðM3Þffiffiffiffi

10
p
3 T8ðM1Þ

ffiffiffiffi
10

p
3 T8ðM4Þ T8Sð8Þ

0
BBBB@

1
CCCCA ¼ 1�

V8xð1Þ 2
3V8ðM5Þ

ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BBBB@

1
CCCCA

�8xð1Þ 0 0

0 �8yð1Þ 0

0 0 �8Sð8Þ

0
BB@

1
CCA

0
BBBB@

1
CCCCA

�1

�
V8xð1Þ 2

3V8ðM5Þ
ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BBBB@

1
CCCCA:

C. 8Að8Þ, ð10 � 10ÞAð8Þ and 27Sð8Þ channels
We have the following relations for all the operators:

P8Að8Þ
abef O

x
efcd ¼ 0; (47)

where Ox denotes other operators. Therefore, we can write
out the scattering Eq. (40) in the 8Að8Þ channel:

T8Að8Þ ¼ V8Að8Þ þ V8Að8Þ�8Að8ÞT8Að8Þ: (48)

We have the following relations for all the operators:

Pð10þ10ÞAð8Þ
abef Ox

efcd ¼ 0; (49)

whereOx denotes operators of other flavors. Therefore, we
can write out the scattering Eq. (40) in the decuplet chan-
nel:
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T10Að8Þ ¼ V10Að8Þ þ V10Að8Þ�10Að8ÞT10Að8Þ: (50)

We have the following relations for all the operators:

P27Sð8Þ
abef Ox

efcd ¼ 0; (51)

where Ox denotes operators of other flavors. Therefore, we
can write out the scattering Eq. (40) in the 27Sð8Þ channel:

T27Sð8Þ ¼ V27Sð8Þ þ V27Sð8Þ�27Sð8ÞT27Sð8Þ: (52)

VI. THE NAMBU-GOLDSTONE THEOREM

To check whether there are Nambu-Goldstone bosons,
we need to check whether the scattering matrix TðsÞ has a
pole at s ¼ 0. In this section, we study the Nambu-
Goldstone theorem, and verify the Nambu-Goldstone bo-
sons in the SUð3Þ linear sigma model. We assume that
there is a SUð3Þ symmetry, which means that only ��0 is
nonzero ( ��i ¼ 0, for i ¼ 1 . . . 8). To further simplify our
calculation, we only study the pseudoscalar channels
(�� ! ��), where the pseudoscalar mesons propagate
in the interaction kernel.

Since the calculations in this system is still not so easy,
our analysis will be done step by step. First, we assume c ¼
�2 ¼ 0, and �1 � 0. In this case, we find that all the
pseudoscalar mesons are Nambu-Goldstone bosons. Then
we assume �2 � 0, and find that only one singlet and one
octet pseudoscalar mesons remain Nambu-Goldstone bo-
sons. Finally, we assume c � 0, which is the most general
case conserving SUð3Þ symmetry. We find that only one
octet pseudoscalar mesons remain to be Nambu-Goldstone
bosons.

A. Case I: c ¼ �2 ¼ 0

This is the first step. When c ¼ �2 ¼ 0, we find that
there is no mixing between two flavor-singlet mesons and
among the four flavor-octet mesons in the pseudoscalar
channel, and we can expand the potential matrix V (�-�
scattering) by only using the nonmixing projection opera-
tors (35):

Vabcd ¼ V1ð1ÞP
1ð1Þ
abcd þ V8xð1ÞP

8xð1Þ
abcd þ V8yð1ÞP

8yð1Þ
abcd

þ V1ð8ÞP
1ð8Þ
abcd þ V8Sð8ÞP

8Sð8Þ
abcd þ V27Sð8ÞP

27Sð8Þ
abcd

þ V8Að8ÞP
8Að8Þ
abcd þ V10Að8ÞP

ð10þ10ÞAð8Þ
abcd ; (53)

where the coefficients Vi are calculated to be

V1ð1Þ ¼ 2�1 þ 4�2
1 ��

2
0

s�ðm2
PÞ00

;

V8xð1Þ ¼ 2�1 þ 4�2
1 ��

2
0

s�ðm2
PÞii

;

V8yð1Þ ¼ V1ð8Þ ¼ V8Sð8Þ ¼ V8Að8Þ ¼ V27Sð8Þ ¼ V10Að8Þ ¼ 2�1:

(54)

To expand �ab at the point s ¼ 0, first we write out its
four-index form following Eq. (26):

�abcdðs ¼ 0Þ ¼ �ac�bd�abðs ¼ 0Þ

¼ �ac�bd

I0ðmaa
S Þ � I0ðmbb

P Þ
ðm2

SÞaa � ðm2
PÞbb

; (55)

and �abcd can also be expanded by using the projection
operators (35):

�abcd ¼ �1ð1ÞP
1ð1Þ
abcd þ�8xð1ÞP

8xð1Þ
abcd þ�8yð1ÞP

8yð1Þ
abcd

þ�1ð8ÞP
1ð8Þ
abcd þ�8Sð8ÞP

8Sð8Þ
abcd þ�27Sð8ÞP

27Sð8Þ
abcd

þ�8Að8ÞP
8Að8Þ
abcd þ�10Að8ÞP

ð10þ10ÞAð8Þ
abcd ; (56)

and its solution is

�1ð1Þ ¼ I0ðm00
S Þ � I0ðm00

P Þ
ðm2

SÞ00 � ðm2
PÞ00

;

�8xð1Þ ¼ I0ðm00
S Þ � I0ðmii

PÞ
ðm2

SÞ00 � ðm2
PÞii

;

�8yð1Þ ¼ I0ðmii
S Þ � I0ðm00

P Þ
ðm2

SÞii � ðm2
PÞ00

;

�1ð8Þ ¼ �8Sð8Þ ¼ �8Að8Þ ¼ �27Sð8Þ ¼ �10Að8Þ

¼ I0ðmii
S Þ � I0ðmii

PÞ
ðm2

SÞii � ðm2
PÞii

:

(57)

In the case of c ¼ 0 and �2 ¼ 0, the mass Eqs. (20) are
diagonal, so we have

ðm2
SÞ00 ¼ m2 þ 3�1 ��

2
0 þ 3�1I0ðm00

S Þ þ 8�1I0ðmii
S Þ

þ �1I0ðm00
P Þ þ 8�1I0ðmii

PÞ;
ðm2

SÞii ¼ m2 þ �1 ��
2
0 þ �1I0ðm00

S Þ þ 10�1I0ðmii
S Þ

þ �1I0ðm00
P Þ þ 8�1I0ðmii

PÞ; (58)

and
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ðm2
PÞ00 ¼ m2 þ �1 ��

2
0 þ �1I0ðm00

S Þ þ 8�1I0ðmii
S Þ

þ 3�1I0ðm00
P Þ þ 8�1I0ðmii

PÞ;
ðm2

PÞii ¼ m2 þ �1 ��
2
0 þ �1I0ðm00

S Þ þ 8�1I0ðmii
S Þ

þ �1I0ðm00
P Þ þ 10�1I0ðmii

PÞ; (59)

where i ¼ 1; . . . ; 8, and ðm2
SÞii denote ðm11

S Þ2, ðm22
S Þ2, etc.

Here we note that, as a matter of fact at the tree-
approximation level, the octet scalar mesons, the singlet
pseudoscalar scalar meson and the octet pseudoscalar me-
sons all have the same mass:

ðm2
SÞii ¼ ðm2

PÞ00 ¼ ðm2
PÞii ¼ m2 þ �1 ��

2
0: (60)

We note that one possible consistent solution to the gap
Eqs. (21) is that they all (still) have the same mass:

ðm2
SÞii ¼ ðm2

PÞ00 ¼ ðm2
PÞii

¼ m2 þ �1 ��
2
0 þ �1I0ðm00

S Þ þ 19�1I0ðmii
S Þ: (61)

This result is very interesting: whereas we expected to find
pseudoscalar Nambu-Goldstone bosons, which have zero
masses, we found that even the pseudoscalar mesons here
have nonzero masses ðm2

PÞ00 ¼ ðm2
PÞii. This is the usual

‘‘problem’’ of the NG theorem in the Gaussian
approximation.

From Eq. (21), we have

m2 ¼ ��1 ��
2
0 � 3�1I0ðm00

S Þ � 8�1I0ðmii
S Þ

� �1I0ðm00
P Þ � 8�1I0ðmii

PÞ: (62)

Then using this equation together with Eqs. (58) and (59),
we obtain

ðm2
SÞ00 ¼ 2�1 ��

2
0;

ðm2
SÞii ¼ �2�1I0ðm00

S Þ þ 2�1I0ðmii
S Þ;

ðm2
PÞ00 ¼ �2�1I0ðm00

S Þ þ 2�1I0ðm00
P Þ;

ðm2
PÞii ¼ �2�1I0ðm00

S Þ þ 2�1I0ðmii
PÞ:

(63)

In order to check whether there are Nambu-Goldstone
bosons, we only need to check if the following equations
hold

Viðs ¼ 0Þ�iðs ¼ 0Þ ¼ 1; (64)

because in this case there is no flavor mixing of T-matrix
elements/scattering operators. If Eq. (64) holds, then the
T-matrix elements subject to the following Bethe-Salpeter
equation:

TiðsÞ ¼ ViðsÞ þ ViðsÞ�iðsÞTiðsÞ (65)

have a pole at s ¼ 0. This means there are massless mesons
propagating, and thus the Nambu-Goldstone bosons turn
up.
Equation (64) can be easily checked when c ¼ �2 ¼ 0.

By using Eqs. (63) and (57), we have

�1ð1Þ ¼ ðm2
PÞ00

�4�1 ��
2
0 þ 2�1ðm2

PÞ00
;

�8xð1Þ ¼ ðm2
PÞii

�4�1 ��
2
0 þ 2�1ðm2

PÞii
;

(66)

and

�8yð1Þ ¼ �1ð8Þ ¼ �8Sð8Þ ¼ �8Að8Þ ¼ �27Sð8Þ ¼ �10Að8Þ

¼ 1

2�1

; (67)

Together with Eqs. (54) we have

Viðs ¼ 0Þ�iðs ¼ 0Þ ¼ 1 (68)

for all the allowed flavor representations 1ð1Þ, 8xð1Þ, 8yð1Þ,
1ð8Þ, 8Sð8Þ, 8Að8Þ, ð10 � 10ÞAð8Þ, 27Sð8Þ.
As there are several flavor singlets and octets, it is not

clear just how many NG bosons in these channels are
independent. Yet, it is clear that there are at least 1þ 8þ
10þ 27 ¼ 46 distinct NG bosons when c ¼ 0 and �2 ¼ 0.
That is (much) more than nine NG bosons expected in the
general ULð3Þ �URð3Þ linear sigma model, and more than
17 NG bosons when theOð18Þ symmetry is broken down to
Oð17Þ. The explanation for the fact that there are more than
17 NG bosons is that theOð18Þmay be dynamically broken
down to a symmetry that is lower than Oð17Þ, e.g. the
Oð16Þ or even Oð15Þ. In this sense the GFA approximation
is substantially different from the Born, or the one-loop
approximations, which are not known to lead to ground
state(s) with ‘‘exotically broken’’ symmetry.
Thus, we have proved that all the expected pseudoscalar

mesons are Nambu-Goldstone bosons when c ¼ 0 and
�2 ¼ 0, but also that there are many more. As there are

no ‘‘elementary’’ meson fields in the flavor ð10 � 10ÞAð8Þ
and 27Sð8Þ-plets in the SUð3Þ linear sigma model, we must

conclude that these NG bosons are (zero mass) bound
states of (massive) elementary boson fields. This goes to
show that the GFA method is well and truly nonperturba-
tive and capable of dynamically producing bound states

even in exotic flavor channels, such as the ð10 � 10ÞAð8Þ and
27Sð8Þ. Of course, this does not mean that in the ground

state of QCD there are exotic NG bosons, because the c ¼
0 and �2 ¼ 0 conditions do not correspond to reality.
Therefore, we discuss the c ¼ 0 and �2 � 0 case next.
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B. Case II: c ¼ 0 and �2 � 0

When c ¼ 0 and �2 � 0, the mixing between two sin-
glet pseudoscalar mesons and among three octet pseudo-
scalar mesons exist, and we need to use the mixing
operators. The scattering matrix V can be expanded by
using the nonmixing projection operators (35) as well as
the mixing operators (38) and (39), and the solution is

V1ð1Þ ¼ 2�1 þ 2

3
�2 þ 4

9

ð3�1 þ �2Þ2 ��2
0

s� ðm2
PÞ00

;

V8xð1Þ ¼ 2�1 þ 2

3
�2 þ 4

9

ð3�1 þ �2Þ2 ��2
0

s� ðm2
PÞii

;

V8yð1Þ ¼ 2�1 þ 2

3
�2 þ 4

9

�2
2 ��

2
0

s� ðm2
PÞii

;

V1ð8Þ ¼ 2�1 � 2

3
�2 þ 32

9

�2
2 ��

2
0

s� ðm2
PÞ00

;

V8Sð8Þ ¼ 2�1 � 4

3
�2 þ 10

9

�2
2 ��

2
0

s� ðm2
PÞii

;

V8Að8Þ ¼ 2�1 þ 6�2; V27Sð8Þ ¼ 2�1 þ 2�2;

V10Að8Þ ¼ 2�1;

V1ðM1Þ ¼ V1ðM2Þ ¼ 2

3
�2 þ 4

9

ð3�1�2 þ �2
2Þ ��2

0

s� ðm2
PÞ00

;

V8ðM1Þ ¼ V8ðM2Þ ¼ �2 þ 2

3

ð3�1�2 þ �2
2Þ ��2

0

s� ðm2
PÞii

;

V8ðM3Þ ¼ V8ðM4Þ ¼ �2 þ 2

3

�2
2 ��

2
0

s� ðm2
PÞii

;

V8ðM5Þ ¼ V8ðM6Þ ¼ �2 þ 2

3

ð3�1�2 þ �2
2Þ ��2

0

s� ðm2
PÞii

:

(69)

We do the same procedure for �abcd, and the results are
(after choosing s ¼ 0)

�1ð1Þ ¼ I0ðm00
S Þ � I0ðm00

P Þ
ðm2

SÞ00 � ðm2
PÞ00

;

�8xð1Þ ¼ I0ðm00
S Þ � I0ðmii

PÞ
ðm2

SÞ00 � ðm2
PÞii

;

�8yð1Þ ¼ I0ðmii
S Þ � I0ðm00

P Þ
ðm2

SÞii � ðm2
PÞ00

;

�1ð8Þ ¼ �8Sð8Þ ¼ �8Að8Þ ¼ �27Sð8Þ

¼ �10Að8Þ ¼ I0ðmii
S Þ � I0ðmii

PÞ
ðm2

SÞii � ðm2
PÞii

;

�1ðMiÞ ¼ �8ðMiÞ ¼ 0:

(70)

So �abcd is still ‘‘diagonal.’’
In the case of c ¼ 0 and �2 � 0, the masses are diago-

nal, and from Eqs. (20) we have

ðm2
SÞ00 ¼ m2 þ 3�1 ��

2
0 þ �2 ��

2
0 þ ð3�1 þ �2ÞI0ðm00

S Þ
þ ð8�1 þ 8�2ÞI0ðmii

S Þ þ
�
�1 þ 1

3
�2

�
I0ðm00

P Þ

þ
�
8�1 þ 8

3
�2

�
I0ðmii

PÞ;
ðm2

SÞii ¼ m2 þ �1 ��
2
0 þ �2 ��

2
0 þ ð�1 þ �2ÞI0ðm00

S Þ
þ ð10�1 þ 5�2ÞI0ðmii

S Þ þ ð�1 þ 1
3�2ÞI0ðm00

P Þ
þ ð8�1 þ 17

3�2ÞI0ðmii
PÞ; (71)

and

ðm2
PÞ00 ¼ m2 þ �1 ��

2
0 þ 1

3�2 ��
2
0 þ ð�1 þ 1

3�2ÞI0ðm00
S Þ

þ ð8�1 þ 8
3�2ÞI0ðmii

S Þ þ ð3�1 þ �2ÞI0ðm00
P Þ

þ ð8�1 þ 8�2ÞI0ðmii
PÞ;

ðm2
PÞii ¼ m2 þ �1 ��

2
0 þ 1

3�2 ��
2
0 þ ð�1 þ 1

3�2ÞI0ðm00
S Þ

þ ð8�1 þ 17
3�2ÞI0ðmii

S Þ þ ð�1 þ �2ÞI0ðm00
P Þ

þ ð10�1 þ 5�2ÞI0ðmii
PÞ: (72)

From Eq. (21), we have

m2 ¼ ��1 ��
2
0 �

1

3
�2 ��

2
0 � ð3�1 þ �2ÞI0ðm00

S Þ

� ð8�1 þ 8�2ÞI0ðmii
S Þ �

�
�1 þ 1

3
�2

�
I0ðm00

P Þ

�
�
8�1 þ 8

3
�2

�
I0ðmii

PÞ: (73)

Then using this equation together with Eqs. (71) and (72),
we obtain

ðm2
SÞ00 ¼ 2�1 ��

2
0 þ 2

3�2 ��
2
0;

ðm2
SÞii ¼ 2�1ðI0ðmii

S Þ � I0ðm00
S ÞÞ þ 2

3�2 ��
2
0

þ 3�2ðI0ðmii
PÞ � I0ðmii

S ÞÞ;
ðm2

PÞ00 ¼ 2�1ðI0ðm00
P Þ � I0ðm00

S ÞÞ
þ 2

3�2ðI0ðm00
P Þ � I0ðm00

S ÞÞ
þ 16

3�2ðI0ðmii
PÞ � I0ðmii

S ÞÞ;
ðm2

PÞii ¼ 2�1ðI0ðmii
PÞ � I0ðm00

S ÞÞ þ 2
3�2ðI0ðm00

P Þ � I0ðm00
S ÞÞ

þ 7
3�2ðI0ðmii

PÞ � I0ðmii
S ÞÞ: (74)

1. Singlet channel

Since the mixing exists, we need to use Eq. (46) derived
earlier. After inserting the expressions of the masses and
the polarization energies, Vi and �i, which are listed in
Eqs. (74), (69), and (70), we can verify that at the kine-
matical point s ¼ 0, we have
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��������1� V1ð1Þ 2
ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
�1ð1Þ 0
0 �1ð8Þ

� ���������¼ 0;

(75)

with the meaning that the determinant of the matrix within
the vertical bars is zero. Therefore, there are Nambu-
Goldstone bosons. Since there is a mixing between the
two singlet pseudoscalar mesons, T1ð1Þ, T1ð8Þ, T1ðM1Þ and
T1ðM2Þ all have a pole at s ¼ 0. However, we can verify that
only one of the two eigenvalues is 0. This means that only
one of the singlet pseudoscalar meson is a Nambu-
Goldstone boson.

2. Octet channel (8xð1Þ, 8yð1Þ and 8Sð8Þ)
We calculate the solution Eq. (47) when c ¼ 0 and �2 �

0, and find that at the point s ¼ 0, we have��������������������
1�

V8xð1Þ 2
3V8ðM5Þ

ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BBBB@

1
CCCCA

�
�8xð1Þ 0 0

0 �8yð1Þ 0

0 0 �8Sð8Þ

0
BB@

1
CCA
��������������������
¼ 0; (76)

where, again the vertical bars denote the determinant of the
(3� 3) matrix within. Therefore, these equations describe
massless Nambu-Goldstone bosons. Moreover, we can
verify that only one of the three eigenvalues is zero. This
is difficult to prove analytically even with the aid of
algebraic manipulation programs. Therefore, we randomly
choose the values for the relevant parameters (coupling
constants), and confirm this result. So we obtain the result
that only one octet and one singlet of pseudoscalar mesons
are Nambu-Goldstone bosons in this case. That agrees with
the conventional result in the Born approximation,
although the pseudoscalar spectral functions in the GFA
[18] contain (much) more structure than a simple Dirac
delta function, see, e.g. [3].

3. 8Að8Þ, ð10 � 10ÞAð8Þ and 27Sð8Þ channels
For the 8Að8Þ channel, we have

1� V8Að8Þ�8Að8Þ ¼ �2

��2
0 þ ðI0ðm00

S ÞÞ � I0ðm00
P ÞÞ � 10ðI0ðmii

S Þ � I0ðmii
PÞÞ

ð3�1 � �2ÞðI0ðmii
S Þ � I0ðmii

PÞÞ þ �2ð ��2
0 þ I0ðm00

S Þ � I0ðm00
P ÞÞ :

For the decuplet channel, we have

1� V10Að8Þ�10Að8Þ ¼ �2

��2
0 þ ðI0ðm00

S ÞÞ � I0ðm00
P ÞÞ � ðI0ðmii

S Þ � I0ðmii
PÞÞ

ð3�1 � �2ÞðI0ðmii
S Þ � I0ðmii

PÞÞ þ �2ð ��2
0 þ I0ðm00

S Þ � I0ðm00
P ÞÞ :

For the 27Sð8Þ channel, we have

1� V27Sð8Þ�27Sð8Þ ¼ �2

��2
0 þ ðI0ðm00

S ÞÞ � I0ðm00
P ÞÞ � 4ðI0ðmii

S Þ � I0ðmii
PÞÞ

ð3�1 � �2ÞðI0ðmii
S Þ � I0ðmii

PÞÞ þ �2ð ��2
0 þ I0ðm00

S Þ � I0ðm00
P ÞÞ :

Therefore, none of them are Nambu-Goldstone bosons, as expected.

C. Case III: c � 0 � �2

In this case we assume that both c and �2 are nonzero. This is the most general case that conserves the SULð3Þ � SUð3ÞR
symmetry. The scattering matrix T can be expanded by using the nonmixing projection operators (35) as well as the mixing
operators (38) and (39), and its solution is
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V1ð1Þ ¼ 2�1 þ 2

3
�2 þ 2

9

2ð3�1 þ �2Þ2 ��2
0 þ 2

ffiffiffi
6

p ð3�1 þ �2Þc ��0 þ 3c2

s� ðm2
PÞ00

;

V8xð1Þ ¼ 2�1 þ 2

3
�2 þ 1

18

8ð3�1 þ �2Þ2 ��2
0 � 4

ffiffiffi
6

p ð3�1 þ �2Þc ��0 þ 3c2

s� ðm2
PÞii

;

V8yð1Þ ¼ 2�1 þ 2

3
�2 þ 1

18

8�2
2 ��

2
0 � 4

ffiffiffi
6

p
�2c ��0 þ 3c2

s� ðm2
PÞii

;

V1ð8Þ ¼ 2�1 � 2

3
�2 þ 4

9

8�2
2 ��

2
0 � 4

ffiffiffi
6

p
�2c ��0 þ 3c2

s� ðm2
PÞ00

;

V8Sð8Þ ¼ 2�1 � 4

3
�2 þ 5

9

2�2
2 ��

2
0 þ 2

ffiffiffi
6

p
�2c ��0 þ 3c2

s� ðm2
PÞii

;

V8Að8Þ ¼ 2�1 þ 6�2; V27Sð8Þ ¼ 2�1 þ 2�2; V10Að8Þ ¼ 2�1;

V1ðM1Þ ¼ V1ðM2Þ ¼ 2

3
�2 þ 1

9

4ð3�1�2 þ �2
2Þ ��2

0 �
ffiffiffi
6

p ð3�1 � �2Þc ��0 � 3c2

s� ðm2
PÞ00

;

V8ðM1Þ ¼ V8ðM2Þ ¼ �2 þ 1

6

4ð3�1�2 þ �2
2Þ ��2

0 þ
ffiffiffi
6

p ð6�1 þ �2Þc ��0 � 3c2

s� ðm2
PÞii

;

V8ðM3Þ ¼ V8ðM4Þ ¼ �2 þ 1

6

4�2
2 ��

2
0 þ

ffiffiffi
6

p
�2c ��0 � 3c2

s� ðm2
PÞii

;

V8ðM5Þ ¼ V8ðM6Þ ¼ �2 þ 1

12

8ð3�1�2 þ �2
2Þ ��2

0 � 2
ffiffiffi
6

p ð3�1 þ 2�2Þc ��0 þ 3c2

s� ðm2
PÞii

:

(77)

We go through the same procedure for �ab, and the results are (after setting s ¼ 0)

�1ð1Þ ¼ I0ðm00
S Þ � I0ðm00

P Þ
ðm2

SÞ00 � ðm2
PÞ00

; �8xð1Þ ¼ I0ðm00
S Þ � I0ðmii

PÞ
ðm2

SÞ00 � ðm2
PÞii

;

�8yð1Þ ¼ I0ðmii
S Þ � I0ðm00

P Þ
ðm2

SÞii � ðm2
PÞ00

;

�1ð8Þ ¼ �8Sð8Þ ¼ �8Að8Þ ¼ �27Sð8Þ ¼ �10Að8Þ ¼ I0ðmii
S Þ � I0ðmii

PÞ
ðm2

SÞii � ðm2
PÞii

;

�1ðmixÞ ¼ �8xðmixÞ ¼ �8yðmixÞ ¼ �8zðmixÞ ¼ 0;

(78)

which is the same as the previous case.
In the case of c � 0 and �2 � 0, the masses are still diagonal, and from Eqs. (20) we have

ðm2
SÞ00 ¼ m2 þ 3�1 ��

2
0 þ �2 ��

2
0 þ ð3�1 þ �2ÞI0ðm00

S Þ þ ð8�1 þ 8�2ÞI0ðmii
S Þ þ

�
�1 þ 1

3
�2

�
I0ðm00

P Þ þ
�
8�1 þ 8

3
�2

�
I0ðmii

PÞ

�
ffiffiffi
2

3

s
c ��0;

ðm2
SÞii ¼ m2 þ �1 ��

2
0 þ �2 ��

2
0 þ ð�1 þ �2ÞI0ðm00

S Þ þ ð10�1 þ 5�2ÞI0ðmii
S Þ þ

�
�1 þ 1

3
�2

�
I0ðm00

P Þ þ
�
8�1 þ 17

3
�2

�
I0ðmii

PÞ

þ
ffiffiffi
1

6

s
c ��0; (79)

and
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ðm2
PÞ00 ¼ m2 þ �1 ��

2
0 þ

1

3
�2 ��

2
0 þ

�
�1 þ 1

3
�2

�
I0ðm00

S Þ þ
�
8�1 þ 8

3
�2

�
I0ðmii

S Þ þ ð3�1 þ �2ÞI0ðm00
P Þ

þ ð8�1 þ 8�2ÞI0ðmii
PÞ þ

ffiffiffi
2

3

s
c ��0;

ðm2
PÞii ¼ m2 þ �1 ��

2
0 þ

1

3
�2 ��

2
0 þ

�
�1 þ 1

3
�2

�
I0ðm00

S Þ þ
�
8�1 þ 17

3
�2

�
I0ðmii

S Þ þ ð�1 þ �2ÞI0ðm00
P Þ

þ ð10�1 þ 5�2ÞI0ðmii
PÞ �

ffiffiffi
1

6

s
c ��0: (80)

From Eq. (21), we have

m2 ¼ ��1 ��
2
0 �

1

3
�2 ��

2
0 þ

ffiffiffi
1

6

s
c ��0 � ð3�1 þ �2ÞI0ðm00

S Þ � ð8�1 þ 8�2ÞI0ðmii
S Þ �

�
�1 þ 1

3
�2

�
I0ðm00

P Þ

�
�
8�1 þ 8

3
�2

�
I0ðmii

PÞ þ
ffiffiffi
1

6

s
c

��0

ðI0ðm00
S Þ � I0ðm00

P ÞÞ � 2

ffiffiffi
2

3

s
c

��0

ðI0ðmii
S Þ � I0ðmii

PÞÞ; (81)

Therefore, by using this equation together with Eqs. (79) and (80), we obtain

ðm2
SÞ00 ¼ 2�1 ��

2
0 þ

2

3
�2 ��

2
0 �

ffiffiffi
1

6

s
c ��0 þ

ffiffiffi
1

6

s
c

��0

ðI0ðm00
S Þ � I0ðm00

P ÞÞ � 2

ffiffiffi
2

3

s
c

��0

ðI0ðmii
S Þ � I0ðmii

PÞÞ;

ðm2
SÞii ¼ 2�1ðI0ðmii

S Þ � I0ðm00
S ÞÞ þ

ffiffiffi
2

3

s
c ��0 þ 2

3
�2 ��

2
0 þ 3�2ðI0ðmii

PÞ � I0ðmii
S ÞÞ þ

ffiffiffi
1

6

s
c

��0

ðI0ðm00
S Þ � I0ðm00

P ÞÞ

� 2

ffiffiffi
2

3

s
c

��0

ðI0ðmii
S Þ � I0ðmii

PÞÞ;

ðm2
PÞ00 ¼ 2�1ðI0ðm00

P Þ � I0ðm00
S ÞÞ þ

ffiffiffi
3

2

s
c ��0 þ 2

3
�2ðI0ðm00

P Þ � I0ðm00
S ÞÞ þ 16

3
�2ðI0ðmii

PÞ � I0ðmii
S ÞÞ

þ
ffiffiffi
1

6

s
c

��0

ðI0ðm00
S Þ � I0ðm00

P ÞÞ � 2

ffiffiffi
2

3

s
c

��0

ðI0ðmii
S Þ � I0ðmii

PÞÞ;

ðm2
PÞii ¼ 2�1ðI0ðmii

PÞ � I0ðm00
S ÞÞ þ 2

3
�2ðI0ðm00

P Þ � I0ðm00
S ÞÞ þ 7

3
�2ðI0ðmii

PÞ � I0ðmii
S ÞÞ þ

ffiffiffi
1

6

s
c

��0

ðI0ðm00
S Þ � I0ðm00

P ÞÞ

� 2

ffiffiffi
2

3

s
c

��0

ðI0ðmii
S Þ � I0ðmii

PÞÞ:

1. Singlet channel

We calculate the solution Eq. (46) when c � 0 and �2 �
0, and find that at the point s ¼ 0, we have

��������1� V1ð1Þ 2
ffiffiffi
2

p
V1ðM2Þ

2
ffiffiffi
2

p
V1ðM1Þ V1ð8Þ

 !
�1ð1Þ 0
0 �1ð8Þ

� ���������� 0;

(82)

where, again the vertical bars denote the determinant of the
(2� 2) matrix within. Therefore, we have verified that the
singlet pseudoscalar meson is not a Nambu-Goldstone
boson any more, due to the UAð1Þ symmetry breaking
interaction constant c � 0.

2. Octet channel (8xð1Þ, 8yð1Þ and 8Sð8Þ)
We calculate the solution Eq. (47) when c � 0 and �2 �

0, and find that at the point s ¼ 0, we have��������������������
1�

V8xð1Þ 2
3V8ðM5Þ

ffiffiffiffi
10

p
3 V8ðM1Þ

2
3V8ðM6Þ V8yð1Þ

ffiffiffiffi
10

p
3 V8ðM3Þffiffiffiffi

10
p
3 V8ðM1Þ

ffiffiffiffi
10

p
3 V8ðM4Þ V8Sð8Þ

0
BBBB@

1
CCCCA

�
�8xð1Þ 0 0

0 �8yð1Þ 0

0 0 �8Sð8Þ

0
BB@

1
CCA
��������������������
¼ 0; (83)
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where, again the vertical bars denote the determinant of the
(3� 3) matrix within. This is again difficult to prove
analytically, so we again randomly choose the values for
the relevant parameters, and obtain this result. Moreover,
we can verify that only one of its three eigenvalues is zero.
So we obtain the expected, yet nontrivial result that only
one octet of pseudoscalar mesons are Nambu-Goldstone
bosons.

VII. EXPLICITLY BROKEN CHIRAL SYMMETRY
AND DASHEN’S FORMULA

When the chiral symmetry is explicitly broken, the NG
theorem turns into a relation between the chiral symmetry
breaking parameter and the NG boson mass, as first dis-
cussed by Dashen [19]. The NG theorem in the chiral limit
has already been addressed in the Gaussian approximation
and equivalent formalisms in Refs. [6,7]. Here, we turn to
the nonchiral case.

As shown in Ref. [6] in the chiral limit the Nambu-
Goldstone particle appears as a zero-mass pole in the T
matrix in the pseudoscalar channel. Next we look at the
zero CM energy s ¼ 0 polarization function V�ð0Þ��ð0Þ
in the nonchiral case h0 ¼ " � 0. For simplicity’s sake we
only study this in the �2 ¼ c ¼ 0 case (so as not to have to
deal with complications associated with channel mixing(s)
in the flavor-singlet and octet channels). Now the gap
Eq. (21) becomes

m2 ¼ �

��0

� �1 ��
2
0 � 3�1I0ðm00

S Þ � 8�1I0ðmii
S Þ

� �1I0ðm00
P Þ � 8�1I0ðmii

PÞ; (84)

together with (58) and (59), we obtain

ðm2
SÞ00 ¼

�

��0

þ 2�1 ��
2
0;

ðm2
SÞii ¼

�

��0

� 2�1I0ðm00
S Þ þ 2�1I0ðmii

S Þ;

ðm2
PÞ00 ¼

�

��0

� 2�1I0ðm00
S Þ þ 2�1I0ðm00

P Þ;

ðm2
PÞii ¼

�

��0

� 2�1I0ðm00
S Þ þ 2�1I0ðmii

PÞ:

(85)

We work out the BS equation for the flavor-singlet and
octet channels. The polarization function is worked out in
the flavor-singlet channel 1ð1Þ as

V1ð1Þð0Þ�1ð1Þð0Þ ¼ 1� �

��0

ðm2
SÞ00

ðm2
PÞ00ððm2

SÞ00 � ðm2
PÞ00Þ

þOð�2Þ; (86)

and we obtain the similar result for the flavor-octet channel
8xð1Þ:

V8xð1Þð0Þ�8xð1Þð0Þ ¼ 1� �

��0

ðm2
SÞ00

ðm2
PÞiiððm2

SÞ00 � ðm2
PÞiiÞ

þOð�2Þ; (87)

as well as the positive-parity channel flavor-octet consist-
ing of two scalar mesons. Since V�ð0Þ��ð0Þ ’ 1���2 "

v ,

we see that the pole in the s-channel propagator has moved
away from zero momentum. In order to find the mass, we
must take into account the residue at the pole; thus we find
m2

� ¼ "
v þOð"2Þ, just as in the Born approximation. Here

h0 ¼ " is the explicit symmetry breaking parameter and
the ‘‘pion’’ symbol � denotes the complete set of 17
pseudo-NG bosons, whose mass should be small if this
linearized approximation is to hold. This result is valid
only for ‘‘small’’ values of the explicit chiral symmetry
breaking parameters, such as that of the SUð2ÞL � SURð2Þ
symmetry breaking that is responsible for the pion’s mass.
Of course, with h0 � 0 it is possible to have an explicit

breaking of the Oð18Þ symmetry down to the explicitly
conserved, yet spontaneously broken Oð17Þ symmetry. In
that case there will remain several massless NG bosons.
For instance, in the other flavor-singlet channel 1ð8Þ made

up of flavor-octet mesons, we have

V1ð8Þð0Þ�1ð8Þð0Þ ¼ 1; (88)

and the same result holds for the 8yð1Þ, 8Sð8Þ, 8Að8Þ, 27Sð8Þ and
ð10 � 10ÞAð8Þ channels. Of course, once one turns on �2 �
0 and/or c � 0 all of these NG bosons acquire masses, as
derived in Sec. VI B. The NG mesons also acquire masses
when one explicitly breaks the Oð17Þ, SUð3Þ or SUð2Þ
symmetries, e.g. by including h8 � 0 and/or h3 � 0.
These masses can be evaluated by means of Dashen’s
formula so long as the explicit symmetry breaking is small,
which is not the case for realistic values of h8 � 0; c � 0.
Therefore, this result is practically useful only for the
(isotriplet) pion masses, but not for the kaons and the 	
and 	0 mesons. This is perhaps as far as one can go using
only analytic methods.
The next step, to be taken in our next paper, will be to

numerically solve the gap and Bethe-Salpeter equations
with an explicitly broken SUð3Þ symmetry, so as to repro-
duce the experimental pseudoscalar masses and their weak
decay constants and thus to fix all of the free parameters in
this model in the Gaussian approximation.

VIII. CONCLUSION

We have studied the NG theorem for the pseudoscalar
mesons in theUð3ÞL �URð3Þ linear sigma model. We have
constructed the ground state wave function in the GFA. At
this level, all the scalar mesons and the pseudoscalar
mesons acquire finite masses by the minimal spontaneous
symmetry breaking �0 � 0. Hence, the NG theorem is not
satisfied at the GFA level.
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Hence, we have developed a method to work out the
Bethe-Salpeter equation for the scattering T matrix of
mesons. To this end, it was important to work out the
projection operators in order to separate various SUð3Þ
channels in the T matrix. We have then explicitly worked
out the BS equations for the pseudoscalar mesons in the
general case of the Uð3ÞL �URð3Þ linear sigma model.
Since the verification of the NG theorem is quite compli-
cated and tricky, we have decided to work out the NG
theorem step by step.

First, we studied the �1 � 0 and �2 ¼ c ¼ 0 case. In
this case, we verified that the NG bosons appear in the
usual flavor-nonet channel, where the NG bosons are
present at the mean field, or the Born approximation level.
Additionally, we have found new composite NG bosons in
certain other flavor channels that correspond to the break-
ing of the extended Oð18Þ symmetry down to a lower
symmetry.

Then we studied the case with �1 � 0 and �2 � 0, but
c ¼ 0. In this case, we found the usual flavor-nonet of NG
bosons. We then studied the case when all the coupling
constant in the Lagrangian are nonzero. In this case, we
found only the flavor-octet pseudoscalar mesons as the NG
bosons: the ninth pseudoscalar meson acquires a non-zero-
mass and thus is not an NG boson any more. Of course,
c � 0 corresponds to the explicit UAð1Þ symmetry break-
ing, that affects the 	 and 	0 mesons, and is comparable
with, or perhaps even larger than the explicit breaking of
the SUð3ÞL � SURð3Þ symmetry.

We have discussed another simple case in order to
examine how low-mass pseudo-NG bosons emerge due
to the explicit chiral symmetry breaking: when the
Lagrangian has just one small explicit chiral symmetry
breaking parameter h0 ¼ " � 0. There we confirmed that
Dashen’s result for pseudo-NG boson masses hold in the

Gaussian approximation. This result is valid only for small
values of the explicit chiral symmetry breaking parameters,
such as that of the SUð2ÞL � SURð2Þ symmetry breaking
that is responsible for the pion’s mass.
In this paper, we have analyzed the appearance of NG

bosons for various cases in the chiralUð3ÞL �URð3Þ linear
sigma model Lagrangian. We have also studied the effect
of the small explicit chiral symmetry breaking term to
provide a small mass to the pseudoscalar bosons. This
result is practically useful only for the (isotriplet of) pions,
but not for the kaons and the 	 and 	0 mesons.
This is perhaps as far as one can possibly go using only

analytic methods. The next step, to be taken in our next
paper, will be to numerically solve the gap and Bethe-
Salpeter equations with an explicitly broken SUð3Þ sym-
metry, so as to reproduce the experimental pseudoscalar
masses and their weak decay constants and thus to fix all of
the free parameters in this model in the Gaussian approxi-
mation. Then it will be possible and (very) interesting to
calculate the spectra of scalar bosons in the SUð3Þ chiral
sigma model.
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(2003).
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