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Pseudoscalar mesons in the SU(3) linear sigma model with Gaussian functional approximation
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We study the SU(3) linear sigma model for the pseudoscalar mesons in the Gaussian functional
approximation (GFA). We use the SU(3) linear sigma model Lagrangian with nonet scalar and
pseudoscalar mesons, including symmetry breaking terms. In the GFA, we take the Gaussian Ansatz
for the ground state wave function and apply the variational method to minimize the ground state energy.
We derive the gap equations for the dressed meson masses, which are actually just variational parameters
in the GFA method. We use the Bethe-Salpeter equation for meson-meson scattering, which provides the
masses of the physical nonet mesons. We construct the projection operators for the flavor SU(3) in order to
work out the scattering 7' matrix in an efficient way. In this paper, we discuss the properties of the Nambu-
Goldstone bosons in various limits of the chiral U (3) X Ug(3) symmetry.
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L. INTRODUCTION

The masses and properties of the SU(3) scalar mesons
are long standing puzzles in hadron-nuclear physics related
to the underlying chiral symmetry of QCD. It is also very
interesting to describe the properties of these SU(3) scalar
and pseudoscalar mesons at finite temperature and density.
To this end it is important to study the U;(3) X Ug(3)
symmetric linear sigma model in the nonperturbative
Gaussian functional approximation (GFA) [1,2]. The linear
sigma model is a strongly interacting renormalizable quan-
tum field theory; due to the size of the self-interaction
coupling constant(s) the perturbative approximations
seem to be inapplicable. Therefore, a nonperturbative ap-
proximation, such as the Gaussian functional one, that is
equivalent to the resummation of certain infinite classes
of Feynman diagrams that are unitary and causal [1-3] is
called for.

The chiral U} (3) X Ug(3) symmetry in the SU(3) linear
sigma model [4] is both spontaneously and explicitly bro-
ken, which means that some pseudoscalar mesons are
Nambu-Goldstone (NG) bosons, i.e. with vanishing masses
in the chiral limit. Straightforward solutions to the gap
equations in the Gaussian wave functional approximation
yield nonzero meson masses even in the chiral limit [1,2];
however, proof of the NG theorem used to be an open
problem for over 30 years [1,5]. The first solution to this
problem in the O(2) symmetric sigma model was based on
the Bethe-Salpeter (BS) equation [6], but other proof soon
followed [7]. The first proof was straightforwardly ex-
tended to O(4) = SU;(2) X SUR(2) in Ref. [8] and was
finally proven in the general O(N) case in Ref. [5]. The
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SU(3) linear sigma model has a chiral symmetry that
corresponds to the SU; (3) X SUg(3) subgroup of the (ex-
plicitly broken) O(18) symmetry, that depends on the
specifics of the (symmetry breaking) parameters of the
model, and thus readily fit into this framework, but the
Nambu-Goldstone theorem has never been explicitly veri-
fied in the various limits of the chiral U, (3) X Ug(3)
Lagrangian.

There are also several influential studies of the thermal
properties of various spinless mesons that are based on the
Gaussian approximation, both in the two-flavor SU(2)
[9,10] and the three-flavor SU(3) cases [11], but again
without taking into account the Bethe-Salpeter equation.
Therefore, these studies do not obey the NG theorem in the
chiral limit and as such are ill-suited for the study of chiral
symmetry restoration.

As for the SU(3) case, there are many studies of the
properties of U(3) mesons in the mean field, or the Born
approximation [12,13] and in the Gaussian approximation
[11]. The extension of the chiral SU(2) model to the chiral
SU(3) model is not trivial, because there are several differ-
ent self-interaction terms (three rather than one in the
simplest SU(2) case, but one of them, the A,, is generally
expected to be (much) smaller than the first one A; [14]), so
we have to develop the necessary mathematical tools to
deal with the scattering Bethe-Salpeter equation (7' matrix)
for the U(3) mesons [12,13,15].

It is important to explicitly work out the NG bosons for
various cases of the chiral Lagrangian, so as to verify
which pseudoscalar mesons are NG bosons, before apply-
ing this formalism to nonzero temperature and/or density.
The question of U4(1) symmetry breaking also looms large
over this endeavor, so we pay special attention to the
flavor-singlet-octet mixing.

As this is a complicated method applied to a difficult
problem, and many missteps have been made in the past,

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.82.034011

CHEN, DMITRASINOVIC, AND TOKI

we take a step-by-step approach. We look first at the chiral
limit: even here there are some nontrivial cases, such as
when A, = 0 and c=0, (many) new naively unexpected
Nambu-Goldstone bosons appear beyond the “‘elementary
fields” that already exist in the Lagrangian—they are
“composite” (bound state) NG bosons that correspond to
the broken O(18) symmetry rather than the U, (3) X Ug(3)
one that has (at most) nine NG bosons. This formation of
composite NG bosons demonstrates the nonperturbative
nature and the respect of the underlying symmetries by
the GFA method. We then turn on explicit chiral symmetry
breaking term A, # 0, but with good SU(3) symmetry. We
show how this explicit symmetry breaking term influences
the masses of the pseudoscalar mesons to lowest (linear)
approximation.

In this paper, we present the necessary mathematical
expressions necessary for the application of the Gaussian
functional approximation, defined in Sec. III, to the SU(3)
linear sigma model introduced in Sec. II. In Sec. IV, we
provide the expressions for the Bethe-Salpeter equations in
various channels using the SU(3) projection operators
developed in Sec. V. In Sec. VI, we verify explicitly the
NG theorem for various cases and identify which are the
NG bosons. In Sec. VII, we briefly discuss the role of
explicit symmetry breaking terms by taking the simplest
case. Section VIII is devoted to a summary of this paper.

II. THE SU(3) LINEAR SIGMA MODEL

To understand the masses of scalar and pseudoscalar
mesons, we employ the SU(3) linear sigma model
[4,12,13,16] and use the GFA. In this section, we briefly
review the SU(3) linear sigma model and work out the
mass gap equations in the mean field approximation.

The Lagrangian density of the U;(3) X Ug(3) linear
sigma model is given by

L(®) =Tr(3,Pt0+ D — m*®Td) — A [Tr(DT D)
— X, Tr(®TD)? + ¢[Det(D) + Det(P1)]
+ Tr{H(® + &1)]. (1)

The meson field matrix ® is a complex 3 X 3 matrix of the
scalar and pseudoscalar meson nonets,

¢ =T,p,=T,0,+im,), 2

where o, are the scalar fields and 7, are the pseudoscalar
fields. T, = A,/2 are the generators of U(3), where A, are

the Gell-Mann matrices with Ay = ‘/gl. The 3 X 3 matrix
H breaks the chiral symmetry explicitly and is chosen as

H = T,h, 3)

where h, are nine (external) SU(3) symmetry breaking
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parameters. Only three (diagonal) ones, a = (0, 3, 8), are
relevant and the two, a = (0, 8), are the dominant ones. In
this paper, we only study the case iy # 0, and so SU(3)
symmetry is conserved. We need to know at least the order
of magnitude of the coupling constants. Here we may use
the results of Ref. [11] as a (rough) guide to the expected
values of the coupling constants: to first approximation we
expect A; =50, A, = 1.5, and if we define ¢ = A5f,, we
find A3 = 50. Thus, we see that this is indeed a strongly
coupled system and that we need a nonperturbative
approximation.

The generators of U(3) satisfy the (anti)commutation
relations:

[/\ar Ab] = 2ifabc/\c’ and {)‘ar /\b} = Zdabc)‘c’ (4)
where d,;,. and f,,. “‘structure constants’” are defined to
contain the 0 index. The values of SU(3) structure con-
stants are provided in any good textbook and in review
articles [17]. Those f structure constants with a zero
among its a, b, ¢ indices are zero, and those d structure
constants containing 0 in its a, b, ¢ indices are only non-
zero for dy,, = \[2/38,,, withab =1, ..., 8.

By inserting the ® field into the Lagrangian, the follow-
ing Lagrangian is obtained:

Lo, m,) = %[6#0'6,8“0'61 + 9,7, 0" 7, ]
— (0,0 + T,T,)
+ Guelo,op0. =37, m)0.)
- 25{abcd0'u0'b77c77d - %fabcd(o'uo'bo'clfd
+ T Ty Tg) + h o (5)

The coefficients Gpes Fapea and H 4.4 are given by

c

3
G abe = gl:dubc - E(Ba()dObc + 8p0da0c + 0c0dapo)

9
+ 3 d0006400400 0 ] (6)

A
Fabea = Zl(‘sabacd + 84a0pc T 84c6pa)

A
+ gz(dabndncd + dadndnbc + dacndnbd)! (7)

A
Habcd = Zl 6ab 5cd
A
+ ?2 (dabndncd + facnfnbd + fbcnfnad)' (8)

Considering the shift of the vacuum expectation values of
o, = 0, + o, the Lagrangian can be written as
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Lo, 7,)
- 3(Gahc + %j{abcd&d)ﬂ-a’”bo-c

where we have just written o, instead of ¢, for simplicity
of writing. The potential term U(g) is the tree-
approximation potential and &, is determined at the tree
level. The tree-level potential is

1
~ Gupc 0,00 + > fabch 0,0,0,

m
U(g,) = 7 o2

— h,a,. (10)
The mean field &, is obtained by the variation.

al(a,) - 55 42 50O
Ta = mzo'a - 3gabc0'bo-c + —fabchbUcUd o ha
g, 3

=0, (11)

and the “tree-level” masses of the scalar and pseudoscalar
mesons are given by

(mg‘)ab - 6gabc&c + 4.7:abcd0_'c0_'dr

(m%)ab = mzaab + 66411700_-6 + 45-[abcda_-ca_-d'

= mzﬁab

(12)

In the general SU(3) symmetry breaking case, the 0-8 off-

diagonal components of these matrices are not zero. The
|

Ty (m%)ab 7Tb] + (Gabc

- 2}[abcd0-a0-b77c77d -

_1
=5ld,0,0t0, + 0, m, 0" T, — oo(m}) oy —
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4 —
- gfabcda'd)(faa'b(fc

%j:ahcd(o-aa-ha-co-d + 7Ta7Tb7Tc7Td) - U(&)’ (9)

[
physical states must have a diagonal mass matrix, and we

have to diagonalize the mass matrices.

III. GAUSSIAN FUNCTIONAL APPROXIMATION

The GFA [2,6,8] is the method based on assuming the
ground state solution is a Gaussian functional around the
mean field. We get the effective potential by acting the
Hamiltonian on the ground state with scalar mesons having
vacuum expectation values.

First, the Schrodinger equation in the functional formal-
ism is given as

H|0) = E|0), (13)

where H is the total Hamiltonian and E is the correspond-
ing energy for the wave function |0). The effective poten-
tial can be obtained by

= / d*x(0| 0, (14)
where the Hamiltonian density is obtained through the
Legendre transformation as

1 68° 1 1 8 1 1
.’]‘[(U'a, 7Ta) == 5 6—0'2 + E(vo-a)z - E 877_2 + E(Vﬂ-a)z + Emz(oﬁ + 77121) - Gabc(o-aa-ha-c - 37Ta77b0-c)
1
+ 2g{ubcd0-aa-b7Tc7Td + gfabcd(o-aa-bo-co-d + 7Ta7Tb7Tc7Td) - haa-a! (15)
and the ground state wave functional as a Gaussian function is
|0> = Nexp[_%(a-a a-a)G (m )(a-b - a_.b) - %WaG;bl (mw)ﬂ-b]‘ (16)
Here, N is the normalization factor. The mass propagator is written as
&’k s
G (x, =) e hE=3). 17
ab(x Y) abf(z )3 2 ( )
Finally the effective potential can be calculated as
e = (013{10), (18)
= m*ag + [{Goy (my) + Gl ()} + 5(m* — mg )Gy (m,) + 5(m* — m3, )Gy ()
- Gabc{a-ao-ba-c + 30—a(Gbc(m0') - Gbc(mw))} + 25{abcd{Gab(m7r)0-ca-d + Gab(mw)ch(mO')}
+ %fabcd{&u&b&c&d + 66’(15-th11(sz) + 3Gub(m0')ch(m(r) + 3Gab(m7T)ch(mﬂ')} - ha&u' (19)

The gap equations for scalar and pseudoscalar mesons are obtained by applying the variational principle with respect to

meson masses, a—nf = 0 and then the masses are given as
a

(m?q)ab = m25ah

- 6Gabco_-c + 4fabcd&c&d + 4fabchcd(mo') + 4*7-[abchcd(m77)’

(20)

(m%’)ab = mZBab + 6Gabc6c + 4}[abcd&co_-d + 4g{abchcd(ma-) + 4:Fabchcd(m77)'

The equation following from the variation of the energy density with respect to the mean field valu a"; =
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he = m*G, = 3Gapcl 045 + Gpelmy) —

These equations provide the masses and the mean field
values of the meson fields.

IV. T MATRIX FOR MESON-MESON SCATTERING

As explained in Refs. [5,6] one should work out the T
matrix for the determination of the pseudoscalar mesons in
order to fulfill the NG theorem. We work out the o-7
scattering for pseudoscalar mesons. The interaction kernel
in the o-7 channel is written as
—1Veba =

4
—i25‘[acbd ° 2 ° 2 - i3(§bea + gﬂbeaf&f)Z

i ) 4 -
s 3Gt + 5 H s, 2
. 4 -
= _Z[Sg{acbd + 36<Gbea + gg-[-beafo-f>

1 4 _
X m(gedc + gﬂedcggg)]- (22)
With this interaction kernel we can get the 7 matrix as

- iTabcd = iVahe_fiHef(_iVefcd) +...

== _i(Vade + VabefnefTefcd + .. ) (23)
|

- iVabcd -
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Gbc(mn')] + 43{abcd&chd(m7T) + %fabcd["'&ha_-cé—d + lza-bccd(m(r)]'

21

|
Therefore, what we need to solve is the scattering matrix

Tuvca = Vavea T VaverHefTepea- (24)

The polarization term for meson masses m, and my, is

T (p?) = f i i d*k

; _

ab\P (k= p)* —m2 +ie k> —mj +ie 2m)*
(25)

To work out the polarization function II ,, first let us work
out the p?> = 0 case. In this case, we can write

1 1 1
I1,,0) =i —
w(0) l,[(kz—m?l—i-is kz—m%-i-is)m%—mi

d*k Iy(m2) — Iy(m3)
= . (26)
Qm)* mi — m?

Here, we can write the integral as

o) _[ d*k j 1
m?) =i =i
0 kK — m* +ie Qm)* k% — i —m?+ie Qm)*

1
i
—ViZ + m? + ie)(ky +
= sz[xﬂ/l + x3 — log|x; + ‘/1 + x31],

where x3 =
transforming the above integral as ky = iky:

-+ m? + ig) (27T)4

d*k
d*k &k 1 _ 1 m K> dk
2 Cm} JZ 12 47 Jo ViE+m?

(27)

A/m. We take A ~ 1 GeV to be fixed as a parameter of the model. We may take thefour-dimensional cutoff by

1 Bdk 1

I(m2)=if ! =f !
0 k2 —m? + ie Qum)* k2 4+ m? (

where x, = A/m.

We write here the case for m, = m; = m, which is
written in the paper of Nakamura et al. [8]. The general
case has to be worked out in the same frame.

Haa(s) = Haa(o) + (_1 + Jaa(s))’ (29)

s
(4)?

4 2
Jou(s) = "% -1 arcsind#, (30)

where

2m)* e

g pamla et £ 43l (28)

[
S
for < 1, and

o=l foe ) 3]

€19

for 1 <25 <oo. We should work out the general case
m, # my, in the “dispersive” form [see Eqs. (33)]
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1 (s) =i d*k 1
M) = O I — M2+ e[k — PR — i + ie]
= I)1,,(0) — ﬁKMM (5)

1 w? s

— —~ K

2X <M2 - M2> (dar)2 M (s)
1

( w )— s[ LI S
2\2—M2) 1673 ) i—s—ie M

(32)

where s = P? and the real and imaginary parts are

1
ImK,(s) = —Imly,(s)
s

. \/(1 M - m2><1 W +s mz)

X O(s — (M + w)?),

20 (M? — u? M
RCKM#(S) = ;[(425‘ K )10g;

w50+ () o)
_ \/(1 M - u)2)<1 M +S u)2)
x tanh"/%]. (33)

V. SU(3) PROJECTION OPERATORS AND MIXING
OPERATORS

To solve the scattering Eq. (24), we use the method of
projection operators. The SU(3) group structure for the
SU(3) sigma model is

(IF @ 8[:) ® (1]: @ 8]:) = 1(1) @ 8x(1) @ Sy(l) @ 1(8)
® 85(3) (52} 8A(8) ® 27S(8) (52} IOA(g)

® 10,5, (34)
|

— —5

faijfvij = 30ap dqijdpij = 30aps
— _3

faijfbjkdcki - Edabc’

facnfbdn + fadnfbcn - 3dabndcdn =

daijfbij =
faijfbjkfcki = %fabc’
dapnGedn + ducnpan + dugndpen = 28upSea + 84c0pa + 84abpe),
~(84c6pa + 04abpe) + 8apOea,
dacndpan = daandpen = fabnS can
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We can write out the corresponding projection operators
with some manipulations:

I _
Pabcd - 6(117 Scdla,b,c,d=0’

3 8
8x(1
Pa)lcv(ca)l = 5 Z(dahndcdn)|a,c:0,b,d:l...8’

n=1
P _3s (dupndean)|
abed — 5 Z abn%cdn/la,c=1...8,b,d=0>

n=1

1
18
Pa(bc)d = géabécdla,b,c,d=l...8r

3 8
Pii(jg = 3 Z(dabndcdn)|a,b,c,d=1...8

n=1

1 8
P%g) = § Z(fabnfcdn)r
n=1

1
275(8 18
Pabcii) = E(‘Sacébd + 84a0p) b e a=1--8 — Pai,c)d

8S(8)
- Pabcd’
0 1
10+T0)A(8 8A(8
PE,;,C; S — E(‘Sac&bd = 84a0p)apca=1.8 — Pabﬁd),
(35)

where the indices a, b, ¢, d canbe 0. .. 8. When they are 0,
they are related to 1 of Eq. (34); while when they are
1...8, they are related to 8 of Eq. (34). These projection
operators satisfy

szbefpzfcd = 0P ipeq- (36)

We have used various relations for the derivation of the
projection operators:

— — _1
duijaij - 0’ duijdhjkdcki - Edubc’

Jaijdpjidexi =0,

(37)
facndbdn - fadnfbcn - fabnfcdn =0,

= ﬁ(aadabc - Sacabd)'

Besides these projection operators, we also have several mixing operators. They are used to express the mixing between
the singlet and octet mesons. We note that they are not projection operators, and so we use O to denote them. In the singlet

channel, there are two operators:
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They provide the mixing of the singlet-octet mesons and

o) =5 pOcdlab=1..8.c,d=0
abed earT e (38)  the octet mesons in the resultant octet channel.

Ol%) = 84b0calab=0.ca-1.5- We modify the scattering Eq. (24) to be
They provide the mixing of the singlet and octet mesons in Tovea = Vavea T VaverlerTefea

the resultant singlet channel. While in the octet channel,
there are six operators = Vavea ¥ Varay MaweaTeaea (40)
3 where Il ,,.; = 6,.0p411 4. Then by using the projection

Oi(b"z;) = Z Ay ednla=o.p.c.d=1---8 operators as well as the mixing operators, we find that there

n=1 is a unique expansion for V., of the scattering of o7 —

oTT.

8
8(M2) __
Oabcd - Z dabndcdn|a,b,d:l.4.8,c=0’
n=1

8
8(M3) _
Oabcd - Z dahndcdn|b:0,a,c,d:1'~8:
n=1

¢ (39)
8(M4
Oa(lﬁ‘gd) = Z dabndcdn|a,b,c=1...8,d=0’

n=1

8
8(M5) _
Oubcd - Z dahndcdn|a,d=0,h,c=l~“8’

n=1

8
8(M6) _
Oabcd - Z dabndcdn|b,c=0,a,d=1...8'
n=1

Vasea = VioyPapea + Vet Posed + VasyPased + ViewPapea + VaswPaped + VarsePanei + Vaaw Pased
 Vioam P ™+ Vg O’ + Viam Ol + Vsam Omd) + Vson Oons) + Vs OSes
+ Vs Ooed + Vaars Oted + Vawae Ospe 41)
and so does II,;,.,. Moreover, we find that for IT,,.; only the projection operators are enough, which means
Iy i) = gy = 0. (42)

Since we find that both V,,.; and I1 ., can be expanded by the projection operators (35) and the mixing operators (38)
and (39), we assume that the scattering matrix 7,,., can also be expanded by these operators:

. 1(1) 8x(1) 8y(1) 18) 8S(8) 275(8) 8A(8)
Taved = Ti)Papea + Tsx)Papea T Tsy)Papea T Ti®)Paped T Tss®Paved T T2156)Pabed. T T84 Paped
10+10)A(8 (M1 (M2 (M1 8(M2 8(M3
+ Tioaw Py ™ + Tiun O + Tian Ons + Ty OSed) + Tgan) O + Ty Oy

8(M4 8(M5 8(M6
+ TS(M4)0a(bcd) + TS(M5)0a(bcd) + T8(M6)0a(bcd)’ (43)

and then we can separate the scattering Eq. (40) into several equations in different channels. We discuss them in the
following subsections.

A. Singlet channel

We have the following relations for all the operators:
O4pe O sea = 0, (44)

where 0! denotes P!V, P1® 01M) and 0'(M2) and OF denotes operators of other flavors. Therefore, we can write out the
Eq. (40) in the singlet channels:
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1(1) 1(8)
Tl(l)Pabcd + Tl(g)Pabcd + Tl(Ml)Oabcd + TI(M2)0abcd

PHYSICAL REVIEW D 82, 034011 (2010)

(Vl(l)Pabcd + VI(S)Pabcd + Vl(Ml)Oaba’b’ + VI(MZ)Ouba’b’) + (Vl(l)Paba'b' + V1(8)Puba’b’ + Vl(Ml)Oaha’h’

+ V1(M2)0 )(H1(1)P

aha’h’

It can be simplified to

( Ty 2\/571(1\42)):< Vi
2v2T oy Ty

(1)
bl d! + HI(S)P bl e ’d’)(Tl(l)P 'd'ed

2\/§V1(M2)>+< Vi

+ Tig) Py + Tiam Oy + Tiom Olye). (45)

®)
'd'ed

2V2Vi ) )( Oy 0 )

2\/§V1(M1) V1(8) 2\/§VI(M1) V](s) 0 HI(S)
><( Ty 2\/_T1(M2))
2\/§T1(M1) T

and its solution is

< Ty 2\/§T1(M2)> _ (1 _ ( Vi
22Ty T 2V2Vyn)

B. Octet channel (8, ),

We have the following relations for all the operators:

2V2Vin) )( Mg 0

Vi)

)) ( Vi 2v2Viam) )
0 Il 2\/§V1(M1) Vi)

8y(1) and 85(8))

030 0%pea = O, (46)

where 0% denotes P8*()| p8y(D_ p85®) and 03M9) and O* denotes other operators. Therefore, we can similarly write out the
scattering Eq. (40) in the octet channels. After some simplifications, it turns to be

T3\ 2 Ts(us) @ T3 Vax(1) 2 Vsws) @ V) Vax(1) 2 Vsws) @ V)
2 Ts(ue) Toa 2 Tyun 2 Vo) Vay  DVsarm |+ | Ve Vay Vs
@ Tsm) @ Tsamay  Tsss) @ Vs @ Vsama)y  Vsss) @ Vs @ Vsama  Vsse)
g1 0 0 T3y 2 Tywus) @ T3
X 0 gy I 0 2 T Tgy1) @ Ty |
0 0 85(8) @ T3 @ Tsomsy  Tss)
and its solution is
-1
T % Tsus) @ T3 Vsx(1) % Vsus) @ Vs ITg, (1) 0 0
% Ty Tgy) @ Tsarsy | = 11— | 3V Ve @ Vaur) 0 gy 0
0 0 II
@ Ty @ T4y Tgs(s) @ V) @ Va(a) Vses) e
Va1 2 Vs(ms) @ Ve
X1 3 Vs Voo Vs
@ Vs @ Vswmay  Vase)
- |
C. 8,s), (10 ® 10) 4 5) and 27, channels Tsai) = Vsag) T Vsas)Hsas) Tsas)- (48)

We have the following relations for all the operators:
poA®
abif)O)eCfcd =0, 47)

where O* denotes other operators. Therefore, we can write
out the scattering Eq. (40) in the 8, channel:

We have the following relations for all the operators:

(10+T10)A(8)

Pabef Oefcd 0, (49)
where O* denotes operators of other flavors. Therefore, we
can write out the scattering Eq. (40) in the decuplet chan-
nel:
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TlOA(S) = VlOA(S) + V]OA(S)HIOA(ES)TIOA(S)' (50)

We have the following relations for all the operators:

P00 =0, (51)

where O* denotes operators of other flavors. Therefore, we
can write out the scattering Eq. (40) in the 27, channel:

Trrs8) = Varss) T Varss) Hazss) Tors(s)- (52)

VI. THE NAMBU-GOLDSTONE THEOREM

To check whether there are Nambu-Goldstone bosons,
we need to check whether the scattering matrix 7'(s) has a
pole at s = 0. In this section, we study the Nambu-
Goldstone theorem, and verify the Nambu-Goldstone bo-
sons in the SU(3) linear sigma model. We assume that
there is a SU(3) symmetry, which means that only & is
nonzero (d; = 0, for i = 1...8). To further simplify our
calculation, we only study the pseudoscalar channels
(o — o), where the pseudoscalar mesons propagate
in the interaction kernel.

Since the calculations in this system is still not so easy,
our analysis will be done step by step. First, we assume ¢ =
Ay, =0, and Ay # 0. In this case, we find that all the
pseudoscalar mesons are Nambu-Goldstone bosons. Then
we assume A, # 0, and find that only one singlet and one
octet pseudoscalar mesons remain Nambu-Goldstone bo-
sons. Finally, we assume ¢ # 0, which is the most general
case conserving SU(3) symmetry. We find that only one
octet pseudoscalar mesons remain to be Nambu-Goldstone
bosons.

A.Casel: c =21, =0

This is the first step. When ¢ = A, = 0, we find that
there is no mixing between two flavor-singlet mesons and
among the four flavor-octet mesons in the pseudoscalar
channel, and we can expand the potential matrix V (o-
scattering) by only using the nonmixing projection opera-
tors (35):

8
Vabea = ViayPapea + VSXU)Pahcd + V8y<1>Puﬁ(Ld

278(8
+ Vi Paos + VasoPoocy + Varss) Pony
10+10)A(8
+ Vaaw Py + VioawP Ezhcd e, (53)

where the coefficients V; are calculated to be
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4353
Vl(l) = 2)\1 + #,
= (m3)oo
4353 (54)
VSX(I) = 2)\1 +—_ (m%))’
i

V8y(1) = Vl(8) = Vss(s) = VSA(8) = V27s(8) = Vl()A(S) =2A;.

To expand IT,, at the point s = 0, first we write out its
four-index form following Eq. (26):

Habcd(s = 0) = 6a06bdnab(s = 0)
Io(m3®) — Io(mb?

= 8,.0
1) 00 — (MB)

(55)

and II,,.; can also be expanded by using the projection
operators (35):

8y(1)
M opea = Pl + Mgy Posd + Mgy P

S(®)
+ Iy Pl + sy Poney + Mazss Parsy

+ MgaPo + Mygae Py O, (56)
and its solution is
11, = 1) = Iyl
(mg)oo - (m%)oo
Io(m) = Io(m}
Mgy = —— A
(ms)oo - (mP)ii
Mgy = Lo(mg) — Io(mp’ (57)
(ms)u (mp)oo

Hl(8) = HSS(S) = HSA(8) = H27S(8) = HIOA(S)
_ To(m§) — Io(mjp

(mé)u - (m%?)ii '

In the case of c = 0 and A,
diagonal, so we have

= 0, the mass Eqgs. (20) are

(m%)oo - m2 + 3A16’% + 3/\110(}’7120) + 8)\1]0(”’!3!

+ A I()(moo) + 8A I()(m;),
(m%)il- = m + /\10’0 + A Io(m ) + 10)\110("’13{

+ A lo(m) + 8 Io(mid), (58)
and
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(m%))oo = m2 + )110_'% + )tllo(mgo) + 8/\110(}’7’!3!)

+ 30 Lo (mY) + 84, Ly(m}),
(mp)i; = m* + M5 + A Io(m) + 84, 1y(m¥)

+ A Io(m%) + 10, Iy(mih), (59)
where i = 1,..., 8, and (m3); denote (mi')?, (m3*)?, etc.
Here we note that, as a matter of fact at the tree-
approximation level, the octet scalar mesons, the singlet
pseudoscalar scalar meson and the octet pseudoscalar me-
sons all have the same mass:

(m3);; = (m3)oo = (m3);; = m* + A, 35, (60)

We note that one possible consistent solution to the gap
Egs. (21) is that they all (still) have the same mass:

(m%')ii = (m%r)oo = (m%’)ii

This result is very interesting: whereas we expected to find
pseudoscalar Nambu-Goldstone bosons, which have zero
masses, we found that even the pseudoscalar mesons here
have nonzero masses (m%)y = (m%);;. This is the usual
“problem” of the NG theorem in the Gaussian
approximation.

From Eq. (21), we have

m2 = _/\10_'(2) - 3/\110(1’)120) - 8)\110("’1?

= Milo(m) = 8 Io(m3). (62)

Then using this equation together with Eqgs. (58) and (59),
we obtain

(m3)oo = 24,53,

(M) = =2 Io(m°) + 2, Io(mg),

(Mo = —2X,Lo(mP) + 24, Ip(mY), (63)
(m3)ii = =24 1o(m ) + 24, Lo(m))

In order to check whether there are Nambu-Goldstone
bosons, we only need to check if the following equations
hold

Vis =0)II;(s =0) =1, (64)
because in this case there is no flavor mixing of 7T-matrix
elements/scattering operators. If Eq. (64) holds, then the
T-matrix elements subject to the following Bethe-Salpeter

equation:

Ti(s) = Vi(s) + Vi(s)IL;(s)T;(s) (65)

PHYSICAL REVIEW D 82, 034011 (2010)

have a pole at s = 0. This means there are massless mesons
propagating, and thus the Nambu-Goldstone bosons turn
up.
Equation (64) can be easily checked when ¢ = A, = 0.
By using Egs. (63) and (57), we have

—— (m%)o0
1(1) —4)&158 + 2)\1(171%)00’ (66)
(mz)ii
Mg,y .

- _4)\15'(2) + 2/\1(1’”%’)”"
and

H8y(l) = HI(S) = Hgs(g) = HSA(S) = H27S(8) = HlOA(S)

1
=, 67
m (67)
Together with Egs. (54) we have
Vis=0)Il,(s=0)=1 (68)

for all the allowed flavor representations 1), 8,(1), 8,1),
Lig), 85s)> 8a(5), (10 @ 10)4(5), 27 ().

As there are several flavor singlets and octets, it is not
clear just how many NG bosons in these channels are
independent. Yet, it is clear that there are at least 1 + 8 +
10 + 27 = 46 distinct NG bosons when ¢ = 0 and A, = 0.
That is (much) more than nine NG bosons expected in the
general Uy (3) X Ug(3) linear sigma model, and more than
17 NG bosons when the O(18) symmetry is broken down to
O(17). The explanation for the fact that there are more than
17 NG bosons is that the O(18) may be dynamically broken
down to a symmetry that is lower than O(17), e.g. the
O(16) or even O(15). In this sense the GFA approximation
is substantially different from the Born, or the one-loop
approximations, which are not known to lead to ground
state(s) with ““exotically broken” symmetry.

Thus, we have proved that all the expected pseudoscalar
mesons are Nambu-Goldstone bosons when ¢ =0 and
A, = 0, but also that there are many more. As there are
no “elementary” meson fields in the flavor (10 & E)A(g)
and 27 4)-plets in the SU(3) linear sigma model, we must
conclude that these NG bosons are (zero mass) bound
states of (massive) elementary boson fields. This goes to
show that the GFA method is well and truly nonperturba-
tive and capable of dynamically producing bound states
even in exotic flavor channels, such as the (10 & 10) A(s) and
274). Of course, this does not mean that in the ground
state of QCD there are exotic NG bosons, because the ¢ =
0 and A, = 0 conditions do not correspond to reality.
Therefore, we discuss the ¢ = 0 and A, # 0 case next.
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B.Casell: c=0and A, # 0

When ¢ = 0 and A, # 0, the mixing between two sin-
glet pseudoscalar mesons and among three octet pseudo-
scalar mesons exist, and we need to use the mixing
operators. The scattering matrix V can be expanded by
using the nonmixing projection operators (35) as well as
the mixing operators (38) and (39), and the solution is

4 (3)\1 + A2)20'0

2
Vip =2A; +=A s
1(1) 13 2t 9 5 — (mp)oo
2 4 31 + )\2)2
V. =2\ +=A, + = —,
8x(1) 1 3 2 9 5 — (mP)”
V. =2A +2A +4 /\25%
B ! 3 ’ 9s— (m%)ii’
2 32 Aa?
Vl(8):2)\l —)l —|—_L‘-§,
3 95— (mp)oo
4 10 A2g%
\% =2\ A+ — A’
85(8) 1T Ty T (mp)”' (69)
VSA(S) = 2A1 + 6)\2, V27S(8) = 2/\1 + 2/\2,
V10A(8) = 2.,
2 4 (B2, + /\%)6'(2)
\% =V =\, + = R
1(M1) 1(M2) 327y G — (m%a)oo

2 (B, + /\%)0‘%

3 05— (m%’)ii
252

== )\2 + g 7)‘203 R

35— (mp);
2 + 23)a3

3y + 2BMA )

3 s —(mp)y

V8(Ml) = VS(MZ) =A ,
Vewms) = Vama)

VS(MS) = VS(MG)

We do the same procedure for I1,;,.,;, and the results are
(after choosing s = 0)

Iy(m%) — Io(m¥

o = (ms)oo - (m%’)oo ’
Mg,y = IO(mgO) — IO(mg ,
(m3)oo — (mp)i
Mgy = Io(fglfsi) — Ip(m% ’
mg)ii — (mp)oo (70)
HI(S) = Hss(s) = HSA(S) = H27S(8)

o Tl = IoGm
0A(8 B
104®) S)zz - (m%’)ii

Hl(Mi) = HS(Mi) =0.

So I ;.4 is still “diagonal.”
In the case of ¢ = 0 and A, # 0, the masses are diago-
nal, and from Eqgs. (20) we have

PHYSICAL REVIEW D 82, 034011 (2010)

(mS)OO = m + 3/\10’0 + /\20’0 (3/\1 + /\2)10(7}’!20

i 1
+ (841 + 81y (mi) + (Al + 3/\2)10(;71930

8 .
+ (8)\1 + g)&2)10(m;:, ,
(m%)ii == m2 + /\15'(2) + )\20_% + (/\1 + )lz)]o(mgo
+ (10)\1 + 5)\2)10(]’71 ) + ()\1 %Az)]o(m(;)o
+ (8 + K)o (mi), (71)

and

(m})oo = m* + X165 + 10,57 + (A + 3A)Io(mY
+ 8y + 8A)Io(mi) + (3A; + A)I(mY
+ (8A; + 8Ay) Iy (mid),
(m});; = m> + A\ 3§ + 30,07 + (A + 3A)Io(mY
+ (8A; + HA)Io(mi]) + (A + )T (m®
+ (10, + 52,)1(m%). (72)

From Eq. (21), we have

5 1

m- = _Al&%) g)\z (3/\1 + )lz)]()(moo

1
(8)\1 + 8)\2)10(}’7’!” - ()ll + §A2)Io(m(})>0
8 N

Then using this equation together with Eqgs. (71) and (72),
we obtain
(m})oo = 2A,63 + 20,53,
=2\ (Iy(mi) — Io(m®)) + 3,57
+ 30 (Ig(mf) — Io(mY)),
(mp)oo = 241 (Lo(mp’) — Io(m"))
+ %/\2(10(’"9)0) — Ip(mY))
+ 200, (Ip(mil) — Io(m)),
= 204 (Io(m) = To(m®) + ATy = Iofon)
+ 3 (Io(mf) — Io(my)). (74)

(ms)ii

(m%)ii

1. Singlet channel

Since the mixing exists, we need to use Eq. (46) derived
earlier. After inserting the expressions of the masses and
the polarization energies, V; and II;, which are listed in
Egs. (74), (69), and (70), we can verify that at the kine-
matical point s = 0, we have
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iy (o 0 )| e e g e e ot
2V2Vipn Vi 0 Thg ' ’ q

massless Nambu-Goldstone bosons. Moreover, we can
(75)  verify that only one of the three eigenvalues is zero. This
with the meaning that the determinant of the matrix within 18 dlfﬁ?‘ﬂt to prove analytically even with the aid of
the vertical bars is zero. Therefore, there are Nambu- algebraic manipulation programs. Therefore, we randomly

Goldstone bosons. Since there is a mixing between the ~ choose the values for the relevant parameters (coupling
two singlet pseudoscalar mesons, Ty, Ty(s)» Tia) and constants), and confirm this result. So we obtain the result

that only one octet and one singlet of pseudoscalar mesons
are Nambu-Goldstone bosons in this case. That agrees with
the conventional result in the Born approximation,
although the pseudoscalar spectral functions in the GFA
[18] contain (much) more structure than a simple Dirac

2. Octet channel (8x(l)’ 8y(l) and 855) delta function, see, e.g. [3].

We calculate the solution Eq. (47) when ¢ = O and A, # 3. 8,5, (100 10),, s and 27 channels
0, and find that at the point s = 0, we have

T (a2 all have a pole at s = 0. However, we can verify that
only one of the two eigenvalues is 0. This means that only
one of the singlet pseudoscalar meson is a Nambu-
Goldstone boson.

For the 8, channel, we have
( Vi) 2 Vsws) @ Vs
=1 3Vswe Vay) @ Vawa)

KJTE Vs @ Vama)  Vase)

gy 0 0
X O HSy(l) 0 == 0, (76)
\ 0 (N § P

A a5 + (Iy(m®)) — Io(mY)) — 10(Io(mi) — Io(mii))
: (B = A)Uo(mi) — Iy(mE)) + Ay (53 + Io(mY) — I(m%))

1 = VgawIlgae) =

For the decuplet channel, we have

a5 + Up(mg”) — Iy(mp’) — (Ig(mg) — Io(m))
— A)o(m) — Io(m)) + Ay(G5 + Lo(m) — Io(mP))

1 = Vipas)Mioas) = A2 G
1

For the 27, channel, we have

c_r(z) + (IO(mgO)) - Io(m(l),o)) — 4(Io(mgi) — Iy(mi))
(BA; = M)Uo(mi) = Iy(m%)) + Ay (35 + Io(m°) — Io(mP))”

1 - V27S(8)H27S(8) = A

Therefore, none of them are Nambu-Goldstone bosons, as expected.

C.Caselll: ¢ # 0 # A,

In this case we assume that both ¢ and A, are nonzero. This is the most general case that conserves the SU; (3) X SU(3)g
symmetry. The scattering matrix 7 can be expanded by using the nonmixing projection operators (35) as well as the mixing
operators (38) and (39), and its solution is
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2220 + 4252 + 26(A; + Ay)edy + 3¢

Vi =2\ + A, + = ,
1) b3 s = (m%)oo
2 1 8(3A; + A5)202 — 4/6(3A; + Ay)cay + 3¢2
Veun) = 24 + 2 A + — :
N T s = (mp);
2 1 84232 — 4/6Acay + 3c2
Ve = 24, + 2 Ay + — 2270 = :
8y(1) 377 g s — (m3);;
2 4 80252 — 4J6M5c5 + 3c?
VI(S) _ 2A] < a4 20'0 \/_ 22C0'() C ,
3 9 - (mP)OO
4 521252 + 2.6 + 3¢2
Ves®) =241 =5 A T 5 2% \/_ 2000 T2 , 7
3 9 s — (m3);;

Vsag) = 2A1 + 6A,, Varss) = 2A1 + 24, Vioam) = 2A4,
214G + )33 — J6(3A; — Ay)edy — 3¢?

1% =V =)\ + - ,
1(M1) 1(M2) 3Ty 5 — (m%)oo
Ve g ) 43X A, + A3)G% + V6(6A, + Ay)eay — 3¢?
S(Ml) 8(M2) 2 6 5 — (m%))ii 4
1 42352 + /6 — 3¢
Vaas) = Vaua) = Ax + 75 + Vohseay — 3c ,
6 N (mP)ll
1 8310, + A3)32 — 24/6(3A; + 2)y)cay + 3c
Vaws) = Vawe) = A2 +—= : 0 — : B
12 s (mp)n

We go through the same procedure for II,;,, and the results are (after setting s = 0)

Io(m®) — Io(m¥;

(mS)OO (mP)ll

Io(mY) — Iy(m®
(ms)oo (mp)oo

Ly(m§) — Io(m")

H1(1) = HSx(l) -

H8;1 = s
v(1) (mé)ii - (m%)OO (78)

HI(S) = Hss(s) = HSA(S) = H27S(8) = H10A(8) = m
S/ 113

I 1(mix) — H8x(m1x) HS)(mlx) HSz(mlx) 0,

which is the same as the previous case.
In the case of ¢ # 0 and A, # 0, the masses are still diagonal, and from Egs. (20) we have

3 1 8 i
(m3)oo = m?> + 30,33 + 1,65 + By + A)l(mP) + (8A; + 8Ay)[o(mil) + (Al + §)\2)10(;1152,0) + (8/\1 + g/\2)10(m;:,

2
— 4|=COy,
3¢90

. 1 17 i
(m2);; = m* + 1,33 + 1,63 + (A + A)Ip(m°) + (10A, + 54,)I(mi) + (/\1 + 5/\2)10(1719,0) + (8/\1 + ?/\z)lo(mjé

1
+ J%CO_'O, (79)

and
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1 1 8 y
(m%g)oo = m2 + )\16’% + g)lza_'(% + ()Ll + g)\z)lo(mgo) + (8)11 + §A2)Io(m3~l) + (3)\1 + Az)lo(m?)o

N 2
+ (8)\1 + 8){2)10(7}1[]5) + \/;00_'0,

1 1 17 .
(m3);; = m* + A\ o5 + g)‘z‘}% + (M + g)lz)lo(mgo) + (8)\1 + ?)\2)10(’"3’) + (A + AL (MY

N 1

From Eq. (21), we have
1 1 1
m2 = _)110_'(2) - g)lza_'(z) + J%C(}O - (3A] + )lz)lo(m ) - (8)\1 + 8)\2)10(/71” - ()\1 + g/\z)[o(m(])go

8 iy 1 2 iy .
- (8/\1 + 5/\2>10(m§5) + ‘/%&io(lo(mgo) — Io(mY)) — 2\/;0%(10(’"3’) — Iy(mp)), (81)

Therefore, by using this equation together with Eqgs. (79) and (80), we obtain
2 . -
(ms)oo 2)\]0'0 + — )lz J:CO'O + Jr—(lo(m ) - Io(m(},o)) - 2\/;%(10(7}13!) - Io(ml[g)),
2
(m_zq)u = 2)‘1(10(’" - Io(m %)) + \/;CUO +3 3 )‘20'0 + 3/\2(10(’"1)) - Io(m ) + \/:—(Io(m 0) — Io(m%O))
2 - -
- 2[5010 (o(mf) = To(mi)),
16 - ,
(m3)oo = 2A,(Lo(m®) — Iy(m%)) + \/:CU'O + = 3 N (Io(mY) = In(m)) + ?)lz(lo(m}?) — Iy(mY))
lc 00 2¢ ii ii
+ ——(Io(m 0) — Io(mp’)) — 2 35, Holms) = Io(m})),
g0
N 2 7 , . 1
(m3);; = 24, (Io(mE) — Io(mY)) + 5/\2(10("1%0) — Ip(mY)) + 5/\2(10("1%) — Ip(m¥)) + \/%&io(lo(mgo) — Ip(m%))

— 2\Fi<10(m — Io(mi5)).

309
1. Singlet channel 2. Octet channel (8,(,), 8,() and 8))
We calculate the solution Eq. (46) when ¢ # 0 and A, # We calculate the solutipn Eq. (47) when ¢ # Oand A, #
0, and find that at the point s = 0, we have 0, and find that at the point s = 0, we have
2 V10
I 1 — Vi 2\/§V1(M2) <H1(1) 0 ) | £ 0 Vi) 3 Vas) 5 V)
2\/§V1(M1) Vig) 0 ) 1= % V(o) Vsyn) \/Tm Va3
(82) @ Vs @ Vsama  Vase)
where, again the vertical bars denote the determinant of the i 0 0
(2 X 2) matrix within. Therefore, we have verified that the 8x(1)
singlet pseudoscalar meson is not a Nambu-Goldstone X 0 Mgy (1) 0 =0, (83)
boson any more, due to the U,(1) symmetry breaking 0 0 Mgs)

interaction constant ¢ # 0.
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where, again the vertical bars denote the determinant of the
(3 X 3) matrix within. This is again difficult to prove
analytically, so we again randomly choose the values for
the relevant parameters, and obtain this result. Moreover,
we can verify that only one of its three eigenvalues is zero.
So we obtain the expected, yet nontrivial result that only
one octet of pseudoscalar mesons are Nambu-Goldstone
bosons.

VII. EXPLICITLY BROKEN CHIRAL SYMMETRY
AND DASHEN’S FORMULA

When the chiral symmetry is explicitly broken, the NG
theorem turns into a relation between the chiral symmetry
breaking parameter and the NG boson mass, as first dis-
cussed by Dashen [19]. The NG theorem in the chiral limit
has already been addressed in the Gaussian approximation
and equivalent formalisms in Refs. [6,7]. Here, we turn to
the nonchiral case.

As shown in Ref. [6] in the chiral limit the Nambu-
Goldstone particle appears as a zero-mass pole in the T
matrix in the pseudoscalar channel. Next we look at the
zero CM energy s = 0 polarization function V_(0)I1 ,(0)
in the nonchiral case hy = & # 0. For simplicity’s sake we
only study this in the A, = ¢ = 0 case (so as not to have to
deal with complications associated with channel mixing(s)
in the flavor-singlet and octet channels). Now the gap
Eq. (21) becomes

m? == — A,52 — 3hIo(m®) — 8A Iy(mi
g0

- /\IIO(mOPO) - 8/\1]0(1’}’[1}5 y (84)
together with (58) and (59), we obtain

€
(m%)oo = — + 2/\10_'(2),
4]
€ B
(m3);; = P 22, Io(mQ) + 27, Iy(mi),
0

(85)
€
(m3)oo = %0 =21 Lo(m$) + 24, In(m),

€ .
(m3); = . 20, 1o(mY) + 2, Io(mi).
0

We work out the BS equation for the flavor-singlet and
octet channels. The polarization function is worked out in
the flavor-singlet channel 1(;) as

_ ., _ € (m§)00
Vl(l)(O)Hl(l)(O) =1 6-_0 (m%,)oo((m%)o() - (m%?)OO)
+'67(€2l (86)

and we obtain the similar result for the flavor-octet channel
8 x(])l
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—1_ € (m3)oo
Vo OO = = G g — 20
+ O(€?), (87)

as well as the positive-parity channel flavor-octet consist-
ing of two scalar mesons. Since V,(0)I1,(0) =~ 1 — u 2 L,
we see that the pole in the s-channel propagator has moved
away from zero momentum. In order to find the mass, we
must take into account the residue at the pole; thus we find
m2. = £+ O(g?), just as in the Born approximation. Here
hy = ¢ is the explicit symmetry breaking parameter and
the “pion” symbol 7 denotes the complete set of 17
pseudo-NG bosons, whose mass should be small if this
linearized approximation is to hold. This result is valid
only for “small” values of the explicit chiral symmetry
breaking parameters, such as that of the SU(2); X SUg(2)
symmetry breaking that is responsible for the pion’s mass.

Of course, with iy # 0 it is possible to have an explicit
breaking of the O(18) symmetry down to the explicitly
conserved, yet spontaneously broken O(17) symmetry. In
that case there will remain several massless NG bosons.
For instance, in the other flavor-singlet channel 15, made

up of flavor-octet mesons, we have
Vi) (0)I1)(0) = 1, (88)

and the same result holds for the 8}, 83), 84(s), 275(3) and
(10 ® 10) As) channels. Of course, once one turns on A, #
0 and/or ¢ # 0 all of these NG bosons acquire masses, as
derived in Sec. VIB. The NG mesons also acquire masses
when one explicitly breaks the O(17), SU(3) or SU(2)
symmetries, e.g. by including hg # 0 and/or hs # O.
These masses can be evaluated by means of Dashen’s
formula so long as the explicit symmetry breaking is small,
which is not the case for realistic values of hg # 0; ¢ # 0.
Therefore, this result is practically useful only for the
(isotriplet) pion masses, but not for the kaons and the 7
and 1’ mesons. This is perhaps as far as one can go using
only analytic methods.

The next step, to be taken in our next paper, will be to
numerically solve the gap and Bethe-Salpeter equations
with an explicitly broken SU(3) symmetry, so as to repro-
duce the experimental pseudoscalar masses and their weak
decay constants and thus to fix all of the free parameters in
this model in the Gaussian approximation.

VIII. CONCLUSION

We have studied the NG theorem for the pseudoscalar
mesons in the U(3); X Ug(3) linear sigma model. We have
constructed the ground state wave function in the GFA. At
this level, all the scalar mesons and the pseudoscalar
mesons acquire finite masses by the minimal spontaneous
symmetry breaking o, # 0. Hence, the NG theorem is not
satisfied at the GFA level.
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Hence, we have developed a method to work out the
Bethe-Salpeter equation for the scattering 7" matrix of
mesons. To this end, it was important to work out the
projection operators in order to separate various SU(3)
channels in the 7" matrix. We have then explicitly worked
out the BS equations for the pseudoscalar mesons in the
general case of the U(3), X Ug(3) linear sigma model.
Since the verification of the NG theorem is quite compli-
cated and tricky, we have decided to work out the NG
theorem step by step.

First, we studied the A; # 0 and A, = ¢ = 0 case. In
this case, we verified that the NG bosons appear in the
usual flavor-nonet channel, where the NG bosons are
present at the mean field, or the Born approximation level.
Additionally, we have found new composite NG bosons in
certain other flavor channels that correspond to the break-
ing of the extended O(18) symmetry down to a lower
symmetry.

Then we studied the case with A; # 0 and A, # 0, but
¢ = 0. In this case, we found the usual flavor-nonet of NG
bosons. We then studied the case when all the coupling
constant in the Lagrangian are nonzero. In this case, we
found only the flavor-octet pseudoscalar mesons as the NG
bosons: the ninth pseudoscalar meson acquires a non-zero-
mass and thus is not an NG boson any more. Of course,
¢ # 0 corresponds to the explicit U, (1) symmetry break-
ing, that affects the 1 and %’ mesons, and is comparable
with, or perhaps even larger than the explicit breaking of
the SU(3); X SUR(3) symmetry.

We have discussed another simple case in order to
examine how low-mass pseudo-NG bosons emerge due
to the explicit chiral symmetry breaking: when the
Lagrangian has just one small explicit chiral symmetry
breaking parameter sy = € # 0. There we confirmed that
Dashen’s result for pseudo-NG boson masses hold in the
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Gaussian approximation. This result is valid only for small
values of the explicit chiral symmetry breaking parameters,
such as that of the SU(2); X SUg(2) symmetry breaking
that is responsible for the pion’s mass.

In this paper, we have analyzed the appearance of NG
bosons for various cases in the chiral U(3); X Ug(3) linear
sigma model Lagrangian. We have also studied the effect
of the small explicit chiral symmetry breaking term to
provide a small mass to the pseudoscalar bosons. This
result is practically useful only for the (isotriplet of) pions,
but not for the kaons and the 1 and 7%’ mesons.

This is perhaps as far as one can possibly go using only
analytic methods. The next step, to be taken in our next
paper, will be to numerically solve the gap and Bethe-
Salpeter equations with an explicitly broken SU(3) sym-
metry, so as to reproduce the experimental pseudoscalar
masses and their weak decay constants and thus to fix all of
the free parameters in this model in the Gaussian approxi-
mation. Then it will be possible and (very) interesting to
calculate the spectra of scalar bosons in the SU(3) chiral
sigma model.
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