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Chiral effective field theory (�EFT) complements numerical simulations of quantum chromodynamics

(QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice

simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic

nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of

the power-counting regime (PCR) of �EFT, where higher-order terms of the expansion may be regarded

as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety

of renormalization schemes and associated parameters, techniques to identify the PCR where results are

independent of the renormalization scheme are established. The nucleon mass is considered as a

benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation

results are also examined to search for the possible presence of an intrinsic scale which may be used in a

nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that

improve on the current optimistic application of chiral perturbation theory (�PT) beyond the PCR are

reported.
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I. INTRODUCTION

The low energy chiral effective field theory (�EFT) of
quantum chromodynamics (QCD) provides a model-
independent approach for understanding the consequences
of dynamical chiral-symmetry breaking in the chiral prop-
erties of hadrons. Nonanalytic contributions in the quark
mass are generated by the pseudo-Goldstone meson dress-
ings of hadrons through meson-loop integrals. Chiral per-
turbation theory (�PT) provides a formal approach to
counting the powers of low-energy momenta and quark
masses such that an ordered expansion in powers of the
quark mass mq / m2

� is constructed. �PT indicates that, in

general, the most singular nonanalytic contributions to
hadron properties lie in the one-loop ‘‘meson cloud’’ of
the hadron. For example, the leading nonanalytic behavior

of a baryon mass is proportional to m3=2
q or m3

�. More
generally, baryon masses can be written as an ordered
expansion in quark mass or m2

�.
To establish a model-independent framework in �PT,

the expansion must display the properties of a convergent
series for the terms considered. There is a power-counting
regime (PCR) where the quark mass is small, and higher-
order terms in the expansion are negligible beyond the
order calculated. Within the PCR, the truncation of the
chiral expansion is reliable to a prescribed precision.

The asymptotic nature of the chiral expansion places the
focus on the first few terms of the expansion. A survey of
the literature for the baryon sector of �EFT illustrates the
rarity of calculations beyond one-loop [1–3], and there are
no two-loop calculations which incorporate the effects of
placing a baryon in a finite volume. With only a few terms

of the expansion known for certain, knowledge of the PCR
of �EFT is as important as knowledge of the expansion
itself. It is within the PCR that higher-order terms of the
expansion may be regarded as negligible.
Numerical simulations of QCD on a space-time lattice

are complemented by �EFT through the provision of a
model-independent formalism for connecting lattice simu-
lation results to the physical world. Simulations at finite
volume and a variety of quark masses are related to the
infinite volume and physical quark masses through this
formalism. However, the formalism is accurate only if
one works within the PCR of the truncated expansion.
Present practice in the field is best described as optimistic.
Truncated expansions are regularly applied to a wide range
of quark (or pion) masses with little regard to a rigorous
determination of the PCR.
When considering nucleons, there is some evidence that

the PCR may be quite small; constrained by m� &
200 MeV at 1% accuracy at the chiral order
Oðm4

� logm�Þ [4,5]. This estimate of the PCR of �PT
was identified using specific finite-range regularization
(FRR) techniques to analyze lattice QCD data. Using
FRR, the regime is manifest when the quark-mass depen-
dence of the nucleon mass is independent of the
renormalization-scheme parameter.
A chief focus of this paper is to establish a rigorous

approach to determining the PCR of a truncated chiral
expansion quantitatively. Through the consideration of a
variety of renormalization schemes and associated parame-
ters, new techniques to identify the PCR are established.
The PCR is the regime where results are scheme indepen-
dent. The nucleon mass is considered as a benchmark for
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illustrating this general approach. Here, the chiral expan-
sion is examined, focusing on the individual low-energy
coefficients of the chiral expansion. This approach pro-
vides a determination of the PCR for a truncated expansion
in �EFT. As discussed in detail in the following section,
the PCR is indeed small for the nucleon mass. Other
observables are expected to show a similar if not smaller
PCR. Thus most of today’s lattice simulation results lie
outside the PCR, and the truncated chiral expansions have
been used to extrapolate from outside the PCR. The low-
energy coefficients determined by applying the truncated
expansion outside the PCR will take on unphysical values,
as they accommodate important but otherwise missing
contributions from nonnegligible higher-order terms.

While continued advances in numerical simulations of
lattice QCD will be vital to some extent in resolving this
problem, the physical value of the strange-quark mass
presents a challenge that will not diminish with super-
computing advances. If one were to include the effects of
kaons, vital to understanding strangeness in the nucleon,
for example, then one must either calculate to significantly
higher order in the expansion of �PT or develop new
nonperturbative approaches which utilize the nonperturba-
tive information expressed in the lattice simulation results.
Since the former is likely to be compromised by the
asymptotic nature of the expansion, attention is given to
the latter approach.

Thus the second focus of this paper is to examine the
numerical simulation results, to identify the possible pres-
ence of an intrinsic scale. This may then be used to address
lattice simulation results outside of the PCR in a non-
perturbative manner. Of course, the nonperturbative for-
malism must incorporate the exact perturbative results of
�PT in the PCR. Positive results are reported that improve
on the current optimistic application of �PT outside of the
PCR.

The outline of the presentation is as follows. Section II
reviews chiral effective field theory and the process of
regularization and renormalization. The adoption of FRR
provides a wide range of schemes and scales, which over-
lap with the more popular massless renormalization
schemes as the finite-range regulator parameter is taken
to infinity. Section III investigates FRR in the context of a
particular model. By generating a set of pseudodata and
analyzing it with a variety of renormalization schemes, a
robust method for determining the PCR is obtained, along
with an optimal renormalization scale to use beyond the
PCR. Finally, Section IV includes the analysis of three sets
of lattice results for the nucleon mass, utilizing the tools
developed in the previous section. Conclusions are sum-
marized in Sec. V.

II. EFFECTIVE FIELD THEORY

This section begins by briefly reviewing the process of
regularization and renormalization in finite-range regular-

ized chiral effective field theory, providing a range of
renormalization schemes and scales. A central focus is to
search for the dependence of physical results on the
scheme and associated scales, as these will be an indication
that one is applying the chiral expansion outside the PCR.
The focus is to establish techniques that provide a quan-

titative test of whether a given range of m� lies within the
PCR. This is achieved through an examination of the flow
of the low-energy coefficients as a function of the renor-
malization scheme parameter(s). A negligible dependence
would confirm that the pion-mass range is within the PCR.
On the other hand, the properties of the flow will be used to
identify a preferred regularization scheme in a nonpertur-
bative sense that best describes the results beyond the PCR.

A. Renormalization in FRR �EFT

Using the standard Gell-Mann–Oakes–Renner relation
connecting quark and pion masses, mq / m2

� [6], the for-

mal chiral expansion of the nucleon can be written as a
polynomial expansion in m2

� plus the meson-loop integral
contributions:

MN ¼ fa0 þ a2m
2
� þ a4m

4
� þOðm6

�Þg þ �N þ��

þ�tad: (1)

The pion cloud corrections are considered in the heavy-
baryon limit, with loop integrals, �N , ��, and �tad, corre-
sponding to Figs. 1–3, respectively. The coefficients ai of
the analytic polynomial, contained in brackets f g in Eq. (1)

FIG. 1. The pion loop contribution to the self-energy of the
nucleon, providing the leading nonanalytic contribution to the
nucleon mass. All charge conserving transitions are implicit.

FIG. 3. Tadpole contributions to the nucleon self-energy.

FIG. 2. The pion loop contribution to the self-energy of the
nucleon allowing transitions to the nearby and strongly coupled
decuplet baryons.
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, are related to the low energy constants of �PT. In this
investigation, they will be determined by fitting to lattice
QCD data. These coefficients will be referred to as the
residual series coefficients. These bare coefficients
undergo renormalization due to contributions from the
loop integrals �N , ��, and �tad.

Under the most general considerations, each loop inte-
gral, when evaluated, produces an analytic polynomial in
m2

� and nonanalytic terms:

�N ¼ bN0 þ bN2 m
2
� þ �Nm

3
� þ bN4 m

4
� þOðm5

�Þ; (2)

�� ¼ b�0 þ b�2 m
2
� þ b�4 m

4
� þ 3

4��
��m

4
� log

m�

�

þOðm5
�Þ; (3)

�tad ¼ bt
0
2m

2
� þ bt

0
4m

4
� þ �0

tm
4
� log

m�

�
þOðm5

�Þ: (4)

Here � is the delta-nucleon mass splitting in the chiral
limit, taken to be 292 MeV. �N , ��, and �0

t denote the
model-independent chiral coefficients of the terms that are
nonanalytic in the quark mass. The bi coefficients are
renormalization-scheme dependent as are the ai coeffi-
cients. It can be noted that the tadpole loop contribution
�tad does not produce a bt0 term because it enters with a

leading factor of m2
�, as discussed in Sec. II B. The primes

on the coefficients bt
0
2 and �

0
t here simply indicate that they

will be used later in a slightly different form.
The process of renormalization in FRR �EFT proceeds

by combining the renormalization-scheme-dependent co-
efficients to provide the physical low-energy coefficients,
which are denoted as ci. Thus, the nucleon mass expansion
takes on the standard form:

MN ¼ c0 þ c2m
2
� þ �Nm

3
� þ c4m

4
�

þ
�
� 3

4��
�� þ c2�t

�
m4

� log
m�

�
þOðm5

�Þ: (5)

By comparing Eqs. (1) through (5), the following renor-
malization procedure is obtained:

c0 ¼ a0 þ bN0 þ b�0 ; (6)

c2 ¼ a2 þ bN2 þ b�2 þ bt
0
2 ; (7)

c4 ¼ a4 þ bN4 þ b�4 þ bt
0
4 ; etc: (8)

The coefficients ci are scheme-independent quantities, and
this property will be demonstrated when determined within
the PCR. The value of c0 is the nucleon mass in the chiral
limit (m2

� ¼ 0), and c2 is related to the so-called sigma
term of explicit chiral-symmetry breaking [7–9]. The non-
analytic terms m3

� and m4
� logm�=� have known coeffi-

cients denoted by �N , ��, and �t. The value of c4 is scale
dependent, such that the totalm4

� term in Eq. (5), including

the logarithm, is independent of the scale�. It can be noted
that the nucleon mass itself is completely independent of
the choice of �. For the numerical analysis, � is set equal
to 1 GeV.
Of course, EFT loop calculations are commonly diver-

gent without some regularization method. Since the effec-
tive field theory is only applicable for low energies, hard
momenta contributions to loop calculations may be elim-
inated. However, the traditional schemes including dimen-
sional regularization (DR) often do not involve an explicit
scale dependence when evaluating loop diagrams. Without
any momentum cutoff, the bi coefficients from each loop
integral become either infinite or vanish, and the ci coef-
ficients from Eq. (5) undergo an infinite renormalization or
none at all:

c0 ¼ a0 �1; (9)

c2 ¼ a2 þ1; (10)

c4 ¼ a4 þ 0; etc: (11)

Since the ci coefficients are finite after renormalization, the
ai coefficients must have been infinite, with the opposite
sign of the bi coefficients. As emphasized above, both the
ai and bi coefficients are scheme dependent. The infinities
are absorbed in constructing the ci coefficients and thus
subtracted from the chiral expansion. This minimal sub-
traction scheme with no explicit scale dependence makes
DR quite suitable for elementary fields, where the absence
of new degrees of freedom at higher energies is assumed.
However, for EFTs there is an energy scale beyond which
the effective fields are no longer the relevant degrees of
freedom. When one integrates loop contributions over this
high-energy domain, there is no guarantee that one can
efficiently subtract the model-dependent, ultraviolet phys-
ics with a finite number of counterterms (unless in the
PCR). As a result, the chiral expansion typically only
shows reliable convergence properties over a narrow range
of pion mass.
Indeed this problem of beginning with rapidly varying

loop contributions, which must then be removed with a
finite number of counterterms, can easily be overcome. The
hard momentum contributions to the meson-loop diagrams
can be suppressed via the introduction of a regulator. As
such, the coefficients of the residual expansion are likely to
be smaller, and the utility of the expansion has the potential
to apply to a broader range of quark or pion masses. The
introduction of a regulator acts to resum the chiral expan-
sion, with loop integrals having the general properties
described in Eqs. (2) through (4).
The resummation of the chiral series through the intro-

duction of a regulator (or similar variant) has been studied
in various instances [5,10–18]. The method consists of
inserting a regulator function uðk2Þ into the integrand of
the meson-loop integrals. The regulator can take any form,
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so long as it is normalized to 1, and approaches 0 suffi-
ciently fast to ensure convergence of the loop. Unlike DR,
this method involves an explicit momentum cutoff scale,
�. The chiral expansion can now be written in terms of this
cutoff scale:

MN ¼ fa�0 þ a�2 m
2
� þ a�4 m

4
� þOðm6

�Þg þ�Nðm2
�;�Þ

þ��ðm2
�;�Þ þ �tadðm2

�;�Þ: (12)

The superscript � denotes the scheme dependence of the
a�i coefficients. The loop integrals are functions of the
scale � and also m2

�.
Through the introduction of the regulator, the loop in-

tegrals are now low-energy contributions, significant for
small m2

� and becoming negligible as m2
� becomes large.

The scheme-dependent a�i coefficients undergo a renor-
malization, as before, via their combination with the b�i
coefficients, whose scheme dependence is now explicit,
reflecting the regularization of the loop integrals:

c0 ¼ a�0 þ b�;N
0 þ b�;�

0 ; (13)

c2 ¼ a�2 þ b�;N
2 þ b�;�

2 þ b�;t0
2 ; (14)

c4 ¼ a�4 þ b�;N
4 þ b�;�

4 þ b�;t0
4 ; etc: (15)

Dimensional analysis reveals that the coefficients bi are

proportional to �ð3�iÞ. Thus it can be realized that as the
cutoff scale � goes to infinity the FRR expansion reduces
to that of Eq. (5) via Eqs. (9) through (11). At any finite �,
a partial resummation of higher-order terms is introduced.

Previous studies indicate that extrapolation results show
very little sensitivity to the precise functional form of the
regulator [14]. In this investigation, the family of smoothly
attenuating dipole regulators will be considered. The gen-
eral n-tuple dipole function takes the following form, for a
cutoff scale of �:

unðk2Þ ¼
�
1þ k2n

�2n

��2
: (16)

The standard dipole is recovered for n ¼ 1. The cases n ¼
2, 3 are the ‘‘double-’’ and ‘‘triple-dipole’’ regulators,
respectively. In the following, uðk2Þ is used to denote one
of these regulators. This functional form allows one to
interpolate between the dipole regulator and the step func-
tion (which corresponds to n ! 1).

In a study by Bernard et al. [15], it was suggested that
only a sharp cutoff FRR scheme is consistent with chiral
symmetry. Djukanovic et al. [16] have demonstrated more
general functional forms can be generated by proposing a
scheme in which the regulator function is interpreted as a
modification to the propagators of the theory, obtained
from a new chiral-symmetry-preserving Lagrangian.
Higher-derivative coupling terms are built into the
Lagrangian in order to produce a regulator from the
Feynman rules in a symmetry-preserving manner.

The regulators used in the present investigation are
introduced in a less systematic fashion, such that chiral
symmetry is not automatically preserved to the order cal-
culated. The higher-derivative couplings of the regulator
induces scheme-dependent nonanalytic terms. To maintain
chiral symmetry, one must introduce the necessary vertex
corrections.
Alternatively, one can choose the regulator judiciously

such that any extra scheme-dependent nonanalytic terms
are removed to any chosen order. For example, the n-tuple
dipole regulators generate extra nonanalytic terms in the
chiral expansion of Eq. (5) at higher chiral orders. For a
dipole regulator, regulator-dependent nonanalytic terms
occur at odd powers of m�, beginning at Oðm5

�Þ.1 In the
case of the double dipole, the nonanalytic terms begin at
Oðm7

�Þ, and for the triple dipole the nonanalytic terms
begin only at Oðm9

�Þ.
In a final observation, it is essential to note that the

degrees of freedom present in the residual series coeffi-
cients, a�i , are sufficient to eliminate any dependence on
the regulator parameter, �, to the order of the chiral
expansion calculated: in this case Oðm4

�Þ. By definition,
higher-order terms in the FRR expansion are negligible in
the PCR, and therefore FRR �EFT is mathematically
equivalent to �PT in the PCR. Any differences observed
in results obtained at the same chiral order but with differ-
ent regularization schemes are a direct result of consider-
ing data that lie outside the PCR (provided that the
regulator � is not chosen too small such as to introduce
an unphysical low-energy scale).

B. Loop integrals and definitions

The leading order loop integral contributions to the
nucleon mass, corresponding to the diagrams in Figs. 1–3
can be simplified to a convenient form by taking the heavy-
baryon limit and performing the pole integration for k0.
Renormalization, as outlined above, is achieved by sub-
tracting the relevant terms in the Taylor expansion of the
loop integrals and absorbing them into the corresponding
low-energy constants, ci:

~� N ¼ �N

1

2�2

Z
d3k

k2u2ðk2Þ
!2ðkÞ � b�;N

0 � b�;N
2 m2

� (17)

¼ �Nm
3
� þ b�;N

4 m4
� þOðm5

�Þ; (18)

~�� ¼ ��

1

2�2

Z
d3k

k2u2ðk2Þ
!ðkÞð�þ!ðkÞÞ � b�;�

0 � b�;�
2 m2

�

(19)

1While scheme-dependent, it is significant to note that with a
dipole regulator, � ¼ 0:8 GeV, the coefficient of the induced
m5

� term compares favorably with the two-loop calculation [1–
3,5,14]
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¼ b�;�
4 m4

� � 3

4��
��m

4
� log

m�

�
þOðm5

�Þ; (20)

~� tad ¼ c2m
2
�

�
�t

1

4�

Z
d3k

2u2ðk2Þ
!ðkÞ � b�;t

2

�
(21)

¼ c2m
2
�

�
b�;t
4 m2

� þ �tm
2
� log

m�

�
þOðm5

�Þ
�

(22)

¼ c2m
2
� ~�tad: (23)

These integrals are expressed in terms of the pion energy,

!ðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p
. The tilde (~) denotes that the integrals

are written out in renormalized form to chiral orderOðm2
�Þ.

As the bi coefficients are regulator and scale dependent,
this subtraction removes this dependence. The coefficients
a0 and a2 of the analytic terms in the chiral expansion in
Eq. (5) are now automatically the renormalized coeffi-
cients c0 and c2. This is because the b0 and b2 terms in
Eqs. (13) and (14) are removed in the subtraction. Note
also that the tadpole amplitude in Eqs. (22) and (23)
contains the renormalized c2 in its coefficient. The inter-
action vertex in this diagram arises from expanding out the
pion field in the leading quark-mass insertion.

The constant coefficients �N , ��, and �t for each inte-
gral are defined in terms of the pion decay constant, which
is taken to be f� ¼ 93 MeV, and the axial coupling pa-
rameters D, F, and C which couple the baryons to the pion
field. The phenomenological values for these couplings are
used, applying the SU(6) flavor-symmetry relations
[19,20] to yield C ¼ �2D, F ¼ 2

3D and the value D ¼
0:76:

�N ¼ � 3

32�f2�
ðDþ FÞ2; (24)

�� ¼ � 3

32�f2�

8

9
C2; (25)

�t ¼ � 3

16�2f2�
: (26)

With the renormalized integrals specified, the FRR
modified version of the chiral expansion in Eq. (5) takes
the form:

MN ¼ c0 þ c2m
2
�ð1þ ~�tadÞ þ a�4 m

4
� þ ~�N þ ~��: (27)

The a�4 term is left in unrenormalized form for simplicity.
Indeed, the b4 can be evaluated by expanding out corre-
sponding loop integrals, such as in Ref. [12]. However, the
focus here is on the behavior of c0 and c2.

Since the results of lattice simulations reflect the pres-
ence of discrete momentum values associated with the
finite volume of the lattices, the formalism must also take
into account these finite-volume effects. In order to accom-

modate the effect of the finite volume, the continuous loop
integrals occurring in the meson-loop calculations in infi-
nite volume are transformed into a sum over discrete
momentum values. The difference between a loop sum
and its corresponding loop integral is the finite-volume
correction, which should vanish for all integrals as m�L
becomes large [21].
While Eq. (27) is useful in describing the pion-mass

evolution of the nucleon mass, for the consideration of
lattice QCD results, one also needs to incorporate correc-
tions to allow for the finite-volume nature of the numerical
simulations. As the pion is the lightest degree of freedom in
the system, it is the leading order pion loop effects that are
most sensitive to the periodic boundary conditions. The
corrections can be determined by considering the trans-
formation of each loop integral in Eqs. (17), (19), and (21),
into a discrete sum for lattice volume V ¼ LxLyLz [22]:

Z
d3k ! ð2�Þ3

LxLyLz

X
kx;ky;kz

: (28)

Each momentum component is quantized in units of 2�=L,
that is ki ¼ ni2�=L for integers ni. The finite-volume
correction �FVC can be written as the difference between
the finite sum and the integral:

�FVC
i ¼ �i

2�2

� ð2�Þ3
LxLyLz

X
kx;ky;kz

Iið ~k; m2
�;�Þ

�
Z

d3kIið ~k; m2
�;�Þ

�
; (29)

where i ¼ N, �, and the integrands are denoted

Iið ~k; m2
�;�Þ. By adding the relevant finite-volume correc-

tion (FVC) to each loop contribution, the finite-volume
nucleon mass can be parameterized:

MV
N ¼ c0 þ c2m

2
�ð1þ ~�tadÞ þ a�4 m

4
� þ ð~�N þ �FVC

N Þ
þ ð~�� þ �FVC

� Þ: (30)

It is also anticipated that the FVC are independent of the
regularization scale � in this domain. In Figs. 4 and 5, the
scale dependence of the finite-volume corrections is shown
for a dipole regulator and a 2.9 fm box (the same box size
used for the PACS-CS data [23]). It is notable that choosing
� too small suppresses the very infrared physics that one is
trying to describe, and therefore it is sensible to be cautious
by not selecting a � that is too low. Figures 6 and 7 show
the behavior of the FVC for a 4.0 fm box, and the correc-
tions are much smaller as expected.
For large � the results saturate to a fixed result. For the

light pion masses, provided � * 0:8 GeV, the estimated
finite-volume corrections are stable. The asymptotic result
is used, which has been demonstrated to be successful in
previous studies [24]. Numerically, this is achieved by
evaluating the finite-volume corrections with a parameter,
�0 ¼ 2:0 GeV, �FVC

i ¼ �FVC
i ð�0Þ. It should be noted that
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this is equivalent to the more algebraic approach outlined
in Ref. [21].

III. INTRINSIC SCALE: PSEUDODATA

This �EFT extrapolation scheme to order Oðm4
� logm�Þ

will be used in conjunction with lattice QCD data from
JLQCD [27], PACS-CS [23], and CP-PACS [28] collabo-
rations to predict the nucleon mass for any value of m2

�.
The lattice data used in this analysis can be used to ex-
trapolate MN to the physical point by taking into account
the relevant curvature from the loop integrals in Eqs. (18),
(20), and (22). As an example, a regulator value of � ¼
1:0 GeV was chosen for Figs. 8–10, where the finite-
volume corrected EFT appears concordant with previous
QCDSF-UKQCD collaboration results [24]. If the regula-
tor is changed away from the choice � ¼ 1:0 GeV, the
extrapolation curve also changes. This signifies a scheme
dependence in the result due to using lattice QCD data
beyond the PCR.

FIG. 5 (color online). Behavior of finite-volume corrections
�FVC
� vs � on a 2.9 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 6 (color online). Behavior of finite-volume corrections
�FVC
N vs � on a 4.0 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 7 (color online). Behavior of finite-volume corrections
�FVC
� vs � on a 4.0 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 4 (color online). Behavior of the finite-volume correc-
tions �FVC

N vs � on a 2.9 fm box using a dipole regulator. Results

for two different values of m2
� are shown.

FIG. 8 (color online). Example dipole extrapolation based on
JLQCD data [27], box size: 1.9 fm.
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To demonstrate this, consider the infinite volume ex-
trapolation of the CP-PACS data. The extrapolation is
achieved by subtracting the finite-volume loop integral
contributions defined in Eqs. (17), (19), and (21) from
each data point and then fitting the result to obtain the
coefficients c0, c2, and a�4 as shown in Eq. (27). The
infinite volume loop integrals are then added back at any
desired value of m2

�.
Figure 11 shows that the curves overlap exactly when

m2
� is large, where the lattice data reside. They diverge as

the chiral regime is approached. This section addresses this
problem in detail.

A particular regularization scale is selected and a dense
and precise data set is generated, which smoothly connects
with state of the art lattice simulation results. If all the data
considered lie within the PCR then the choice of regulator
parameter is irrelevant, and the FRR chiral expansion is
mathematically equivalent to scale-invariant renormalza-
tion schemes including DR. However, the purpose here is
to consider an insightful scenario, whereby a set of ideal

pseudodata with known low-energy coefficients is pro-
duced. This scenario will form the basis of the investiga-
tion of the PCR, and ultimately the possible existence of an
intrinsic scale hidden within the actual lattice QCD data.
The pseudodata are produced by performing a finite-

volume extrapolation such as that shown in Figs. 8–10. The
difference is that 100 infinite volume extrapolation points
are produced close to the chiral regime. The exercise is to
pretend that it is actual lattice QCD data. Clearly, a regu-
larization scheme must be chosen to produce the pseudo-
data. In this case, a dipole regulator was chosen and
pseudodata were created at �c � 1:0 GeV.
The regularization dependence of the extrapolation is

characterized by the scale dependence of the renormalized
constants ci. Consider how c0 and c2 behave when ana-
lyzed with a variety of regulator values in Figs. 12 and 13.

FIG. 10 (color online). Example dipole extrapolation based on
CP-PACS data [28], box size: 2.3–2.8 fm.

FIG. 9 (color online). Example dipole extrapolation based on
PACS-CS data [23], box size: 2.9 fm.

FIG. 11 (color online). Close zoom of the regulator depen-
dence for dipole extrapolation based on CP-PACS data. Only the
data point corresponding to the smallest m2

� value is shown at
this scale.

FIG. 12 (color online). Behavior of c0 vs regulator parameter
�, based on infinite volume pseudodata created with a dipole
regulator at �c ¼ 1:0 GeV (based on lightest four data points
from PACS-CS). Each curve uses pseudodata with a different
upper value of pion mass m2

�;max.

POWER COUNTING REGIME OF CHIRAL EFFECTIVE . . . PHYSICAL REVIEW D 82, 034010 (2010)

034010-7



By choosing to use pseudodata produced at infinite vol-
ume, one eliminates the concern that behavior of the low
energy constants across a range of regulators and pion
masses is a finite-volume artefact. The equivalents of
Figs. 12 and 13 for finite-volume pseudodata exhibit the
same features.

If three pseudodata sets are compared, each with differ-
ent upper bounds on the range of m2

� considered in the fit,
an increasing regulator dependence in c0 and c2 is seen
further from the PCR. A steep line indicates a strong
scheme dependence in the result, and naturally occurs for
data samples extending far outside the PCR. Scheme in-
dependence will appear as a completely horizontal graph.
The latter is what one expects for a value of m2

�;max <
0:04 GeV2, as shown in Figs. 12 and 13. Note that, for each
figure, all three curves (corresponding to different m2

�;max)

arrive at stable values for c0 and c2 on the right-hand side
of the graph (large �). To read off the values of c0 and c2
for large � is tempting but wrong. It is known that the
correct values of c0 and c2 are recovered at � ¼ 1:0 GeV,
because at that value the pseudodata were created.

The analysis of the pseudodata in Figs. 12 and 13 shows
that as the value of m2

�;max is changed, the correct value of

c0 is recovered at exactly � ¼ �c, where the curves inter-
sect. This is also the intersection point for c2 at � ¼ �c.
This suggests that when considering lattice QCD results
extending outside the PCR, there may be an optimal finite-
range cutoff. Physically, such a cutoff would be associated
with an intrinsic scale reflecting the finite size of the source
of the pion dressings. Mathematically, this optimal cutoff is
reflected by an independence of the fit parameters on
m2

�;max.

To illustrate the nontriviality of this scale of curve-
intersection, the pseudodata were analyzed with a different
regulator, e.g. a triple-dipole regulator. Figures 14 and 15

show that the scale of the intersection is no longer a clear
point but a cluster centered about 0.5 to 0.6 GeV. The triple
dipole will of course predict a different ‘‘best scale’’, since
the shape of the regulator is different from that of the
dipole used to create the pseudodata. The essential point
of this exercise is that clustering of curve intersections
identifies a preferred renormalization scale that allows
one to recover the correct low-energy coefficients. In this
case, the crossing of the dashed and dotted-dashed curves
(from fitting) clearly identifies �scale

trip ¼ 0:6 GeV as a pre-

ferred regulator, which reflects the intrinsic scale used to
create the data. Table I compares the values for c0 and c2
recovered in this analysis for two different regulators: the
preferred value �scale

trip ¼ 0:6 GeV, and a large value

�trip ¼ 2:4 GeV reflecting the asymptotic result recovered

FIG. 14 (color online). Behavior of c0 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV but subsequently analyzed using a triple-dipole regu-
lator.

FIG. 15 (color online). Behavior of c2 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV but subsequently analyzed using a triple-dipole regu-
lator.

FIG. 13 (color online). Behavior of c2 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV (based on lightest four data points from PACS-CS).
Each curve uses pseudodata with a different upper value of pion
mass m2

�;max.
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from DR. The input values of c0 and c2 used to create the
pseudodata are also indicated.

Note that the finite-range renormalization scheme
breaks down if the finite-range regulator is too small.
This is because � must be large enough to include the
chiral physics being studied. The exact value of a sensible
lower bound in the finite-range regulator will depend on
the functional form chosen as regulator. This is estimated
for three dipolelike regulators in Sec. IV.

Figure 13 shows that the renormalization for c2 breaks
down for small values of the regulator�. FRR breaks down
for a value of �dip much below 0.6 GeV, because the

coefficients bi of the loop integral expansion in Eqs. (18),

(20), and (22) are proportional to �ð3�iÞ. For high-order
terms with large i, the coefficients will become large when
� is small. This will adversely affect the convergence
properties of the chiral expansion. One obtains a residual
series expansion with good convergence properties only
when � reflects the intrinsic scale of the source of the pion
dressings of the hadron in question.

The pseudodata analysis provides a good indication of a
lower bound for � using a dipole regulator: �dip *

0:6 GeV. Similarly, Fig. 6 suggests a lower bound for the
triple-dipole regulator: �trip * 0:3 GeV. The same analy-

sis can be repeated for the double-dipole regulator to obtain
�doub * 0:4 GeV.

One may also constrain the lowest value that � can take
by considering phenomenological arguments. Based on the
physical values of the sigma commutator and the nucleon
mass, a pion mass of m� � 0:5 GeV bounds the radius of
convergence [13,25,26]. Therefore, in order to ensure the
inclusion of important contributions to the chiral physics,
one should choose an energy scale �sharp � 0:5 GeV for a

sharp cutoff (step function) regulator. To compare this
estimate for the sharp cutoff to that of dipolelike regulators,
one can calculate the regulator value required such that
u2nðk2Þ ¼ 1=2 when the momentum takes the energy scale
of �sharp. This results in a rough estimate for a sensible

value for the dipole, double dipole, and triple dipole. These
values are �dip � 1:1 GeV, �doub � 0:76 GeV, and

�trip � 0:66 GeV, respectively. In any event, a wide range

of regulator values will be considered, and the intersections
of the curves for the low-energy coefficients will be used in

order to construct fits outside the PCR. This will be done in
order to identify the presence of an intrinsic scale for the
pion source and an associated preferred regularization
scale.

IV. INTRINSIC SCALE: LATTICE RESULTS

A. Evidence for an intrinsic scale

In the example of the pseudodata, an optimal finite-
range cutoff was obtained from the data themselves.
Clearly, the pseudodata have an intrinsic scale: the renor-
malization scale �c at which they were created. This test
example leads the researcher to wonder if actual lattice
QCD data have an intrinsic cutoff scale embedded within
them. That is, by analyzing lattice QCD data in the same
way as the pseudodata, can a similar intersection point be
obtained from the renormalization scale flow of c0 and c2?
If so, this indicates that the lattice QCD data contain
information regarding an optimal finite-range regulariza-
tion scale, which can be calculated.
The results for the renormalization of c0 and c2 as a

function of � are now presented for JLQCD [27], PACS-
CS [23], and CP-PACS [28] lattice QCD data. The JLQCD
data use overlap fermions in two-flavor QCD, but the
lattice box size for each data point is �1:9 fm, smaller
than the other two data sets. The PACS-CS data use the
nonperturbativelyOðaÞ-improved Wilson quark action at a
lattice box size of �2:9 fm, but the data set only contains
five data points and a large statistical error in the smallest
m2

� point. The CP-PACS data use a mean field improved
clover quark action on lattice box sizes for each data point
varying from �2:2 fm to �2:8 fm.
The chiral expansion is first used to chiral order Oðm3

�Þ.
In this case, the fit parameters are c0 and c2 only. The
results for a dipole regulator are shown in Figs. 16–21, the
results for the double-dipole case are shown in Figs. 22–27,

TABLE I. A comparison of the parameters c0 (GeV) and c2
(GeV�1) at their input value (pseudodata created with a dipole at
�c ¼ 1:0 GeV) with the values when analyzed with a triple-
dipole regulator. Different values of �trip (GeV) and m2

�;max

(GeV2) are chosen to demonstrate the scheme dependence of
c0 and c2 for data extending outside the PCR.

Parameter Input �scale
trip ¼ 0:6 �trip ¼ 2:4 �trip ¼ 2:4

m2
�;max ¼ 0:25 m2

�;max ¼ 0:25 m2
�;max ¼ 0:5

c0 0.902 0.901 0.899 0.896

c2 3.00 3.07 3.17 3.23

FIG. 16 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ, and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 20 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 17 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ, and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 18 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 19 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 21 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 22 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to orderOðm3

�Þ and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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and the results for the triple dipole are shown in Figs. 28–
33. To estimate the statistical error in the renormalized
constants �c, a bootstrap technique of 200 configurations
of nucleon mass data is used. The configurations differ by
the statistical error in the data, with values generated by a
Gaussian distribution. In each plot, the same configurations
are used for a variety of values of � considered. A few
points are selected in Figs. 16–33 to indicate the general
size of the statistical error bars.
It should be noted that none of these curves is flat to

within 1% accuracy. All fits have included data beyond the
commonly accepted PCR. Clearly, there is a well-defined
intersection point in the renormalization flow curves. Also,
the value of � at which the intersection point occurs is the
same even for different data sets, and for different ci. The
tight groupings of the curve crossings lend credence to the
ansatz of an intrinsic scale associated with the finite size of

FIG. 23 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to orderOðm3

�Þ and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 25 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 26 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 24 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 27 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
doubledipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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the source of the pion dressings of the nucleon. This is a
central result of this analysis.
An intrinsic scale of �scale

dip � 1:3 GeV was obtained for

the dipole, �scale
doub � 1:0 GeV for the double dipole and

�scale
trip � 0:9 GeV for the triple dipole. These values differ

because the regulators have different shapes, and different
values of �scale are required to create a similar suppression
of large loop momenta.

B. Statistical errors

On each renormalization plot in Figs. 16–33 there are
many curves, each corresponding to different values of
m2

�;max. It is of primary interest to what extent these curves

match. Therefore, a �2
dof should be constructed, where dof

equals the number of curves on each plot minus one for the
best fit value of c0 or c2, denoted by cT in the following.

FIG. 28 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 29 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 31 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 30 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 32 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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This also serves to quantify the constraint on the intrinsic
scale �scale. The �2

dof is evaluated separately for each

renormalized constant c (with error �c) and regulator value
�:

�2
dof ¼

1

n� 1

Xn
i¼1

ðcið�Þ � cTð�ÞÞ2
ð�cið�ÞÞ2 ; (31)

for i corresponding to data sets with differing m2
�;max. The

theoretical value cT is given by the weighted mean:

cTð�Þ ¼
P

n
i¼1 cið�Þ=ð�cið�ÞÞ2P

n
j¼1 1=ð�cjð�ÞÞ2 : (32)

The �2
dof can be calculated as a function of the regulator

parameter � for each of the renormalization plots of
Figs. 16–33. In the case of the PACS-CS data, the mini-
mum of the �2

dof curve will be centered at the intersection

point. In the case of the JLQCD and CP-PACS data, there
appears to be a single intersection point on each plot, but in
fact there are multiple intersections over a very small
window of �. The results for �2

dof will indicate the

‘‘best’’ central value of �. This central value of � will
be taken to be the intrinsic scale. The �2

dof curves for a

dipole regulator are shown in Figs. 34–39, the �2
dof curves

for the double-dipole case are shown in Figs. 40–45, and
the �2

dof curves for the triple dipole are shown in Figs. 46–

51.

C. Higher chiral order

Consider the renormalization of c0 and c2 as a function
of �, for chiral orderOðm4

� logm�Þ. The results for PACS-
CS and CP-PACS data are shown in Figs. 52–55, as an
example. In this case, no clear intersection points in the
renormalization curves can be found, and so one is unable
to specify an intrinsic scale. This certainly should be the

FIG. 36 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 35 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a dipole regulator is used.

FIG. 34 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a dipole regulator is used.

FIG. 33 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 37 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 38 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 39 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 41 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a double-dipole regulator is used.

FIG. 40 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a double-dipole regulator is used.

FIG. 42 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.
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FIG. 45 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 44 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 43 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 46 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a triple-dipole regulator is used.

FIG. 48 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 47 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a triple-dipole regulator is used.
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FIG. 50 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 49 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 51 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 53 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion taken to orderOðm4

� logm�Þ and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 54 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion taken to order Oðm4

� logm�Þ
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 52 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion taken to orderOðm4

� logm�Þ and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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case when working with data entirely within the PCR,
because all renormalization procedures would be equiva-
lent (to a prescribed level of accuracy) and so there would
be no optimal regulator parameter. It is known that this is
not the case for the data sets used in this study. This is
verified by considering the evident scale dependence of c0
and c2 in Figs. 52–55. The fact that c0 and c2 change over
the range of � values indicates that the data are not inside
the PCR. Further, since no preferred scale is revealed, any
choice of � appears equivalent at this order. While this is
encouraging that the scheme dependence is being weak-
ened by working to higher order, it must be recognized that
there is a systematic error associated with the choice of �.
In the case of the CP-PACS results shown in Figs. 54 and
55, it can be seen that the statistical errors are substantially
smaller than the systematic error associated with a charac-
teristic range, �lower <�<1, where �lower is the lowest
reasonable value of �.

Since it is difficult to identify the intrinsic scale at this
chiral order, the results for chiral order Oðm3

�Þ will be
chosen to demonstrate the process of handling the exis-
tence of an optimal regulator scale in lattice QCD data. The
results for the calculation of the intrinsic scales �scale for
different data sets and regulators are given in Table II. This
table simply summarizes the central values from Figs. 34–
51. Such excellent agreement between the c0 analysis and
the c2 analysis is remarkable, and indicative of the exis-
tence of an instrinsic scale in the data. There is also
consistency among independent data sets. It is important
to realize that the value of �scale is always the order of
�1 GeV, not 10 GeV, nor 100 GeV; nor is it infinity.

In calculating the systematic uncertainty in the observ-
ables c0, c2 and the nucleon mass at the physical point due
to the intrinsic scale at order Oðm4

� logm�Þ, two methods
are provided. First, the upper and lower bounds from the
�2
dof analysis at order Oðm3

�Þ will be used to constrain �,

and taken to be an accurate estimate of the systematic
uncertainty in the contributions of higher-order terms.
Second, variation of the observables across the character-
istic range of scale values, �lower <�<1 will be used,
where�lower takes the value of 0.6, 0.4, and 0.3 GeV for the
dipole, double-dipole, and triple-dipole regulator, respec-
tively. The results from both of these methods are dis-
played in Table III.
The final results for the calculation of the renormalized

constants c0, c2 and the nucleon mass extrapolated to the
physical point (m�;phys ¼ 140 MeV) are summarized in

Table IV. The lightest four data points from each of
JLQCD, PACS-CS, and CP-PACS lattice QCD data are
used. The nucleon mass is calculated at the scale deter-
mined by the data.

FIG. 55 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion taken to order Oðm4

� logm�Þ
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

TABLE II. Values of the central � value in GeV, taken from
the �2

dof analysis for c0 and c2, based on JLQCD, PACS-CS, and

CP-PACS data.

Regulator form

Optimal scale Dipole Double Triple

�scale
c0 ;JLQCD

1.44 1.08 0.96

�scale
c2 ;JLQCD

1.40 1.05 0.94

�scale
c0 ;PACS-CS 1.21 0.93 0.83

�scale
c2 ;PACS-CS 1.21 0.93 0.83

�scale
c0 ;CP-PACS 1.20 0.98 0.88

�scale
c2 ;CP-PACS 1.19 0.97 0.87

TABLE III. Results at Oðm4
� logm�Þ for the systematic error

due to the intrinsic scale, calculated using two methods, for the
values of c0 (GeV), c2 (GeV�1), and the nucleon mass MN

(GeV) extrapolated to the physical point (m�;phys ¼ 140 MeV).

The first number in each column is the systematic error due to
the intrinsic scale using the upper and lower bound from the �2

dof

analysis at order Oðm3
�Þ. The second number is the systematic

error due to the instrinsic scale across the whole range of �
values from the lowest reasonable value (� ¼ �lower) obtained
from the pseudodata analysis, to the asymptotic value (� ¼ 1).

Regulator form

Sys. err. Dipole Double Triple

��cJLQCD0 0.001, 0.009 0.001, 0.013 0.001, 0.016

��cPACS-CS0 0.005, 0.006 0.005, 0.010 0.006, 0.012

��cCP-PACS0 0.002, 0.024 0.002, 0.037 0.002, 0.045

��cJLQCD2 0.02, 0.31 0.03, 0.38 0.01, 0.48

��cPACS-CS2 0.18, 0.25 0.16, 0.33 0.14, 0.43

��cCP-PACS2 0.02, 0.40 0.02, 0.58 0.02, 0.73

��MJLQCD
N;phys 0.0004, 0.0051 0.0003, 0.0073 0.0003, 0.0090

��MPACS-CS
N;phys 0.0022, 0.0030 0.0025, 0.0046 0.0025, 0.0058

��MCP-PACS
N;phys 0.0012, 0.0175 0.0013, 0.0270 0.0014, 0.0326
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V. CONCLUSION

In conclusion, it has been demonstrated that chiral ef-
fective field theory is an important tool for investigating the
chiral properties of hadrons, and for extrapolating lattice
QCD results. Because the chiral expansion is only conver-
gent within a PCR, a renormalization scheme such as
finite-range regularization should be used for current lat-
tice QCD results, and into the foreseeable future.
Renormalization-scheme dependence occurs when lattice
QCD data extending outside the PCR are used in the
extrapolation. This provides a new quantitative test for
determining when lattice QCD data lie within the PCR.
As most lattice data extend beyond the PCR, a formalism
was developed to determine if there is an optimal regulari-
zation scale �scale in the finite-range regulator, and to
calculate it if it exists. It was concluded that such an
optimal scale can be obtained from the data itself by
analyzing the renormalization flow curves of the low-
energy coefficients in the chiral expansion. The optimal
scale is selected by the value for which the renormalized
constants are independent of the upper bound of the fit
domain. This also means that the renormalized constants
are not to be identified with their asymptotic values at large
�.

It was revealed that a preferred regularization scheme
exists only for data sets extending outside the PCR. Such
a preferred regularization scheme is associated with an
intrinsic scale for the size of the pion dressings of the
nucleon. By working to sufficiently high chiral order, it
was discovered that the scale dependence was weakened.
Nevertheless, the residual scale dependence persists as
a significant component of the systematic uncertainty.
For efficient propagation of this uncertainty, an interest-
ing future direction would be to consider marginali-
zation over the scale dependence [29]. The described pro-
cedure was used to calculate the nucleon mass at the
physical point, the low-energy coefficients c0 and c2
and their associated statistical and systematic errors.
Several different functional forms of regulator were con-
sidered, and lattice QCD data from JLQCD, PACS-CS, and
CP-PACS were used. An optimal cutoff scale �scale for
each set of lattice QCD data was obtained, and the system-
atic error in the choice of renormalization scheme was
calculated.
In summary, the existence of a well-defined intrin-

sic scale has been discovered. It has also been illus-
trated how its value can be determined from lattice QCD
results.

TABLE IV. Results at Oðm4
� logm�Þ for the values of c0 (GeV), c2 (GeV�1), and the nucleon mass MN (GeV) extrapolated to the

physical point (m�;phys ¼ 140 MeV). WM is the weighted mean of each row. The nucleon mass is calculated at the optimal scale�scale,

which is the average of �scale
c0 and �scale

c2 for each data set. The extrapolations are performed at box sizes relevant to each data set:

LJLQCD
extrap ¼ 1:9 fm, LPACS-CS

extrap ¼ 2:9 fm, and LCP-PACS
extrap ¼ 2:8 fm. The errors are quoted as the estimate of the statistical error first (based

on random bootstrap configurations), and the systematic error obtained from the number of m2
� values used second. Two seperate

weighted means are calculated for each row. WM(1) incorporates the systematic error in the intrinsic scale using the upper and lower
bound from the �2

dof analysis at order Oðm3
�Þ. The WM(2) incorporates the systematic error due to the intrinsic scale across the whole

range of � values from the lowest reasonable value (� ¼ �lower) obtained from the pseudodata analysis, to the asymptotic value
(� ¼ 1). The weighted means also include an estimate of the systematic error in the choice of regulator. All errors are added in
quadrature. Note that any order OðaÞ errors have not been incorporated into the total error analysis.

Regulator form

Parameter Dipole Double Triple WM(1) WM(2)

cJLQCD0 0.873(18)(16) 0.875(17)(16) 0.891(17)(16) 0.880(29) 0.879(32)

cPACS-CS0 0.900(51)(15) 0.899(51)(14) 0.898(51)(14) 0.899(53) 0.899(55)

cCP-PACS0 0.924(3)(8) 0.914(3)(7) 0.918(3)(7) 0.918(13) 0.920(37)

cJLQCD2 3.09(9)(11) 3.18(9)(12) 3.20(9)(11) 3.16(18) 3.14(43)

cPACS-CS2 3.06(32)(15) 3.15(31)(14) 3.17(31)(14) 3.13(39) 3.12(49)

cCP-PACS2 2.54(5)(4) 2.70(5)(2) 2.71(5)(3) 2.66(18) 2.61(60)

MJLQCD
N;phys 1.02(2)(9) 1.02(2)(9) 1.02(2)(9) 1.02(9) 1.02(9)

MPACS-CS
N;phys 0.967(45)(43) 0.966(45)(43) 0.966(45)(43) 0.966(62) 0.966(62)

MCP-PACS
N;phys 0.982(2)(40) 0.975(2)(43) 0.978(2)(42) 0.979(43) 0.979(50)
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