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The degeneracy among parity pairs systematically observed in the N and � spectra is interpreted to hint

on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS5=CFT4.

The case is made by showing that all the observed N and � resonances with masses below 2500 MeV

distribute fairly well each over the first levels of a unitary representation of the conformal group, a

representation that covers the spectrum of a quark-diquark system, placed directly on a conformally

compactified Minkowski spacetime, R1 � S3, as approached from the AdS5 cone. The free geodesic

motion on the S3 manifold is described by means of the scalar conformal equation there, which is of the

Klein-Gordon–type. The equation is then gauged by the curved Coulomb potential that has the form of a

cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies

the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between

P11 � S11 pairs from same level is relaxed, while the remaining states belonging to same level remain

practically degenerate. The model describes the correct mass ordering in the P11 � S11 pairs through the

spectra as a combined effect of the above conformal symmetry breaking, on the one side, and a parity

change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The

quality of the wave functions is illustrated by calculations of realistic mean square charge radii and

electric charge form factors on the examples of the proton, and the protonic P11ð1440Þ, and S11ð1535Þ
resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous

gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is

finite in the infrared and tends to zero at infinity.
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I. INTRODUCTION

Understanding the systematics of high-spin states is
among the serious challenges in quark spectroscopy
[1,2]. This is because the number of resonances predicted
by the traditional quark models based upon the full Hilbert
space of six spin-flavor degrees of freedom and the lowest
symmetry of the radial wave functions, the rotational in-
variance, [3] significantly exceeds the number of the states
observed so far [4]. The resonance deficit, termed to as
‘‘missing’’ states, is still awaiting explanation. Quark-
diquark [q-ðqqÞ] models [5], based on a diquark with
limited angular momentum values, carry reduced spin-
flavor degrees of freedom and are obvious candidates for
providing a lesser number of missing states, an option
taken into consideration by several authors [6,7].
Additional restrictions on the quantum numbers of the
q-ðqqÞ excitations can come from imposing on the spatial
wave functions a symmetry higher than SOð3ÞL. A natural
candidate would be the, admittedly approximate, global
conformal symmetry of the QCD Lagrangian in the light
flavor sector. It is the goal of the present work to examine
consequences of conformal symmetry for the systematics
of the N and � spectra in constructing radial wave func-
tions of a q-ðqqÞ system in accord with that very symmetry.
The aim is to pick up from the full Hilbert space isospin by
isospin thoseN and� resonances whose quantum numbers
would fit into an irreducible representation of the confor-

mal group (termed to as conformal band). The observation
of these states can then serve as a signature for conformal
symmetry realization in the infrared. Below, we design
such a model in reference to the AdS5=CFT4 concept.
We shall see that the model allows to interpret the system-
atically observed degeneracy among parity pairs in the N
and � spectra as a hint on a possible realization of confor-
mal symmetry in light flavor baryon spectra.
Implementations of conformal symmetry and the AdS/
CFT concept to hadron physics have been pioneered in
Refs. [8,9] within the framework of light-front QCD.
Further interesting studies can be found, among others, in
Refs. [10–13]. Specifically, in Refs. [8,9], a conformally
invariant Hamiltonian has been successfully employed in
the construction of spatial wave functions for both mesons
and baryons. We here implement conformal symmetry into
a quark Hamiltonian in a position space of a finite volume.
This is achieved in placing the q-ðqqÞ system directly on
the AdS5 boundary, which is the AdS5 cone, considered as
conformally compactified to S1 � S3 [14], or R1 � S3, at a
microscopic scale [15]. According to [15], correlation
functions of CFT4 on regular Minkowski spacetime,M ¼
R1þ3, can be analytically continued to the full Einstein
universe; this is becauseR1þ3 can be conformally mapped
on R1 � S3. The implication of this important observation
is that each state of the conformal field theory (CFT) on
R1 � S3 can be brought into unique correspondence with a
state of the brane theory on AdS5 � S5. Consequences on
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thermal states have been worked out in Ref. [16]. We here
examine consequences for the systematics of the N and �
spectra. The paper is organized as follows. In the next
section we highlight the procedure of conformal compac-
tification of Minkowski spacetime along the line of
Ref. [17] and present the conformal equation which will
be applied to a quark-diquark (q-qq) model of light bary-
ons in Sec. III. There, we calculate theN and� spectra, the
mean square charge radii and the corresponding electric
charge form factors of some of the excited states.
Section IV is devoted to the design of a dressing function
of an (instantaneous) effective gluon propagator as a
Fourier transform of the gauge potential on S3. The paper
closes with brief conclusions.

II. CONFORMAL COMPACTIFICATION OF THE
ADS5 CONE TO S1 � S3 �R1 � S3, WAVE

EQUATIONS, AND COTANGENT CONFINEMENT
POTENTIAL

Applications of brane theory to hadron physics has
acquired considerable attention in recent times. Such a
possibility arose in effect of the intriguing observation
[14,15] that the asymptotic horizon geometry of the
Dirichlet three-brane (D3) of the IIB superstring in ten
dimensions considered on a AdS5 � S5 background admits
a superalgebra that is identical to the superconformal alge-
bra of the corresponding four-dimensional world-volume
field theory when gravity is decoupled. The D3-brane
theory has SUð2; 2=4Þ as underlying superconformal sym-
metry whose bosonic isometry SUð2; 2Þ � SUð4Þ, is locally
isomorphic to SOð2; 4Þ � SOð6Þ [18]. This group happens
to coincide with the isometry group of the corresponding
asymptotic horizon background, AdS5 � S5, a mathemati-
cal coincidence that was suggestive of a duality between
supergravity around the horizon background, on the one
side, and superconformal brane dynamics on the other. In
such a type of strong-weak duality, one expects the funda-
mental supergraviton degrees of freedom to show up as
bound states in the nonperturbative regime of the corre-
sponding world-volume theory. As a reminder, D3-branes
solve the ten-dimensional supergravity equations of mo-
tion and in having a (1þ 3) dimensional world volume, are
surrounded by six transverse dimensions. In polar coordi-
nates five of the SOð6Þ dimensions are accounted for in
terms of the angular coordinates parametrizing the S5

hypersphere, while the sixth hyper radial coordinate is to
become holographic with respect to AdS5 in the near
horizon geometry. There, the branes’ low-energy effective
description, the Yang-Mills theory, becomes equivalent to
type IIB string, a reason for which a duality between AdS5
and four-dimensional (4D) supersymmetric Yang-Mills
theory has been conjectured by Maldacena [19].
Maldacena’s conjecture [19] woke up expectations that
zero temperature super Yang-Mills theory residing in the
conformal AdS5 boundary is likely to capture some of the

essential features of high-temperature three-dimensional
QCD [20–24]. Within this context, testing AdS/CFT re-
duces to the calculation of observables within that very
framework and their comparison to the corresponding
Lattice results in three-dimensional (3D) QCD. The duality
between D3-brane bulk supergravity and super Yang-Mills
open string theories on the conformal boundary of AdS5
spacetime implies that each CFT state (among them, the
QCD states in the light flavor sector) can be put in corre-
spondence to a state in the supergravity approximation to
string theory on AdS5 � S5, meaning that spectra in both
theories should come out same. As long as the isometry
group of the conformal AdS5 boundary is the conformal
group SOð2; 4Þ, the requirement is that the quantum states
in the theory on that boundary should populate SOð2; 4Þ
unitary representations [20]. This is an essential restriction
which strongly limits the number of theories in line with
the AdS/CFTand is suggestive of the construction of quark
models that respect global conformal invariance.
Conformal symmetry is independently to a good approxi-
mation a global symmetry of the QCD Lagrangian in the
light-flavor sector, a reason for which one can expect
spectroscopic data on the light flavor baryons, the nucleon
and the �, to be especially appropriate in examining the
AdS/CFT concept. The implementation of conformal sym-
metry by a quark model has to combine with the confine-
ment phenomenon, whose description is one of the major
goals in the physics of hadrons. Confinement implies ex-
clusion of scattering states and favoring discrete bound
states alone. Putting systems on finite volumes is a standard
strategy of spectrum discretization [25]. There is a variety
of geometries appropriate for preserving the conformal
symmetry by the resulting Hamiltonians, the three-
dimensional sphere, S3, being one of them [15,17,25]. It
has been shown that a geometry containing S3, such as the
S1 � S3 manifold, can be approached departing directly
from AdS5 [14,17,21]. The five-dimensional manifold
AdS5 is defined as a R2þ4 subspace according to

u2 þ v2 � x21 � x22 � x23 � x24 ¼ �2; (1)

where � is a fixed parameter. The boundary at infinity of
this space is identified with the AdS5 cone

u2 þ v2 � x21 � x22 � x23 � x24 ¼ 0: (2)

Flat 4DMinkowski spacetime can then be thought of as the
intersection of the null hyperplane v2 � x24 ¼ 0 with the
AdS5 cone,

v2 � x24 ¼ u2 � x21 � x22 � x23 ¼ 0; (3)

in which case u and ~x ¼ columnðx1; x2; x3Þ in turn assume
the roles of time and position vector in R1þ3, respectively.
A quark system placed on such a five-dimensional cone
can then be described by means of the light-front formal-
ism. This path has been taken by Refs. [8,9] and culmi-
nated to the holographic light-front QCD.
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The path taken by the present investigation is rather to
consider Minkowski space as emerging from an AdS5 cone
alternatively patterned after

u2 þ v2 ¼ x21 þ x22 þ x23 þ x24 ¼ R2; R � 0; (4)

in which case it compactifies to M�ð1þ3Þ ¼ S1 � S3. The
S1 � S3 manifold then describes the particular set of R2þ4

null rays associated with Eq. (4). As long as the isometry
group, SOð2Þ � SOð4Þ, of S1 � S3, is a subgroup of the
conformal group SOð2; 4Þ of regular (1þ 3) Minkowski
space, M, i.e. SOð2Þ � SOð4Þ � SOð2; 4Þ, Eq. (4) is also
referred to as conformal compactification of Minkowski
spacetime. Now, one can parametrize the S1 � S3 manifold
by the four angles �, �, �, ’ in accordance with

uþ iv ¼ Rei�; x1 þ ix2 ¼ R sin� sin�ei’;

x3 ¼ R sin� cos�; x24 þ r2 ¼ R2;

r ¼ jrj ¼ R sin�; � ¼ sin�1r
ffiffiffiffi
�

p
; � ¼ 1

R2
;

(5)

where R is the S3 hyperradius, and � the curvature.
According to Ref. [17], this map takes at a microscopic
scale the flat space Minkowski metric to the metric of
Einstein’s R1 � S3 cylinder,

ds2 ¼ ��2ð�d�2 þ d�2 þ sin2�ðd�2 þ sin2�d’2ÞÞ;
(6)

with � being the conformal factor. In this way, one estab-
lishes the relationship, S1 � S3 ’ R1 � S3.

A. Free geodesic motion on S3 and the conformal free
rigid rotor

Within the metric of Eq. (6), and the conformal factor
being absorbed by the wave functions, the following con-
formally invariant massless scalar field equation has been
found in Refs. [17,26]:

� @
2ĥc þ�2c ¼ 0: (7)

Here, �2 is the conformal constant (Ricci scalar) [17], ĥ
stands for the angular part of the 4D Laplace-Beltrami
operator, which we here choose to express in terms of
K2, and L2, the operators of the squared four- and three-
dimensional angular momenta as

ĥ ¼ � 1

R2

@2

@�2
� 1

R2
K2;

�K2 ¼
�

1

sin2�

@

@�
sin2�

@

@�
�L2ð�;’Þ

sin2�

�
:

(8)

Furthermore, � 2 ½0; �� is the second polar angle on S3.
The K2 eigenstates, jKlmi, are well known to belong to
irreducible SOð4Þ representations of the type ðK2 ; K2Þ, and
the quantum numbers,K, l, andm define the eigenvalues of
the respective four-, three-, and two-dimensional angular
momentum operators upon the states [27]. The K2 eigen-

values, �K, upon jKlmi, are known too and are given by

K2jKlmi ¼ �KjKlmi; �K ¼ KðK þ 2Þ;
jKlmi 2

�
K

2
;
K

2

�
; K 2 ½0;1Þ;

L2jKlmi ¼ lðlþ 1ÞjKlmi; LzjKlm> ¼ mjKlmi;
l 2 ½0; K�; m 2 ½�l; l�: (9)

The infinite series of solutions of Eq. (9) constitute an
1d unitary representation of the conformal group that has
been built up from the eigenstates of its little group,
SOð4ÞK [18,28]. This irreducible representation will be
frequently termed to as a ‘‘conformal band.’’ Therefore,
the conformal symmetry aspect of AdS/CFT is adequately
captured by the K2 eigenvalue problem, which in this
fashion qualifies as a suitable departure point toward the
description of conformal excitation modes in two-body
systems.
Independently, conformal symmetry is also to a good

approximation global symmetry of the QCD Lagrangian in
the light flavor sector, one more reason why employing the
conformally invariant AdS/CFT scenario from above in
modeling N and � excitations should be of interest.
Upon factorizing the � dependence of the solution to
Eq. (7) as expði E

@
ffiffiffi
�

p �Þ, one arrives at the following angular

equation on S3:

½�@2K2 � E2 þ�2�Sð�Þ ¼ 0: (10)

Though in angular variables, algebraically the conformal
Eq. (7), has the form of a Klein-Gordon equation, which
provides a relativistic description of the free geodesic
motion on S3 in terms of the eigenvalue problem of the
squared four-dimensional angular momentum. The spec-
trum of Eq. (10) reads

E 2
K ��2 ¼ �@2KðK þ 2Þ (11)

and represents no more but what one could term to as the
spectrum of the ‘‘conformal free rigid rotor.’’ On the unit
sphere, � ¼ 1, the solutions contain the Gegenbauer poly-
nomials. The normalized total angular functions for this
case, i.e. the K2 eigenstates in Eqs. (9) and (10) are then
given by

jKlmi ¼ YKlmð�; �; ’Þ; (12)

where YKlmð�; �; ’Þ are well known 4D hyperspherical
harmonics.
As a more specialized spectroscopic reading to Eq. (10),

one can say that the K2 eigenvalue problem has SOð4Þ as
potential algebra, and the conformal group as dynamical
symmetry.
Had one started instead with AdS4, one would have

ended up with the spectrum of the relativistic 3D free rigid
rotor, E2 ��2 ¼ @

2�lðlþ 1Þ. Such a spectrum may be
associated with Regge trajectories [29], a reason for the
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frequently preferred plots of resonance excitations on a
mass2=l grid beyond the strict S-matrix concept of Regge
trajectories [10,30].

In the next section we shall introduce an interaction in
Eq. (10).

B. The conformal interacting rigid rotor

The next step is introducing the interaction on S3 in such
a manner as to respect the conformal symmetry of the
spectrum of the free geodesic motion. From potential
theory, it is known that such an interaction has to satisfy
the Laplace-Beltrami equation on the manifold under con-
sideration, meaning that it has to be a harmonic function
there [31]. Harmonic functions are known for their prop-
erty to respect the symmetry of the Laplacian which is the
conformal symmetry of the respective d-dimensional
space. Specifically on S3, it has been known for a long
time [32,33] that cot�, occasionally termed to as curved
Coulomb potential [34], is a harmonic function and suit-
able as a conformal potential. According to the S3 parame-
trization in Eq. (5), the potential under consideration is of
finite range,

cot� ¼ x4
r
; r 2 ½0; R�; x4 2 ½�R; R�; (13)

and describes interactions on S3 in their projection onto the
equatorial plane, a 3D position space of a finite volume. In
due course we shall reveal importance of the finite range of
the confinement potential on various spectroscopic observ-
ables in the baryon sector. The conformal character of the
cotangent on S3 is independently illustrated by the fact that
it also describes an exact string solution corresponding to a
D3-brane with transverse dimensions conformally
wrapped over S3, a result due to Refs. [35,36]. There, a
broad class of exact string solutions have been constructed
by wrapping transversal dimensions of fundamental strings
over curved spaces and solving the corresponding curved
space Laplace-Beltrami equations for harmonic functions.
Specifically, on S3, the harmonic function Kð�Þ (in the
notations of Ref. [35]) obtained as a solution of the 4D
Laplace-Beltrami equation,

ĥKð�Þ ¼ 0; Kð�Þ ¼ �aþm cot�; (14)

has been shown to define the field of a conformal string
solution according to

ds2 ¼ dudvþ Kð�Þdu2 þ d�2

þ sin2�ðd�2 þ sin2�d’2Þ: (15)

For all these reasons, the cotangent function presents itself
as suited for playing the part of a conformal potential on
the S3 space of finite volume. This curved space potential
should not be confused with the flat space Wilson loop
potential generated by Kð�Þ in the surrounding infinite
R1þ3 space.

A further and independent motivation in favor of em-
ploying the cotangent potential in quark models is pro-
vided by the observation [37] that the lowest terms in its
Taylor expansion coincide with a Coulombic+linear
(Cornell) potential. This is easiest to illustrate by the
simplistic � ¼ r

R� parametrization (commonly used in

supersymmetric quantum mechanics) for which

� cot
r

R
� ¼ �d

r
þ 1

3

r

d
þ r3

45d3
þ 2r5

945d3
þ � � � ;

with d ¼ R

�
; m > 0; (16)

holds valid. The Cornell potential [38] has been predicted
by lattice QCD simulations [39], on the one side, and has
been also independently confirmed within the AdS/CFT
context where it emerges as a soft-wall Wilson loop po-
tential [19,40]. Its inverse distance part is associated with
the one gluon exchange of the perturbative regime, while
the linear term is viewed to describe the flux-tube inter-
actions of the nonperturbative regime. In order to approach
the regime of the asymptotic freedom, one needs to extend
the Cornell potential by corrections that account for more
complicated nonperturbative processes. Such have been
systematically explored within the topological approach
in Ref. [41]. Within this context, the terms in Eq. (16)
beyond the first two could be viewed as a particular phe-
nomenological parametrization of nonperturbative correc-
tions beyond the flux-tube mechanism. As an advantage of
such a parametrization we wish to mention the exact
solubility of the resulting potential.
Therefore, the cotangent potential on S3, besides being

congruent with conformal symmetry in AdS5=CFT4, also
adequately captures the dynamical aspects of QCD, a two-
fold advantage that makes it attractive to applications in
hadron spectroscopy.
We shall introduce this very potential as a gauge inter-

action in Eq. (8) by means of the replacement,

i@
ffiffiffiffi
�

p @

@�
! i@

ffiffiffiffi
�

p @

@�
þ 2G

ffiffiffiffi
�

p
cot�� �a; (17)

where we parametrized m in Eq. (14) as m ¼ �2G
ffiffiffiffi
�

p
.

Upon factorizing the � dependence of the total wave
function as expð�i E

@
ffiffiffi
�

p �Þ, and after some algebraic ma-

nipulations, the interacting Klein-Gordon equation can be
cast into the following form:�

��@2
d2

d�2
þUlð�; �Þ � 2G

ffiffiffiffi
�

p ð2E� 2 �aÞ cot�

� ð2G ffiffiffiffi
�

p Þ2csc2�
�
�ð�Þ

¼ ½ðE� �aÞ2 ��2 � ð �a2 þ ð2G ffiffiffiffi
�

p Þ2Þ��ð�Þ: (18)

The second term on the left-hand side of this equation,

Ulð�; �Þ ¼ h2�lðlþ 1Þcsc2�; (19)
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is the centrifugal barrier of the free geodesic motion on S3.
Equation (18) has been obtained in making use of the
peculiarity of the cotangent function to reproduce itself,
and the S3 centrifugal barrier, upon squaring,

ð �aþm cot�Þ2 ¼ �a2 �m2 þ 2 �am cot�þm2csc2�: (20)

Therefore, the csc2 terms arising upon the substitution of
Eq. (17) in Eq. (8) can be absorbed by the S3 centrifugal
barrier. Indeed, introducing the new constant,

	ðlÞ ¼ � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

�
2 � ð2GÞ2

@
2

s
¼ lþ �l;

�l � �ð2GÞ2
@
2

1

lþ 1
2

;

(21)

allows one to rewrite Eq. (18) equivalently to�
��@2

d2

d�2
þV ð�Þ

�
�ð�Þ ¼ ððE� �aÞ2 � c0Þ�ð�Þ;

V ð�Þ ¼ �2
 cot�þ �Ulð�; �Þ;
�Ulð�; �Þ ¼ @

2�	ðlÞð	ðlÞ þ 1Þcsc2�;

 ¼ 2G

ffiffiffiffi
�

p ðE� �aÞ;
c0 ¼ �2 � @

2�þ �a2 þ ð2G ffiffiffiffi
�

p Þ2:
(22)

The positive sign in front of the square root in Eq. (21)
ensures that �Ulð�; �Þ approaches the S3 centrifugal barrier
of the free geodesic motion in the G ! 0 limit,

�U lð�; �Þ !G!0
Ulð�; �Þ: (23)

Upon a suitable variable change, differential equations
of the type in (22) have been shown in Refs. [42,43] to
reduce to one of the forms of the hypergeometric equation
whose solutions can be expressed in closed form in terms
of the nonclassical Romanovski polynomials [here denoted

by Rða;bÞ
n ðcot�Þ].

C. Wave functions, spectrum, and kinetic fine structure
splittings

The resulting explicit formula for the wave functions
then emerges as

�Klð�Þ ¼ NKle
�a�ðsin�ÞKþ1þ�lRða;bÞ

n ðcot�Þ; (24)

a ¼ 2GðE� �aÞffiffiffiffi
�

p
@
2ðK þ 1þ�lÞ ; b ¼ �ðK þ 1þ �lÞ;

K ¼ nþ l; (25)

where NKl are normalization constants. Correspondingly,
the algebraic equation for the energy takes the form

ðE� �aÞ2 ¼ c0 þ @
2�ðK þ 1þ �lÞ2

1þ 4G2

@
2ðKþ1þ�lÞ2

: (26)

The expansion of the latter equation to leading order in �l
reads

ðE� �aÞ2 � ðEðKþ1Þ � �aÞ2 þ�Eð1Þ
ðKþ1Þð�lÞ; (27)

where the l independent piece,

ðEðKþ1Þ � �aÞ2 ¼ c0 þ @
2�ðK þ 1Þ2

1þ 4G2

@
2ðKþ1Þ2

; (28)

can be viewed as an unperturbed degeneracy energy. The

difference, ðE� �aÞ2 � ðEðKþ1Þ � �aÞ2 ¼ �Eð1Þ
ðKþ1Þð�lÞ,

then calculates as

�Eð1Þ
ðKþ1Þð�lÞ ¼ 2�l

�
@
2�ðK þ 1Þ
1þ 4G2

@
2ðKþ1Þ2

�
4G2ð c0

ðKþ1Þ3 þ @
2�

Kþ1Þ
@
2ð1þ 4G2

@
2ðKþ1Þ2Þ2

�
:

(29)

As long as the ‘‘interacting’’ principal quantum number,
(K þ 1þ �l), in Eq. (26) can be at most close to integer,
the degeneracy of states within the ðK=2; K=2Þmultiplet in
Eq. (9) is relaxed. Nonetheless, as visible from Eq. (27) the
spectrum is still patterned after the SOð4Þ levels jKlmi, and
it still falls into an 1d unitary representation of the con-
formal group. As we shall see below, the �l contributions
will have a detectable effect only on the masses of states
with l ¼ 0 and will be helpful in removing the degeneracy
between P1=2 � S1=2 states, while leaving all the other

excitations practically degenerate. The latter property of
the interacting conformal rigid rotor parallels on S3 the
kinetic fine level splittings of a hydrogenic two-body sys-
tem in a plane space and will occasionally be referred to as
curved fine level splitting.
In effect, the relativistic framework of the conformal

scale Eq. (7) on R1 � S3, gauged (18), provides the intri-
guing possibility of having exclusively bound states organ-
ized into conformal bands whose states are not necessarily
perfectly degenerate though they still keep spreading
around SOð4Þ levels. The case in which one of the particles
is a spin-1=2 fermion is easily incorporated into the formal-
ism by coupling the Dirac spinor ð1=2; 0Þ 	 ð0; 1=2Þ to
jKlmi in Eq. (9). The excitations of such a system populate
an infinite staircase [that is an 1d unitary SOð2; 4Þ repre-
sentation] whose ladders are given by reducible SOð4Þ
representations as�

K

2
;
K

2

�
�
��

1

2
; 0

�
	
�
0;
1

2

��
; K ¼ 0; 1; 2; . . . ;1:

(30)

Such multiplets consist of K parity dyads of rising spins,
jP ¼ 1

2

; . . . ; ðK � 1

2Þ
, and a single-parity state of maxi-

mal spin, jP ¼ ðK þ 1
2ÞP. The absolute value of the parity
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of the two-body system depends on the parity of the scalar
body, �, and is given by P ¼ �ð�1Þl. Alternatively, one
also could have started from the very beginning with the
nonrelativistic stationary Schrödinger equation on S3 with
the cot� potential as�

@
2

2m
�K2 � 2G� cot�� E

�
c ð�Þ ¼ 0; (31)

an option first considered by Schrödinger [32].
This option has been investigated by us in our prior

works [37,42]. In contrast to Eq. (18), the linear in mass
Schrödinger Eq. (31) keeps respecting in the interacting
case the degeneracies of the free geodesic motion [44].
In the present work we systematically departure from
Eq. (18). We shall compare outcomes of these two schemes
in due places.

III. QUARK-DIQUARK MODEL ON S3

From now on, we assume dominance of quark-diquark
configurations in the internal nucleon and � structures and
apply Eq. (18) to the description of the relative motion of
these two bodies. We moreover shall consider the diquark
as spinless, a restriction that enables one to hit a specifi-
cally simple unitary SOð2; 4Þ representation. As we shall
see below, this configuration turns out to be the quite
adequate for data description. In considering the diquark
as spinless, the total spin, J, of the resonance is then
obtained through coupling the spin of the quark to the
q-ðqqÞ relative angular momentum, l. For the time being,
and because of the absence of spin-flavor interactions in
the wave equation under consideration, we shall factorize
the light flavor quantum number (actually isospin). In due
course we shall see that the spectra reported so far do not
contradict the above assumptions. The application of the
conformal Eq. (7) to such two-body systems is then
straightforward and can be featured as follows:

(i) The relative angular momentum between the quark
and the spinless diquark takes the values l 2 ½0; K�,
in accord with the conformal branching rule con-
necting the K2, and L2 eigenvalues in Eq. (9).

(ii) The total spin, J, of the q-ðqqÞ system is obtained
from coupling the quark spin to that very l as�

~l �
~1

2

�
JM

; J ¼ l
 1

2
: (32)

(iii) In effect, one finds the following fermionic SOð4Þ
multiplets,

J2
�
K

2
;
K

2

�
�
��

1

2
;0

�
	
�
0;
1

2

��
; l2½0;K�; (33)

emerging as levels of a conformal band correspond-
ing to

K 2 ½0;1Þ: (34)

Accordingly, the total spin J in Eq. (32) takes the
following values,

J ¼ 1
2; ð1
 1

2Þ; ð2
 1
2Þ; . . . ; ðK 
 1

2Þ; (35)

to be identified with the spins of the light flavor
baryon resonances.

(iv) The parity, P, of the resonances, P ¼ �ð�1Þl, is the
product of the parity,� ¼ 
, of the spinless diquark,
and ð�1Þl, the parity of the relative angular motion.
The parity of the diquark, scalar, or pseudoscalar, is
fixed by matching parity, Pmax, of the highest spin,
J ¼ K þ 1

2 , i.e.

If JP ¼ ðKþ 1
2ÞPmax ; then �¼ Pmaxð�1ÞK: (36)

(v) As a working hypothesis, to be tested by comparison
with data, the nucleon diquark has been set as a
scalar for the ground state and the low lying excita-
tions with masses below 1600 MeV, and as a pseu-
doscalar above.

(vi) The � diquark has been set as an axial vector in the
ground state and as a pseudoscalar above.

(vii) The pseudoscalar diquark is a P wave axial vector
whose total angular momentum equals zero, and

emerges from coupling the axial spin vector, ~S ¼
~1þ, to an internal vectorial, 1�, excitation according

to ½~1þ � ~1��0� .
(viii) The quark-diquark system is described by means of

Eq. (22) with the wave functions in Eq. (25).
Insertion of the � parametrization from Eq. (5) into
Eq. (22) amounts to the following spatial q-ðqqÞ
wave function,

�Klð�ðrÞÞ ¼ NKle
�asin�1r

ffiffiffi
�

p ðr ffiffiffiffi
�

p ÞKþ1þ�lRða;bÞ
n

� ðcotsin�1r
ffiffiffiffi
�

p Þ: (37)

It represents the radial dependence of the total wave
function within the finite volume position space,

r
ffiffiffiffi
�

p 2 ½0; 1�: (38)

(ix) The energies E in Eq. (26) will be subsequently
redenoted by M and given interpretation of reso-
nance masses read off from the respective ground
state N and � masses.

In this fashion, the spatial part of the total baryon wave
function has been designed to account for conformal sym-
metry in accord with AdS5=CFT4 on the one side, and with
the (approximate) conformal symmetry of the QCD
Lagrangian in the light flavor sector, on the other. In
addition, �Klð�ðrÞÞ describes a confinement of finite
range. In the next section we shall compare the outcome
of such a model with data on N and � resonances.
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A. The N and � spectra

The spectrum of the nucleon continues being under
debate despite the long history of the respective studies
[1,2]. Yet, unprejudiced inspection of the data reported by
the Particle Data Group [4] reveals systematic and hardly
to overlook grouping of the excited states of the baryons of
the best coverage, the nucleon, and the �ð1232Þ. Take as a
prominent example the seven � resonances S31ð1900Þ,
P31ð1910Þ, P33ð1920Þ,D33ð1940Þ, F35ð1905Þ, D35ð1930Þ,
and F37ð1950Þ, which are squeezed in the narrow mass
band between 1900 to 1950 MeV and which, given the
limitations of data accuracies, are practically mass degen-
erate. This sequence of resonances consists of 3 parity
dyads with spins ranging from 1

2

 to 5

2

 and of a single-

parity state of maximal spin, J� ¼ 7
2
þ and its quantum

numbers fit into the K ¼ 3 multiplet in Eqs. (33) and
(35). In the nucleon spectrum, one finds the Nð1440Þ �
Nð1535Þ � Nð1520Þ triplet, which would match quantum
numbers of K ¼ 1 in Eq. (33). Patterns of similar type do
not restrict to these two examples alone but extend to the
spectrum of any of the lightest flavor baryons, no matter N,
or �. Notice the following observations.

(i) The �ð1232Þ excitations around 1700 MeV form a
group of three that contains one parity dyad with
lowest spin 1

2

 and one single-parity state of maximal

spin, J� ¼ 3
2
� and would match K ¼ 1 in Eq. (33),

(ii) The � resonances around 1900 MeV are just the
K ¼ 3 example from above, which consisted of the
three mass-degenerate parity dyads with spins rang-
ing form 1

2

 to 5

2

, and the one unpaired state of

maximal spin, 72
þ, of practically same mass.

(iii) Another spin-sequence could match K ¼ 5 in
Eq. (33) and is well marked by the parity simplex
J� ¼ 11

2
þ of maximal spin in this region, the four-

star resonance H3;11ð2420Þ. The pairs H39ð2300Þ �
G39ð2400Þ and G37ð2200Þ � F37ð2390Þ would pro-
vide two of the five parity dyads necessary to com-
plete K ¼ 5 in Eq. (33). The D35ð2350Þ would be
suited as a part of a 5

2

 doublet, while spin 1

2

 and 3

2



pairs are missing.
It verifies directly by inspection that the mass-splittings
inside the above spin-cascades are notably smaller than the
splittings between the averaged cascade masses. In this
fashion the � spectrum reveals a level structure. The N
excitations follow quite same patterns though appear
shifted downward in mass by about 200 MeV relative to
the� excitations. The attention to this clustering phenome-
non in light baryon spectra has been drawn first in Ref. [45]
and was further elaborated in Refs. [46–48]. In assuming
equality of the quantum numbers of the N and � excita-
tions and comparing both spectra, allows to pin down the
states missing for the completeness of the scheme.

Under the assumption of q-ðqqÞ0
 as a dominant con-
figuration of internal baryon structure, the above clustering

phenomenon is shown below to find a quantitative expla-
nation in terms of the levels of the spectrum of Eqs. (22),
(26), (33), and (35), and is interpreted here as a hint on
possible realization of conformal symmetry in the light
flavor baryon spectra.
Missing resonance predictions.
The comparison of the spectrum in Eq. (26) to data [4] is

presented in Figs. 1 and 2.
We predict one P31 missing state from the K ¼ 1 level.

The three more states, S31, P33, and D35 are needed for the
completeness of the K ¼ 2 level. The K ¼ 3 level is
complete. From the required nine states in the next K ¼
4 level, S31, and G37, have been in turn identified with the
observed one star resonances �ð2150Þ, and �ð2200Þ. Our
F35 has been associated with the two-star resonance
�ð2000Þ, for which the two quite different mass values of
(1752
 32), and (2200
 125) have been listed in [4]. We
here adopt the position of Ref. [10] and consider this
resonance as �ð2190Þ, which allows to place it well in
the K ¼ 4 multiplet. The remaining six states from that
very level are missing (see Table I.) Finally, the K ¼ 5
members H39, and G39 can be assigned to the respective
two-star resonances �ð2300Þ, and �ð2400Þ, while �ð2350Þ
and �ð2390Þ are good candidates for D35, and F37. This
level is well marked by its highest spin H3;11, the four-star

resonance �ð2420Þ. We find 16 resonances missing from
the first five levels of the the conformal band covering the
� spectrum. On the nucleon side the highest spins, F17

from the K ¼ 3, and H31;11 from K ¼ 5 are missing. The

K ¼ 2 level is completely missing. Compared to our pre-

FIG. 1. Assignments on the l=M grid of the reported [4] �
excitations to the R1 � S3 spectrum in Eq. (26). The distribution
of the reported (experimental) resonances over the predicted
(theoretical) states has been obtained from a least mean square
four parameter data fit, i.e. by minimizing � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�

i¼N
i¼1 ðMðiÞ

th �MðiÞ
expÞ2

q
. The sum includes all the reported reso-

nances. The minimal value, �min ¼ 0:043 GeV has been ob-
tained for the following potential parameters:
G ¼ 0:04933 GeV � fm, R ¼ 0:747 fm, �a ¼ 0:5037 GeV, and
� ¼ 1:044 GeV. The excitations, E, set equal to masses, have
been read off from the �ð1232Þ mass. Full and empty squares
denote reported and predicted states, respectively.
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vious work [37,42], the fit places the Nð1900Þ, Nð1990Þ,
and Nð2000Þ resonances at the lower K ¼ 4 level and
leaves instead P11, F15, and F17 in K ¼ 5 unoccupied.
The number of missing nucleonic states is 16 (see
Table II). Therefore, for baryons whose internal structure

is dominated by the q-ðqqÞ0
 configuration, we predict a
total of 32 nucleon and � resonances missing from the first
five levels of the respective nucleon, and � conformal
bands. Figures and tables show that the N and � reso-
nances reported so far are pretty well matched by the
excitations of this simplest configuration and are illustra-
tive of a well pronounced footprint of conformal symmetry
in the spectra of the lightest flavor baryons. In case the
diquarks were to carry higher angular momenta, the ex-
citations of q-ðqqÞl with l > 0 would populate higher
SOð2; 4Þ representations, which one can expect to appear
much heavier in mass. One of the conclusions following
from our findings is that at most missing states belonging to
different levels of the conformal band might still have
chances to be pinned down by an Oð3Þ partial wave analy-
sis. In contrast, the states belonging to same level, in being
strongly overlapping, are better looked up in terms of Oð4Þ
partial wave analysis and identified as a whole.

In conclusion, the confirmation by data of the predicted
degeneracy among the parity pairs belonging to same K
and displayed in Figs. 1 and 2, signals relevance of con-
formal symmetry for the spectra of the light flavor baryons.

Before proceeding further, a comment is in order on the
degeneracies predicted by the Light-Front QCD frame-
work [8,9]. There, one finds the mass formula as

M2 ¼ N; N ¼ 1; 2; 3; . . . ; N ¼ nþ �þ 1;

(39)

and observes again a conformal band (as it should be) with
respect to �. The relation of the light-cone variable � to
ordinary angular momentum is more involved. It equals
� ¼ L for mesons, and � ¼ Lþ 1 for baryons. Also the
light-front QCD formalism reports degeneracies of excited
N and � states, that partly overlap with those considered
here. Examples are the positive parity spin-sequences
F37ð1950Þ � F35ð1905Þ � P33ð1920Þ � P31ð1910Þ from
the K ¼ 3 level in Fig. 1, and the F15ð1680Þ � P13ð1720Þ
states from same level in the nucleon spectrum in Fig. 2. So
far, the question on the degeneracies among opposite par-
ities has not been addressed in Refs. [8,9].
Mass ordering in P2I;1 � S2I;1 pairs.
The model predicts the correct mass ordering of the

P11 � S11 states through the spectrum. Within the frame-
work of the present study, the numerical value of the
splittings between such states is entirely determined by
the gauged centrifugal barrier, �Ulð�; �Þ, defined in
Eqs. (22), which prescribes that l ¼ 1 states will appear
higher in mass than those with l ¼ 0. The ordering, P2I;1 �
S2I;1 versus S2I;1 � P2I;1 depends on the parity of the

diquark. When the diquark is a scalar, spin-12
þ and

spin-12
� in turn refer to zero and unit underlying angular

momenta and are associated with P2I;1, and S2I;1 states.

This is the reason for which at the scale of 1500 MeV,
where the diquark is a scalar, the measured P11ð1440Þ state
appears lower in mass than its S11ð1535Þ neighbor. From
the 1700 MeV level onward, the parity of the diquark
changes to pseudoscalar, and it is S11 that has zero angular
momentum, in accord to Eq. (36). Consequently, S11 states
with masses above 1600 MeV appear systematically at
lower masses than their nearest P11 neighbors. Examples
are the S11ð1650Þ � P11ð1710Þ, and S11ð2090Þ �
P11ð2100Þ pairs. Recall that originally, the suggestion on
the parity change of the diquark was madewith the purpose
of matching parity of the highest spins in the fermionic
multiplets in Eqs. (35) and (36). Therefore, the reverse
mass ordering in the S11 � P11 pairs above 1600 MeV
relative to the P11ð1440Þ � S11ð1535Þ splitting, provides
an independent argument in favor of the change of parity of
the diquark from scalar to pseudoscalar at that scale.
In the � spectrum, where the diquark was fixed to a

pseudoscalar for all the excited states, we find similar
S31 � P31 splittings. The mass ordering in the S31ð1900Þ �
P31ð1910Þ pair, also correctly described within the model
presented, serves as an example. As to the resonances with
l > 1, the �l corrections to l in Eq. (21) become insignifi-
cant and the splittings practically disappear (see Tables I
and II).
In conclusion, we observed that the quantum numbers of

the reported nucleon resonances are close to equal to those
of the reported� resonances (compare Tables I and II). We

FIG. 2. Assignments on the l=M grid of the reported [4]
N excitations to the R1 � S3 spectrum in Eq. (26). The distri-
bution of the reported (experimental) resonances over the pre-
dicted (theoretical) states has been obtained from a four
parameter least mean square data fit, i.e. by minimizing � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�

i¼N
i¼1 ðMðiÞ

th �MðiÞ
expÞ2

q
. The sum includes all the reported reso-

nances. The value of the proton mean square charge radius has
been also taken into consideration by the fit. The minimal value
of �min ¼ 0:0855 GeV has been obtained for the following
potential parameters: G ¼ 0:0493 GeV � fm, R ¼ 0:9814 fm,
and � ¼ 0:3213 GeV, and �a ¼ 0:932 GeV. The excitations,
E, set equal to masses, have been read off from the nucleon
mass. Other notations as in Fig. 1.
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took advantage of this circumstance to embed the reported
states isospin by isospin into conformal bands of the type in
Eq. (33). In so doing we patterned the N, and the �
spectrum each after an unitary representation of the con-
formal group. So far, no reported state drops out of the
suggested systematics. We predicted a total of 32 missing
resonances needed for the completeness of the conformal
nucleon and � bands.

B. Charge radii and form factors

The effect of curvature on the physical observables is
two-fold. On the one side, it encodes the topology of the
position space and will influence Fourier transforms
through the S3 integration volume,

d�3 ¼ sin2� sin�d�d�d’

¼ ðr ffiffiffiffi
�

p Þ2dsin�1r
ffiffiffiffi
�

p
sin�d�d’; (40)

where use has been made from the parametrization
in Eq. (5). The curved integration volume,
ðr ffiffiffiffi

�
p Þ2dsin�1r

ffiffiffiffi
�

p
, approaches the flat one, r2dr, only in

the small � angle approximation. On the other side, curva-
ture can be viewed as a new phenomenological potential
parameter. The first aspect is of crucial importance in
performing the Fourier transform of the cotangent potential
and constructing an effective instantaneous gluon propa-
gator, in parallel to the instantaneous photon propagator
obtained from Fourier transforming the Coulomb potential.
Exploring this aspect is the subject of Sec. IV. Compared to

this, calculations of form factors of states of low internal
angular momentum, such as the ground state, and the
P11ð1440Þ resonance, are much less affected by the inte-
gration volume, because the wave functions practically
correspond to the small � angle approximation, and
thereby approach flat space wave functions. In these cal-
culations the importance of curvature is more to provide a
phenomenological parameter in addition to the potential
strength and facilitate data fits.
The standard scheme for calculating form factors relies

upon Fourier transforms from position to the conjugate
momentum space by means of the 3D plane wave, expiq �
r. This plane wave can be regarded as the special case of
the R4 plane wave, expðiq4x4 þ q � rÞ, in which q4 ¼ 0.
From this perspective, the 3D plane wave that accounts for
a position vector r restricted to the equatorial plane of S3

reads

eiq4þijqjjrj cos�jq4¼0 ¼ eijqjjrj cos� ¼ eijqjððsin�Þ=
ffiffiffi
�

p Þ cos�;

jrj ¼ R sin� ¼ sin�ffiffiffiffi
�

p ; r
ffiffiffiffi
�

p 2 ½0; 1�;

(41)

and refers to a z axis chosen along the momentum vector (a
choice justified in elastic scattering).
Electric charge form factors are the simplest physical

observables to calculate, and the corner stone of any spec-
troscopic model. They reduce to the Fourier transform of
the charge density, proportional to j�Klð�Þj2 in our case.

TABLE I. Predicted excitation values of the� states in the K ¼ 0� 5 levels of the conformal band in Eq. (9) calculated according to
Eq. (26). The internal angular momenta take the values, l ¼ 0; 1; 2; . . . ; K. Missing states are marked by boldface. The number in the
parenthesis gives the predicted mass of excitations [in MeV] carrying same internal angular momentum. States with J ¼ l
 1

2 appear

degenerate within the present scheme because of the absence of spin-orbit interactions in the present stage model. Notice that
differently from its excitations, �ð1232Þ belongs to ð32 ; 0Þ 	 ð0; 32Þ.
K l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

K ¼ 0 P31ð1230Þ � � � � � � � � � � � � � � �
K ¼ 1 S31ð1542Þ P31=P33ð1607Þ � � � � � � � � �
K ¼ 2 S31ð1699Þ P31=P33ð1768Þ D33=D35ð1774Þ � � � � � � � � �
K ¼ 3 S31ð1874Þ P31=P33ð1953Þ D33=D35ð1960Þ F35=F37ð1963Þ � � � � � �
K ¼ 4 S31ð2072Þ P31=P33ð2159Þ D33=D35ð2167Þ F35=F37ð2170Þ G37=G39ð2171Þ � � �
K ¼ 5 S31ð2287Þ P31=P33ð2380Þ D33=D15ð2388Þ F35=F37ð2391Þ G37=G39ð2393Þ H39=H3;11ð2394Þ

TABLE II. Predicted excitation values of the nucleon states in the K ¼ 0� 5 levels of the conformal band in Eq. (9) calculated in
accord with Eq. (26). Other notations as in Table I.

K l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

K ¼ 0 P11ð1136Þ � � � � � � � � � � � � � � �
K ¼ 1 P11ð1316Þ S11=D13ð1387Þ � � � � � � � � �
K ¼ 2 P11ð1492Þ S11=D13ð1568Þ P13=F15ð1574Þ � � � � � � � � �
K ¼ 3 S11ð1678Þ P11=P13ð1757Þ D13=D15ð1764Þ F15=F17ð1767Þ � � � � � �
K ¼ 4 S11ð1870Þ P11=P13ð1951Þ D13=D15ð1958Þ F15=F17ð1961Þ G17=G19ð1962Þ � � �
K ¼ 5 S11ð2066Þ P11=P13ð2147Þ D13=D15ð2154Þ F15=F17ð2157Þ G17=G1;9ð2159Þ H1;9=H1;11ð2160Þ
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The extraction of the mean square charge radius, hr2i, from
the form factor is then standard and calculated as the slope
at origin. We here choose as illustrative examples the mean
square charge radii of the proton, the P11ð1440Þ and
S11ð1535Þ resonances. The proton ground state wave func-
tion entering the calculation is obtained from Eq. (25), the
explicit expression for the normalization factor being

Nð00Þ ¼ 4bða2 þ 1Þ
1� e�2�a

; a ¼ 2GE0

@
2

ffiffiffiffi
�

p ð1� 1
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 � ð2GÞ2

@
2

q
Þ
;

E0 ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�2 � @

4
�

s
: (42)

The mean square charge radius for this state expresses in
closed form as

hr2ip ¼ 6

ð4a2 þ 9Þ ffiffiffiffi
�

p : (43)

With the potential parameters fitted to the spectra, we findffiffiffiffiffiffiffiffiffiffiffi
hr2ip

q
¼ 0:664 fm (44)

to be compared to the experimental value of
ffiffiffiffiffiffiffiffiffiffiffi
hr2ip

q
¼

0:8750
 0:008 fm reported by [4]. Comparison of the
predicted to the measured proton electric charge form
factor is presented in Fig. 3. For the Roper resonance,
same observable is calculated as

hr2iRoper ¼ 2ð5þ 52a2Þ
ð10a4 þ 104a2 þ 25Þ� ;

a2 ¼ 4G2ðE� �aÞ2
@
4�ð	ðlÞ þ 1Þ2 :

(45)

The resulting value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iRoper

q
¼ 0:8484 fm: (46)

As to the S11ð1535Þ resonances, the prediction is numerical
and obtained as ffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2iS11
q

¼ 0:8754 fm: (47)

The proton form factor is compared to data in Fig. 3. The
comparison of the other two form factors to that of the
proton is presented in Fig. 4. We obtain the mean square
charge radius of the protonlike Roper resonance enhanced
by a bit less than 30% over the proton charge radius.
Nonetheless, compared to the proton, the form factor of
the P11ð1440Þ takes smaller values. This because our pre-
dicted P11ð1440Þ charge density appears slightly arced at
origin. An enhancement, though smaller (10%) has been
found by Nagata and Hosaka in Ref. [49]. One of the
differences between the model by Nagata-Hosaka and the
present model is that while in the former both the scalar
and axial vector diquarks are weighted by nonzero form
factors, we here weight them by the extremal 1 and zero
values, respectively. This for the sake of staying as close to
conformal symmetry as possible. In the present model, it is
the curvature parameter that seems to account for some of
the effects governed by the diquark form factors in flat
space quark models. Curvature as a phenomenological tool
suited in simulating complicated many-body effects is
known to be useful in the description of such complicated
many-body problems as Brownian motion, plasma corre-
lations, instanton physics, etc. [12,50]. A reason for which
the replacement of the complicated many-body problem of

FIG. 3 (color online). The proton electric charge form factor in
comparison to data. The solid line refers to the present calcu-
lation in terms of the solutions to Eq. (22). The potential
parameters are given in the caption of Fig. 2. Data compilation
same as in Ref. [51].

FIG. 4 (color online). The electric charge form factors of the
P11ð1440Þ, and S11ð1650Þ resonances (dashed and dotted lines,
respectively), in comparison to the proton electric charge form
factor (solid line).
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baryon structure [the genuine baryon wave function con-
tains next to q-ðqqÞ also 3q, 3qð �qqÞn, 3qðgnÞ, etc. configu-
rations] by the simple q-qq problem on S3 turns out to be a
useful approximation to reality is that curvature, in combi-
nation with the conformal gauge potential, reasonably
accounts for the omitted many-body effects.

In the range of Q2 2 ½0; 1:5Þ GeV2, the proton form
factor of the present relativistic treatment compares in
quality with Gp

EðQ2Þ reported earlier by us in Ref. [37],
where we employed a cotþcsc2 confinement potential in
the stationary flat space radial Schrödinger equation,
though the relativistic and nonrelativistic charge density
profiles,�j�j2, in the range of � 2 ½0; �� are quite differ-
ent (see Fig. 5). The profile of the proton charge density in
the nonrelativistic case is exclusively governed by the
cotangent potential, while in the relativistic case it obtains
significant contributions from both the gauge interaction
and the gauged centrifugal barrier, �Ulð�; �Þ [defined in
Eqs. (21) and (22)]. The cost for obtaining nonetheless
similar Gp

EðQ2Þ form factors in the above two distinct
schemes has been admitting in the present data fit a larger
least mean square error in comparison to the nonrelativistic
treatment of Ref. [37]. Compared to Gp

EðQ2Þ obtained
within the framework of relativistic quantum mechanics
along the line of Ref. [51] and referred to as GBE CQM
there, our result on the mean square proton charge radius
appears somewhat underestimated although our predicted
Gp

EðQ2Þ values fall within the error bars of the reported data
below 2 GeV2, and lie somewhat above afterward. This
satisfactory behavior of the proton electric charge form
factor is illustrative of the realistic character of the wave
functions in Eq. (37).

IV. DRESSING FUNCTION FOR THE GLUON
PROPAGATOR IN THE INFRARED FROM

FOURIER TRANSFORM OF THE S3 POTENTIAL

This section is devoted to an effective instantaneous
gluon propagator constructed as a Fourier transform of

the conformal gauge potential. This potential, a cotangent,
captures quite well the essential traits of QCD dynamics
insofar as it interpolates between the inverse distance
potential (associated with the perturbative regime of the
one gluon exchange) and the infinite well (associated with
asymptotically free though trapped quarks) while passing
through a region of linear growth (associated with the
nonperturbative regime of flux-tube interactions), a result
due to [37]. The finite range character of the gauge poten-
tial in Eq. (17) is caused by the terms in its Taylor series
decomposition that appear beyond the Coulombicþ linear
terms [as seen in Eq. (16)], and which can be interpreted as
phenomenological nonperturbative corrections to the for-
mer. For all these reasons, associating the Fourier trans-
form of the cotangent function on S3 with an effective
gluon propagator seems justified. In the following we shall
present this transformation and compare the outcome to
lattice QCD results.
The gluon, Gab

��ðq2Þ, and ghost, Dabðq2Þ, propagators in
the Landau gauge are defined in their turn as

Gab
�� ¼ �i

��
g�� �

q�q�

q2

�
Gðq2Þ
q2

�
ab;

Gðq2Þ ¼
�
1þ i

mðqÞ
q2

��1
;

(48)

and

Dabðq2Þ ¼ Dðq2Þ
q2

ab: (49)

Here, Gðq2Þ and Dðq2Þ are referred to as the respective
gluon and ghost dressing functions. The gluon propagator
in this gauge is known to be transverse in the Lorenz
indices, and mðqÞ stands for the gluon self energy. Gluon
and ghost propagators can be obtained from solving
Schwinger-Dyson equations. In so doing, especially simple
expressions forGðq2Þ andDðq2Þ have been reported in [52]
as

Gðq2Þ � q2; Dðq2Þ � 1=q4; (50)

meaning finiteness of the gluon propagator in the infrared.
Contrary to this, the behavior of the ghost propagator is
Coulombic in the infrared. Both propagators approach zero
in the ultraviolet. More complicated expressions have been
calculated in [53]. Independently, a finite gluon propagator
in the infrared has also been calculated recently in lattice
QCD [54].
In view of these properties of the gluon propagator, it is

of interest to calculate the gluon dressing function from the
R1 � S3 quark model. To do so, we apply the Born ap-

proximation to E� V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

p
and calculate the in-

stantaneous (q0 ¼ 0) gluon propagator in parallel to our
recent work [44] as a Fourier transform of the cot�ðrÞ
potential on S3 employing the integration volume in
Eq. (40) in the parametrization of Eq. (41).

FIG. 5 (color online). Comparison of the Klein-Gordon
(present) and Schrödinger [37] proton ground state wave func-
tions (dashed and solid line, respectively).

CONFORMAL SYMMETRYAND LIGHT FLAVOR BARYON . . . PHYSICAL REVIEW D 82, 034008 (2010)

034008-11



In Cartesian coordinates the cot�ðrÞ term equals x4
r , and

stands in fact for two potentials distinct by a sign and
describing interactions on the respective Northern, and
Southern hemispheres. Correspondingly, their respective
Fourier transforms to momentum space become

4��ðjqjÞ ¼ �2�
ð�2G

ffiffiffiffi
�

p Þ
@
2

Z 1

0
djxjjxj3ðjxj � RÞ

�
Z 2�

0
d’

Z �

0
d� sin�

Z ð�=2Þ=�

0=ð�=2Þ
d�sin2�

� eijqjððsin�Þ=
ffiffiffi
�

p Þj cos� cot�; (51)

where the ðjxj � RÞ function restricts R4 to S3. It is the
requirement on invertability of this transformation, ad-
dressed here for the first time, that demands for distinguish-
ing between momentum space potentials on the Northern
and Southern hemispheres of S3. The first potential goes
with � 2 ½0; �2�, corresponds to a positive x4, and describes
an increasing r  jrj 2 ½0; R�. The second one refers to
� 2 ½�2 ; ��, a negative x4, and describes a decreasing jrj 2½R; 0�. To prove the invertability of the integral transform it
is instructive to cast the transformation integral in Eq. (51)
to the following equivalent form:

4�
�ðjqjÞ
ð4�G

ffiffiffi
�

p Þ
@
2

¼ 

Z R

0
dr

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

r

�
Z 2�

0
d’

Z �

0
d� sin�eiq�r

¼ 
4�
1� cosjqjR

q2
; (52)

where we used the parametrization in Eq. (41). Defining
now the integral transform inverse to Eq. (52) as



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

ð2�Þ3
Z 1

0
djqjq2

Z 2�

0
d’

Z �

0
d� sin�

� 4�ð1� cosjqjRÞ
q2

e�iq�r

¼ 
 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

r

8><
>:

�
2 ; r < R;
�
4 ; r ¼ R;

0; r > R;

(53)

proofs the invertability.
Here for concreteness, we pick up the Northern hemi-

sphere potential and cast it in the more compact form,

�ðjqjÞ ¼ c
2sin2 jqj

2@
ffiffiffi
�

p

ð jqj
@
ffiffiffi
�

p Þ2 ; c ¼ 2G�

@
2�

: (54)

It is increasing in the infrared, finite at origin, and ap-
proaches the Coulomb propagator in the ultraviolet. In
the notations of Eq. (48) our result takes the form

Gðq2Þ
q2

¼ c
2sin2 jqj

2

q2
; (55)

for a dimensionless q measured in units of @
ffiffiffiffi
�

p
. Stated

differently,

Gðq2Þ ¼ 2csin2
jqj
2

¼ cð1� cosjqjÞ

¼ c

�
q2

2!
� q4

4!
þ q6

6!
� � � �

�
; (56)

and in accord with Eq. (50). Therefore, quark physics in
R1 � S3 also predicts a finite gluon dressing function in the
infrared which approaches zero in the ultraviolet. Such a
type of behavior has been observed, for example, in the
description of confinement phenomena [54]. In summary,
one of the virtues of the curvature aspect of the cotangent
gauge potential is that its S3 Fourier transform comes out
well defined.

V. CONCLUSIONS

In the present investigation we examined consequences
of conformal symmetry in gravity-gauge duality on spec-
troscopic data on the lightest baryons, the nucleon and the
�ð1232Þ. The AdS5=CFT4 concept on conformal symme-
try has been implemented by a quark-diquark model placed
directly on a conformally compactified Minkowski space-
time, R1 � S3, approached from the AdS5 cone. The de-

scription of the q-ðqqÞ0
 system on the R1 � S3 manifold
has been executed in terms of the scalar conformal equa-
tion there, gauged by a cotangent potential. The scalar
conformal equation was cast into the form of a Klein-
Gordon version of the eigenvalue problem of the squared
4D angular momentum operator on S3 and presented in
Eq. (10). The spectrum of such a two-body system falls as a
whole into a 1d unitary representation of the conformal
group, whose levels are irreducible representations of
SOð4Þ, the maximal compact group of SOð2; 4Þ. For such
SOð2; 4Þ irreducible representations, the notion of confor-
mal bands has been used. We observed that all nucleon
resonances listed so far by the Particle Data Group distrib-
ute fairly well over the first five levels of a respective
conformal band. The same applies to the � resonances.
We identified 38 reported excitations matched by states
from the predicted conformal spectrum and calculated a
total of 32 resonances needed for the completeness of the
two conformal N and � bands. We did not exclude none of
the resonances from the analyzes. The levels of the con-
formal band are constituted from parity pairs of rising spins
of almost equal masses and a state of maximal spin of
approximately same mass that remains as a parity simplex.
In this way, more than 54% of the predicted conformal
spectrum has been matched by experimentally observed
states. Finding all the states belonging to the remaining
46% would provide a compelling argument in favor of the
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realization of conformal symmetry in QCD in the infrared.
However, one should always keep in mind that the bar-
yonic high-spin states are not stable fundamental particles
but instable composite many-body systems, which can
develop a complicated internal dynamics. The latter can
impose additional conditions on the observability of the
missing states. In that regard it suffices to mention thresh-
old and cusp effects. Compared to the conformally sym-
metric description studied here, the quantum Hamiltonian
of the real resonance systems may contain higher-order
terms of one or more different symmetries. In effect, the
irreducible representations of the corresponding symmetry
groups can get mixed up and suppress some of the quantum
numbers. Such a situation in physics is by no means new.
Nuclear physics provides many examples for systems in
which one part of the spectrum enjoys a symmetry while
the remaining part either does not, or, has an other sym-
metry. Recently, the concept of ‘‘partial dynamical sym-
metry’’ has been developed out of the need to address this
type of peculiarity of many-body excitations [55]. Within
this new and more relaxed symmetry context, the degen-
eracy phenomenon in the observed part of the baryon
spectra investigated here, already signals relevance of con-
formal symmetry in the light flavor baryon spectra in line
with AdS5=CFT4.

We also illustrated quality of the wave functions in
calculating realistic values for charge radii and electric
charge form factors of the proton, the P11ð1440Þ, and
S11ð1535Þ states. We furthermore observed that with the
increase of the excitation energies, when the influence of
the gauge potential gradually fades away, and the spectrum
approaches that of the free conformal rigid rotor, the data
fit becomes better. Also, these observations point toward
relevance of conformal symmetry for the spectra of the
light flavor baryons. Conformal symmetry in the N and �
spectra is not an exact symmetry. The model presented
accounts for this circumstance partly through managing the
conformal constant in Eq. (7) as a free parameter, and
partly through the modification of the centrifugal barrier
of the conformally invariant free geodesic motion on S3

through the gauge interaction. This modification is respon-
sible for the systematic P2I;1 � S2I;1 mass splitting, which

finds a satisfactory explanation within the framework
under discussion. Especially, the relatively large splittings
of about 70 MeV in the well established P11ð1440Þ �
S11ð1535Þ and S11ð1650Þ � P11ð1710Þ pairs have been
well reproduced. Regarding the S11ð2090Þ � P11ð2100Þ
pair, we reproduce correctly the mass ordering but over-
estimate the splitting. However, given the poor statistical
knowledge on these states (one star resonances), no con-
clusion can be drawn from the discrepancy. The descrip-
tion of conformal symmetry as approximate is one of the
advantages of the Klein-Gordon version (10) of the con-
formal equation on S3 over its Schrödinger version in
Eq. (31) (earlier considered by us in Ref. [56]) which keeps

respecting in the interacting case the degeneracies of the
free geodesic motion. Encouragingly, the reasonable shape
of the instantaneous effective gluon propagator is obtained
as a Fourier transform of the cotangent gauge potential. To
recapitulate, we find conformal symmetry relevant for the
spectra of the lightest baryons.
Finally, a comment on the relevance of the elaborated

scheme for mesons is in order. In Ref. [57] the Crystal
Barrel data of the high-lying nonstrange mesons have been
analyzed and shown to be supportive of the spin-clustering
phenomenon suggested in Ref. [45], though the SO(4)
levels of the conformal bands have not been explicitly
constructed in Ref. [57]. We here fill this gap on the
example of the data below 2100MeV for purely illustrative

FIG. 6. Schematic spectrum of isoscalar nonstrange high-lying
mesons according to Crystal Barrel data. Empty bricks denote
missing states. To the right, the (K=2; K=2) levels from the
conformal band with K ¼ 3, 4 have been marked. The levels
appear parity duplicated.

FIG. 7. Schematic spectrum of isovector nonstrange high-lying
mesons according to Crystal Barrel data. Empty bricks denote
missing states. To the right the (K=2; K=2) levels from the
conformal band with K ¼ 3, 4 have been marked. The levels
appear parity duplicated.
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purposes. The detailed analysis of the meson sector will be
presented elsewhere. So far we restrict ourselves to draw
the reader’s attention to Figs. 6 and 7 which depict the
population of the (3=2; 3=2) and (2, 2) levels of the con-
formal bands for isoscalar, and isovector mesons, respec-
tively. Compared to baryons, the mesonic SOð4Þ levels
appear parity duplicated which can be read as a signal
for chiral symmetry restoration from the Goldstone mode
at low energies to the Wigner-Weyl mode at higher ener-
gies. Therefore, as correctly noticed in Ref. [57], the
Crystal Barrel data provide a clear hint on the relevance

of both chiral and conformal symmetry for the lightest
flavor mesons at high energies.
All in all, the model developed in the present work

provides in our opinion a reasonable quantum mechanical
approach to QCD which is congruent with the conformal
symmetry aspect of the gravity-gauge duality.
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